Bennu’s equatorial craters

Bennu's craters
Click for full image.

The OSIRIS-REx science team today released a neat image of Bennu, highlighting the string of impact craters along the rubble-pile asteroid’s equatorial ridge. The image to the right, cropped and reduced to post here, shows that image. From the release:

Bennu’s darkest boulder, Gargoyle Saxum , is visible on the equator, near the left limb. On the asteroid’s southern hemisphere, Bennu’s largest boulder, Benben Saxum , casts a long shadow over the surface. The field of view is 0.4 miles (0.7 km). For reference, the largest crater in the center of the image is 257 ft (78 m) wide, which is almost the size of a football field.

The photo was taken from a distance of six miles on April 28. The craters illustrate well the rubble pile/sandbox nature of this asteroid. They all look like what you’d expect if the impact was able to easily drive itself deep into the a pile of sand and loose rocks. The resulting crater thus has a very indistinct rim and a sloping floor down to a central point.

Movie of OSIRIS-REx’s 1st landing rehearsal

Closest NavCam-2 image during rehearsal
Click for full movie.

The OSIRIS-REx science team has released a short movie taken by one of the spacecraft’s navigation camera (NavCam-2) during its first landing rehearsal on April 14. The image to the right, cropped to post here, is the closest image in the sequence, and shows the relatively smooth Nightingale target landing site near the bottom of the image, approximately 50 feet in diameter.

According to the release,

NavCam 2 captures images for the spacecraft’s Natural Feature Tracking (NFT) navigation system. The NFT system allows the spacecraft to autonomously guide itself to Bennu’s surface by comparing real-time images with an onboard image catalog. As the spacecraft descends to the surface, the NFT system updates the spacecraft’s predicted point of contact depending on OSIRIS-REx’s position in relation to Bennu’s landmarks. During the sample collection event, scheduled for August, the NavCam 2 camera will continuously image Bennu’s surface so that the NFT system can update the spacecraft’s position and velocity relative to Bennu as it descends towards the targeted touchdown point.

When the image above was taken the spacecraft was at its closest point, about 213 feet above the surface. Based on this movie, it looks like the system was working, and the spacecraft was refining its aim to head towards Nightingale.

Still, the landing site is not in the center of the image, which I would think is a concern, especially because Nightingale is only one-third the size of the kind of smooth target areas they had designed the system for. (When launched they expected to see smooth areas at least 160 feet across, and designed the system for this.)

The second rehearsal is presently scheduled for June 23, and will drop OSIRIS-REx to within 82 feet of the surface.

Movie of OSIRIS-REx touch-and-go rehearsal

Checkpoint rehearsal: last image
Click for movie.

The OSIRIS-REx science team yesterday released a short movie, compiled from thirty images taken during the April 14, 2020 rehearsal of the spacecraft’s planned August touch-and-go sample grab from the asteroid Bennu.

The rehearsal brought the spacecraft through the first two maneuvers of the sampling event to a point approximately 213 feet (65 meters) above the surface, before backing the spacecraft away. These images were recorded over a ten-minute span between the execution of the rehearsal’s “Checkpoint” burn, approximately 394 feet (120 meters) above the surface, and the completion of the back-away burn, which occurred approximately 213 feet (65 meters) above the surface. The spacecraft’s sampling arm – called the Touch-And-Go Sample Acquisition Mechanism (TAGSAM) – is visible in the central part of the frame, and the relatively clear, dark patch of Bennu’s sample site Nightingale is visible in the later images, at the top. The large, dark boulder that the spacecraft approaches during the sequence is 43 feet (13 meters) on its longest axis.

The image to the right is the last frame of the movie, as the spacecraft has begun its retreat. The smoother area of Nightingale is at the top.

Based on the video, it appears as if the spacecraft would have missed the Nightingale target site had the rehearsal continued to touchdown. This might not be so, however. And even if it is, the reason for the rehearsal is to allow engineers to refine the process to make it more accurate. We shall see what changes in the second rehearsal in about a month or so.

OSIRIS-REx successfully completes touch-and-go rehearsal

OSIRIS-REx yesterday successfully completed its first dress rehearsal of the maneuver that will allow it in August to touch the surface of the asteroid Bennu and grab a sample.

