Deep inside the youngest flood lava event on Mars

Deep inside the youngest flood lava event on Mars
Click for full image.

Cool image time! Today we return to the Athabasca Valles flood lava event, believed to be the youngest major lava event on Mars that I highlighted in a cool image last week.

Then, I showed two meandering lava flows near the edge of this Great Britain-sized flood lava plain, produced 600 million years ago in only a matter of weeks. Today, we take a look deep within the lava plain. The photo to the right, rotated, cropped, and reduced to post here, was taken on May 6, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label “a lava-crater interaction.”

In plain English, we are looking at a crater that has been inundated by the flood lava, filling it.
» Read more

September 15, 2022 Quick space links

Courtesy of BtB’s stringer Jay, who trolls Twitter so I don’t have to.

The shattered cliffs of Mount Sharp

A broken cliff on Mars

Cool image time! The picture above was taken on August 11, 2022 by the left navigation camera on the Mars rover Curiosity. It shows a great example of the strange manner in which the bedrock in the layered cliffs on Mount Sharp appear to break apart.

I am not certain exactly where this feature is, or its exact scale, but based on the date and where Curiosity was located when the photo was taken, it likely is a small section from one of two hills, Deepdale and Bolivar, that Curiosity passed between in mid-August. It is likely somewhere in the panorama included in my August 11th post, but I have not yet been able to locate it.

Nonetheless, the breakage here is typical of these cliff faces. The structural strength of these layered hills is not very high, so at some point one section can break away from another as the hill sags downward to the left. What makes the cracks here more intriguing is that something caused the higher sections surrounding the main block to widen. On Earth we would assume that this widening was caused by rainwater pouring in from the top. On Mars, that explanation doesn’t hold water.

Wind? Seasonal thermal changes? Neither explains the change in the width of the cracks along their length. Maybe the wider cracks indicate an increased sagging of the hill to the left. The layers below this broken block have simply not slid to the left as much.

InSight’s power levels rise again

InSight's power levels through September 10th