Four hours after departing its 0.6-mile (1-km) safe-home orbit, the spacecraft performed the Checkpoint maneuver at an approximate altitude of 410 feet (125 meters) above Bennu’s surface. From there, the spacecraft continued to descend for another nine minutes on a trajectory toward – but not reaching – the location of the sampling event’s third maneuver, the “Matchpoint” burn. Upon reaching an altitude of approximately 246 ft (75 m) – the closest the spacecraft has ever been to Bennu – OSIRIS-REx performed a back-away burn to complete the rehearsal.

During the rehearsal, the spacecraft successfully deployed its sampling arm, the Touch-And-Go Sample Acquisition Mechanism (TAGSAM), from its folded, parked position out to the sample collection configuration. Additionally, some of the spacecraft’s instruments collected science and navigation images and made spectrometry observations of the sample site, as will occur during the sample collection event.

They plan one more rehearsal, getting even closer to the asteroid, before the August 25 sample grab.

OSIRIS-REx’s sample grab location on Bennu

Nightingale site on Bennu
Click for full image.

On April 14th engineers for the probe OSIRIS-REx will do the first of two dress rehearsals of their planned touch-and-go sample grab from the asteroid Bennu, presently planned for August 25.

The image to the right was taken on March 3, 2020 from about 1,000 feet away during the spacecraft’s third reconnaissance phase, and is centered on that touch-and-go site, dubbed Nightingale by the science team. It illustrates why that sample grab carries risks that were unexpected. As they point out on the image’s release page, “the rock in the [upper right] of the image is 2 ft (70 cm) long, which is about the length of a small ice chest.” Moreover, across the entire touchdown site are numerous other rocks ranging in size from fists to laptops.

When they designed the mission, they had assumed there would be places on Bennu’s surface made up mostly of dust. areas where such dust would have gathered into ponds, as seen in other asteroids. The expectation also assumed these areas would be larger than any of the smooth areas found on Bennu. As they have noted:
» Read more

OSIRIS-REx to do sample-grab rehearsal at Bennu

The OSIRIS-REx science team today released a step-by-step description of the first touch-and-go sample grab rehearsal, planned for April 14, 2020.

During the rehearsal, dubbed “Checkpoint,” they expect the spacecraft to get less than 250 feet from the surface of the asteroid Bennu before pulling away.

Checkpoint rehearsal, a four-hour event, begins with the spacecraft leaving its safe-home orbit, 0.6 miles (1 km) above the asteroid. The spacecraft then extends its robotic sampling arm – the Touch-And-Go Sample Acquisition Mechanism (TAGSAM) – from its folded, parked position out to the sample collection configuration. Immediately following, the spacecraft slews, or rotates, into position to begin collecting navigation images for NFT guidance. NFT allows the spacecraft to autonomously guide itself to Bennu’s surface by comparing an onboard image catalog with the real-time navigation images taken during descent. As the spacecraft descends to the surface, the NFT system updates the spacecraft’s predicted point of contact depending on OSIRIS-REx’s position in relation to Bennu’s landmarks.

Before reaching the 410-ft (125-m) Checkpoint altitude, the spacecraft’s solar arrays move into a “Y-wing” configuration that safely positions them away from the asteroid’s surface. This configuration also places the spacecraft’s center of gravity directly over the TAGSAM collector head, which is the only part of the spacecraft that will contact Bennu’s surface during the sample collection event.

In the midst of these activities, the spacecraft continues capturing images of Bennu’s surface for the NFT navigation system. The spacecraft will then perform the Checkpoint burn and descend toward Bennu’s surface for another nine minutes, placing the spacecraft around 243 ft (75 m) from the asteroid – the closest it has ever been.

They will do a second rehearsal on June 23, getting within 100 feet of the surface. The actual touch-and-go sample grab is now scheduled for August 25.

OSIRIS-REx makes closest reconnaissance of Bennu yet

The spacecraft OSIRIS-REx yesterday made its closest reconnaissance yet of the asteroid Bennu, sweeping past its primary touch-and-go landing site Nightingale by a distance of only 820 feet.

The main goal of yesterday’s low flyover was to collect high-resolution imagery of the site’s surface material. The spacecraft’s sample collection mechanism is designed to pick up small rocks less than 0.8 inches (2 cm) in size, and the PolyCam images from this low pass are very detailed, allowing the team to identify and locate rocks of this size. Several of the spacecraft’s other instruments also took observations of the Nightingale site during the flyover event, including the OSIRIS-REx Thermal Emissions Spectrometer (OTES), the OSIRIS-REx Visual and InfraRed Spectrometer (OVIRS), the OSIRIS-REx Laser Altimeter (OLA), and the MapCam color imager.

After completing the flyover, the spacecraft returned to orbit – but for the first time, OSIRIS-REx reversed the direction of its safe-home orbit and is now circling Bennu clockwise (as viewed from the Sun). This shift in orbital direction positioned the spacecraft for its next close encounter with the asteroid – its first rehearsal for the sample collection event.

The touch-and-go sample grab is targeted to take place in August.

New OSIRIS-REx close-up image of secondary asteroid landing site

Osprey landing site on Bennu
Click for full image.

The OSIRIS-REx science team today released one of the images taken during the spacecraft’s recent close reconnaissance of its secondary touch-and-go landing site on the asteroid Bennu.

I have cropped their oblique image to focus, in full resolution, on that landing site, dubbed Osprey, which is the crater on the left side of the photo. The boulder in that crater “is 17 ft (5.2 m) long, which is about the length of a box truck.”

After the fly-by, the science team had announced that the spacecraft’s laser altimeter had failed to operate, and the images taken by its highest resolution camera (not the camera that took today’s image) “are likely out of focus.”

Based on this image, what look like tiny pebbles inside the crater are actually boulders ranging in size from mere inches to as much as five feet across. If their high resolution images are soft, it will thus be hard to map out the terrain sufficiently to safely make a touch-and-go landing here.

More important, there is still no word on whether they have fixed the laser altimeter. Without it I suspect a landing will be very difficult, if not impossible.

Anomaly during OSIRIS-REx flyover of secondary landing site

During its close fly-over of its secondary candidate touch-and-go landing site on the asteroid Bennu, OSIRIS-REx’s laser altimeter failed to work as planned.

On Feb. 11, NASA’s OSIRIS-REx spacecraft safely executed a 0.4-mile (620-m) flyover of the backup sample collection site Osprey as part of the mission’s Reconnaissance B phase activities. Preliminary telemetry, however, indicates that the OSIRIS-REx Laser Altimeter (OLA) did not operate as expected during the 11-hour event. The OLA instrument was scheduled to provide ranging data to the spacecraft’s PolyCam imager, which would allow the camera to focus while imaging the area around the sample collection site. Consequently, the PolyCam images from the flyover are likely out of focus.

They are analyzing their data to figure out what went wrong and whether it can be fixed. The press release implies that this loss will not impact the touch-and-go at the primary landing site, but does not say so directly. Without the laser altimeter I wonder, how they will know their exact distance as they approach?

Then again, they have not yet downloaded the full dataset from the fly-over, so they might be able to get the instrument working again.

OSIRIS-REx completes close fly-over of Bennu touchdown site

OSIRIS-REx has successfully completed the first of a series of increasingly closer fly-overs of its primary sample grab sites on the asteroid Bennu.

The spacecraft got as close as about 2,000 feet in order to take more high resolution images of the Nightingale landing site where they hope in August to do a touch-and-go sample grab.

A similar flyover of the backup sample collection site, Osprey, is scheduled for Feb. 11. Even lower flybys will be performed later this spring – Mar. 3 for Nightingale and May 26 for Osprey – as part of the mission’s Reconnaissance C phase activities. The spacecraft will perform these two flyovers at an altitude of 820 feet (250 m), which will be the closest it has ever flown over asteroid Bennu’s surface.

OSIRIS-REx team picks primary sample site

Four candidate landing sites
Click for full image.

The OSIRIS-REx science team has picked the site they have dubbed Nightingale as the primary landing site where they will attempt to obtain a sample from the asteroid Bennu in the summer of 2020. The back-up site is Osprey at the equator.

I have embedded the replay of the NASA live stream of the press event below the fold. The first 21 minutes of the video are an overview of the mission, leading up to the announcement by Dante Lauretta, OSIRIS-REx’s principal investigator. He notes then that the site “does have some hazards” but they chose it for its “scientific value.” While its higher latitude location has some advantages, it also makes it more difficult for landing. The one large boulder there, which Lauretta calls “Mt Doom,” also carries risk for the touch-and-go operations.

The back-up site, Osprey, is on the equator with less hazards, but will present more problems obtaining the tiny-sized particles the sample grab equipment was designed to get.

Not that this matters, but if I have been in a betting pool I would have won, since Nightingale has been my guess for which site they’d pick since early November.
» Read more

OSIRIS-REx completes reconnaissance of four candidate sample sites

Four candidate landing sites
Click for full image.

OSIRIS-REx has completed its high resolution reconnaissance of the four candidate sites on the asteroid Bennu, chosen for possible sample capture during touch-and-go operations planned for the summer of 2020.

In the next few days the science team will decide which of these four sites, shown above, will be the primary and back-up landing locations. The decision however appears challenging, based on the information gathered.

Bennu has also made it a challenge for the mission to identify a site that won’t trigger the spacecraft’s safety mechanisms. During Recon A, the team began cataloguing Bennu’s surface features to create maps for the Natural Feature Tracking (NFT) autonomous navigation system. During the sample collection event, the spacecraft will use NFT to navigate to the asteroid’s surface by comparing the onboard image catalog to the navigation images it will take during descent. In response to Bennu’s extremely rocky surface, the NFT system has been augmented with a new safety feature, which instructs it to wave-off the sampling attempt and back away if it determines the point of contact is near a potentially hazardous surface feature. With Bennu’s building-sized boulders and small target sites, the team realizes that there is a possibility that the spacecraft will wave-off the first time it descends to collect a sample.

Based on the information at the link, plus the presentation by Dante Lauretta, OSIRIS-REx’s principal investigator, given at the asteroid conference I attended in November, I suspect that Nightingale will be primary landing site.

Regardless, it appears the science team has recognized that the landing will difficult, and will likely require multiple attempts before the spacecraft’s navigation system lets it happen.

Bennu & Ryugu: Two very old and strange asteroids

Bennu as seen by OSIRIS-REx
Bennu’s equatorial ridge. Click for full image.

This week the science team operating the OSIRIS-REx spacecraft at the asteroid Bennu hosted a joint conference in Tucson, Arizona, with the scientists operating the Hayabusa-2 spacecraft at the asteroid Ryugu. Both gave up-to-date reports on the science so far obtained, as well as outlined upcoming events. I was fortunate enough to attend.

First an overview. Both Bennu and Ryugu are near earth asteroids, with Bennu having an orbit that might even have it hit the Earth in the last quarter of 2100s. Both are very dark, and are rubble piles. Both were thought to be of the carbonaceous chondrite family of asteroids, sometimes referred to as C-type asteroids. This family, making up about 75% of all asteroids, includes a bewildering collection of subtypes (B-types, F-types, G-types, CI, CM, CV, CH, CB, etc), all of which were initially thought to hold a lot of carbon. We now know that only a few of these categories, the CI and CM for example, are carbon rich.

Even so, we actually know very little about these types of asteroids. They are very fragile, so that any that reach the Earth’s surface are not a good selection of what exists. About 90% of the material gets destroyed in the atmosphere, with the remnant generally coming from the innermost core or more robust nodules. We therefore have a biased and limited sample.

It is therefore not surprising that the scientists are finding that neither Bennu nor Ryugu resembles anything else they have ever seen. Both have aspects that resemble certain types of carbonaceous chondrite asteroids, but neither provides a very good fit for anything.
» Read more

OSIRIS-REx’s four candidate landing sites

The OSIRIS-REx engineering team has released a short video that flies over in close-up, showing the spacecraft’s four candidate sites on the asteroid Bennu, one of which will be where they will do a touch-and-go sample grab.

They continue to accumulate data on the four sites, all of which pose issues and risks because of nearby boulders and the looseness of Bennu’s rubble pile make-up.

Though all the sites are being considered, my sources in the industry suggest that the two dubbed Sandpiper and Nightingale are being favored. I like Osprey, because it is inside a crater and looks clear, but then, what do I know?

OSIRIS-REx team picks four finalist sample return sites on Bennu

After months of photographing and analyzing the very rocky-shrewn surface of the rubble-pile asteroid Bennu, the OSIRIS-REx team has chosen four finalist sites, one of which they will do a touch-and-go sample grab.

This fall, OSIRIS-REx will begin detailed analyses of the four candidate sites during the mission’s reconnaissance phase. During the first stage of this phase, the spacecraft will execute high passes over each of the four sites from a distance of 0.8 miles (1.29 km) to confirm they are safe and contain sampleable material. Closeup imaging also will map the features and landmarks required for the spacecraft’s autonomous navigation to the asteroid’s surface. The team will use the data from these passes to select the final primary and backup sample collection sites in December.

The second and third stages of reconnaissance will begin in early 2020 when the spacecraft will perform passes over the final two sites at lower altitudes and take even higher resolution observations of the surface to identify features, such as groupings of rocks that will be used to navigate to the surface for sample collection. OSIRIS-REx sample collection is scheduled for the latter half of 2020, and the spacecraft will return the asteroid samples to Earth on Sept. 24, 2023.

They given the four sites the names Nightingale, Kingfisher, Osprey and Sandpiper.

IAU approves 2nd set of Pluto names chosen by New Horizons team

My heart be still! The International Astronomical Union (IAU) has now officially given its glorious stamp of approval to a second set of fourteen names given by the New Horizons’ team to features on Pluto.

Several people and missions who paved the way for the historic exploration of Pluto and the Kuiper Belt – the farthest worlds ever explored – are honored in the second set of official Pluto feature names approved by the International Astronomical Union (IAU), the international authority for naming celestial bodies and their surface features.

The new names were proposed by NASA’s New Horizons team, which carried out the first reconnaissance of Pluto and its moons with the New Horizons spacecraft in 2015. Along with a short list of official names the IAU had already approved, the mission science team had been using these and other place names informally to describe the many regions, mountain ranges, plains, valleys and craters discovered during the first close-up look at Pluto’s surface. [emphasis mine]

In case you don’t get it, I am being very sarcastic above. I consider the IAU to be incredibly arrogant in its claim that it, and it alone, can approve the names given to surface features on other worlds. Initially the IAU was given the task by the astronomical community of organizing the naming of celestial bodies seen in telescopes, to reduce confusion. Somehow the IAU has expanded that responsibility to include the naming of every rock and pebble on every world in the universe.

To this I say bunk. I also know that future spacefarers in space will say the same thing, and tell the IAU to go jump in a lake. In a sense, the New Horizons team did exactly that when they made their name choices very public from the beginning, essentially telling the IAU that the New Horizons’ team is picking the names, not the IAU.

In related news, the IAU has now approved the naming convention the OSIRIS-REx team intends to use to name features on Bennu. However, in this case the IAU is doing its real job, helping to organize the naming conventions to reduce confusion.

The named features on Bennu will include several terrain classification types that the IAU also approved for asteroid (162173) Ryugu’s surface features (currently being explored by the Japanese Space Agency’s Hayabusa2 spacecraft). These include craters, dorsa (peaks or ridges), fossae (grooves or trenches) and saxa (rocks and boulders). The last of these types – saxum – is a new feature classification that the IAU introduced earlier this year for small, rocky asteroids like Ryugu and Bennu. These surface features on Bennu will be named after mythological birds and bird-like creatures, complementing the mission’s existing naming theme, which is rooted in Egyptian mythology.

The actual names the OSIRIS-REx team will chose for each unique feature will however be their choice, not the IAU’s. Though the IAU will eventually announce it has “approved” those choices, it will never really have the right to have a say in those decisions.

Bennu from 2,200 feet

Bennu from about 2,200 feet
Click for full image.

The OSIRIS-REx science team today released one of the first images taken of Bennu after the spacecraft lowered itself into its closest orbit in early June. I have reduced and cropped slightly that image slightly to post here on the right. As they note,

From the spacecraft’s vantage point in orbit, half of Bennu is sunlit and half is in shadow. Bennu’s largest boulder can also be seen protruding from the southern hemisphere. The image was taken from a distance of 0.4 miles (690 m) above the asteroid’s surface by NavCam 1, one of three navigation cameras that comprise the spacecraft’s TAGCAMS (the Touch-and-Go Camera System) suite. At this distance, details as small as 1.6 ft (0.5 m) across can be resolved in the center of the image.

In other words, if a person was moving across the asteroid’s surface you could see them.

OSIRIS-REx’s new orbit of Bennu only half mile high

OSIRIS-REx has moved into its next phase of research by lowering its orbit around the asteroid Bennu to only 2,231 feet above the surface.

Upon arrival at Bennu, the team observed particles ejecting into space from the asteroid’s surface. To better understand why this is occurring, the first two weeks of Orbital B will be devoted to observing these events by taking frequent images of the asteroid’s horizon. For the remaining five weeks, the spacecraft will map the entire asteroid using most of its onboard science instruments: the OSIRIS-REx Laser Altimeter (OLA) will produce a full terrain map; PolyCam will form a high-resolution, global image mosaic; and the OSIRIS-REx Thermal Emission Spectrometer (OTES) and the REgolith X-ray Imaging Spectrometer (REXIS) will produce global maps in the infrared and X-ray bands. All of these measurements are essential for selecting the best sample collection site on Bennu’s surface.

The goal is to narrow to four the possible touch-and-go landing sites for grabbing a surface sample. They will pick the final choice in a reconnaissance phase now scheduled for the fall.

The present research phase will last until the middle of August, when they will raise the orbit slightly to give them a different perspective of its surface and the particles being released from it.

On the precipice on Bennu

Truck-sized boulder on a crater rim on Bennu
Click for full image.

Cool image from OSIRIS-REx. The picture on the right, cropped to post here, was taken by OSIRIS-REx and shows a square boulder about the size of a 15-passenger van, precariously perched on the rim of a large crater on the asteroid Bennu. The picture was taken April 11 from about 2.9 miles distance.

This scale is human-sized. If that rock is a 15 passenger van, then the small rocks around it are about the size of a person and that cliff is about 20-30 feet high. I can imagine strolling down the slope to check out the cliff face, though I would make sure I gave a wide berth to the part of the cliff directly below that boulder.

OSIRIS-REx moves into new science phase

The OSIRIS-REx science team has shifted the spacecraft’s operation into a new phase aimed at carefully mapping the surface of the asteroid Bennu in preparation for an eventual touch-and-go sample grab.

During Detailed Survey: Equatorial Stations phase, the spacecraft’s instruments will make the scientific observations needed to help the team home in on the best location on Bennu to collect a sample of regolith (loose surface material). To obtain these data, the spacecraft will execute a series of slews between Bennu’s north and south poles while taking observations from seven different stations above the equator. These data will be studied to understand the geology of Bennu. The spacecraft will also conduct searches for dust and gas plumes.

During this phase, planned to last through mid-June, they are asking for the public’s help in mapping the surface and its innumerable rocks.

For this effort, NASA is partnering with CosmoQuest, a project run out of the Planetary Science Institute that supports citizen science initiatives. Volunteers will perform the same tasks that planetary scientists do – measuring Bennu’s boulders and mapping its rocks and craters – through the use of a simple web interface. They will also mark other scientifically interesting features on the asteroid for further investigation.

The boulder mapping work involves a high degree of precision, but it is not difficult. The CosmoQuest mapping app requires a computer with a larger screen and a mouse or trackpad capable of making precise marks. To help volunteers get started, the CosmoQuest team provides an interactive tutorial, as well as additional user assistance through a Discord community and livestreaming sessions on Twitch.

Seems like fun!

The temperature on Bennu

The OSIRIS-REx science team have released a short movie, compiled from data obtained in November 2018 as the spacecraft was first approaching the asteroid Bennu, that shows the dayside surface temperature and how it changes as the asteroid rotates.

I have embedded the movie below the fold.

Within a distance of only about 850 feet the temperature rises more than 270 degrees, from -99.67 °F to 170.33 °F. This change also occurs at every spot as the asteroid rotates. At dawn it will be that cold, and by noon it will be that hot.
» Read more

Bennu from two miles

Bennu from two miles
Click for full image.

In late March OSIRIS-REx completed its fourth fly-by of the asteroid Bennu. The image on the right, cropped and reduced to post here, was taken when the spacecraft was only 2.1 miles above the surface. If you were standing among these large boulders, we could easily see you.

The image itself shows the asteroid’s southern limb, and thus the shadows are accentuated. This makes it easier to see surface details. Though it is clear once again that Bennu is a pile of boulders and rocks cemented together and floating in space, the photograph also shows that it also has areas where the material is either much larger or fused together more solidly, as shown by the more massive sections in the left center of this picture. We might be looking a very large boulders peeking up from below the surface, or possibly this is the hint of some real bedrock.

The OSIRIS-REx team is continuing the spacecraft’s survey phase, gathering high resolution images in order to compile a detailed map of the surface, prior to planning the touch-and-go sample grab.

Bennu’s cobbled equatorial ridge

Bennu as seen by OSIRIS-REx
Click for full image.

The OSIRIS-REx science team has released a new close-up image of Bennu, this time showing the asteroid’s equatorial ridge. The image on the right is that photograph, reduced to post here.

When the image was taken, the spacecraft was positioned over Bennu’s northern hemisphere, looking southward over the asteroid’s equatorial bulge. The field of view shown is 168 ft (51.2 m) wide. For scale, the bright, rectangular rock above the dark region is 8 ft (2.4 m) wide, about the size of a long bed on a pickup truck

Like Ryugu, the scientists for OSIRIS-REx are going to be challenged in finding a location smooth enough for their touchdown sample grab. That surface reminds me of some avalanche scree slopes I’ve hike across, where you’ve got nothing but rough rocks to walk on.

OSIRIS-REx maps Bennu by laser

The OSIRIS-REx science team today released a short animation showing a topographical global map of the asteroid Bennu, created by the spacecraft’s laser altimeter, dubbed OLA.

From Feb. 12 through 17, OLA made more than 11 million measurements of the distance between OSIRIS-REx and Bennu’s surface as the spacecraft flew less than 1.2 miles (2 km) above the surface – the closest orbit ever achieved by spacecraft. OLA obtained these measurements by firing laser pulses at Bennu and measuring the amount of time it takes for the light to bounce off the asteroid’s surface and return to the instrument. That time measurement is then translated into altitude data. Using this data, the OLA team created the 3-D model of Bennu’s surface.

Global map of Bennu

Global map of Bennu

The OSIRIS-REx science team today released a global map of Bennu, compiled from images taken in December.

The map is above. It was released with no commentary. In comparing it with this global map of Ryugu, created by the Japanese probe Hayabusa-2, I am struck by how much both asteroids resemble each other.

This fact is in many ways a first. Since the first planetary probes left Earth in the 1960s the one reliable expectation that has consistently proven true is that no planetary object, be it planet, dwarf planet, moon, asteroid, or comet, was going to resemble any other planetary object. Each has been entirely unique, and unique in very startling and obvious ways.

Ryugu and Bennu represent the first planetary objects that actually look pretty much the same. Scientist will of course be able to note differences, but overall these objects clearly belong to a specific class of asteroids, which in this case is the rubble pile.

In a sense, this similarity marks a significant advancement in our knowledge. Up until now, we had observed so few objects that our knowledge base wasn’t large enough to start seeing patterns within our general classifications of planet, asteroid, or comets. That is now finally changing.

A rock on Bennu

A rock on Bennu
Click for full image (which is rotated 180 degrees).

Cool image time! The OSIRIS-REx science team today released a close-up image of the surface of the asteroid Bennu. The image on the right is a cropped and rotated section of that image, focusing on the image’s star, its largest rock.

The boulders on Bennu’s surface sport a variety of surface textures, from smooth, to hummocky, striated, and crumbly “cauliflower” in nature. The large boulder in the image center is ~92 ft (~28 m) across and has a somewhat round shape, though many smaller boulders surrounding it are very angular. Some of these appear to be fragments that may have disaggregated from the central boulder and display layering effects that may reflect some of the properties of their mineral composition. Other boulders show signs of surface exfoliation and fractures that may have been caused by impacts, mechanical weathering, and other forms of rock breakdown active on Bennu’s surface.

The image was taken from less than a mile away, and shows a spot near the asteroid’s south pole.

Why the larger boulder has a rounded look, but the pebbles around it are jagged, is a puzzle.

The science team also revealed today that they have detected plumes of particles being released from the asteroid’s surface. They have also found Bennu to present them with the same problem faced by the Hayabusa-2 team at Ryugu: The asteroid is far rougher than expected.

The higher-than-expected density of boulders means that the mission’s plans for sample collection, also known as Touch-and-Go (TAG), need to be adjusted. The original mission design was based on a sample site that is hazard-free, with an 82-foot (25-meter) radius. However, because of the unexpectedly rugged terrain, the team hasn’t been able to identify a site of that size on Bennu. Instead, it has begun to identify candidate sites that are much smaller in radius.

A pond on Bennu

Pond on Bennu
Click for full resolution.

The OSIRIS-REx science team has released new high resolution images of one particular area on Bennu’s northern hemisphere. The image on the right, cropped and reduced to post here, shows what they label a “pond of regolith,” seen as the relatively smooth area in the upper left.

This is not literally a pond, but instead is a low-lying spot where smaller particles have settled over time, producing a flattish area that looks, and in some ways, resembles a pond or puddle, only in this case the material isn’t water but fine-grained dust or pebbles.

On March 19 the science team will be presenting their initial results at a special session at the 50th Lunar and Planetary Science Conference in Texas. That same day they will hold a press conference summarizing the most interesting aspects of those results. Stay tuned.

New research detects increase in Bennu’s rotation

New research using ground-based observations has detected a slight increase over time in the daily rotation of the asteroid Bennu.

The new research finds the asteroid’s rotation is speeding up by about 1 second per century. In other words, Bennu’s rotation period is getting shorter by about 1 second every 100 years.

While the increase in rotation might not seem like much, over a long period of time it can translate into dramatic changes in the space rock. As the asteroid spins faster and faster over millions of years, it could lose pieces of itself or blow itself apart, according to the study’s authors.

…The change in Bennu’s rotation could be due to a change in its shape. Similar to how ice skaters speed up as they pull in their arms, an asteroid could speed up as it loses material.

Nolan and his co-authors suggest the reason for the increase in Bennu’s rotation is more likely due to a phenomenon known the YORP effect. Sunlight hitting the asteroid is reflected back into space. The change in the direction of the light coming in and going out pushes on the asteroid and can cause it to spin faster or slower, depending on its shape and rotation.

Truth is, this is not a very significant finding. Asteroids don’t weight much, and thus have very weak gravitational fields. It is therefore very easy to change their orbit and rotation, as well as add or subject material from them.

In this sense, the conclusion above is likely incorrect. What they have found is that the asteroid’s rotation increased at a pace of about 1 second per century, during their study period. Their data only covers the period from 1999 to 2005. Bennu could easily slowed its rotation, or increased it even more, during other times.

Close-up of Bennu’s north pole

Bennu's north pole
Click for full image.

The OSIRIS-REx science team has released a very high resolution image taken of Bennu’s north pole region. To the right is the most interesting part of that image, cropped by me to show here.

This image shows a region near asteroid Bennu’s north pole on the terminator line between the asteroid’s day and night sides. The OSIRIS-REx spacecraft’s MapCam camera obtained the image on Feb. 20 while in orbit around the asteroid from a distance of 1.1 miles (1.8 km). At this distance, each pixel covers approximately 4.5 inches (12 cm) of Bennu’s surface. The largest boulder, located slightly left of the center, measures around 52 feet (16 meters) across, which, for scale, is the length of the trailer on a semi-truck.

In other words, if this was a truck stop along an interstate highway, you could see the driver getting out of that semi to head inside for dinner.

The spacecraft right now is not doing much science work. They are in what they call the Orbital A phase of the mission, where they are in a very low orbit along the terminator line between night and day — generally a mile above the surface — and are using this orbit to give the engineering team practice maneuvering at such an orbit while they transition from using the stars to navigate to using landmarks on the surface.

Orbital images of Bennu

Close-up of Bennu's southern hemisphere

The OSIRIS-REx science team has released two new images of Bennu’s southern hemisphere, taken from orbit. The image on the right is a cropped section of the highest resolution version of a montage of two images. Click on the image to see the entire two-image montage.

These two OpNav images of Bennu’s southern hemisphere, which each have an exposure time of about 1.4 milliseconds, were captured Jan. 17 from a distance of about one mile (1.6 km). They have been cropped and the contrast has been adjusted to better reveal surface features. The large boulder – fully visible in the middle of the left frame and in partial shadow in lower portion of right frame – is about 165 feet (50 meters) across.

The cropped section to the right shows that large boulder in the middle of the frame.

I’m sorry, but when I look at this rubble-pile asteroid I cannot help but think of the cat-litter clumps I remove from our cats’ litter box. The only fundamental difference is that the grains in cat litter are made to be a uniform size, while at Bennu the grains are much coarser and not uniform. Nonetheless, this asteroid is a clump of many grains, just like those cat litter clumps, and will likely crumple easily into a cloud of grains if smacked just hard enough.

This knowledge is actually very critical, as Bennu is a potentially dangerous asteroid with an orbit that might have it impact the Earth in about two hundred years.

1 2 3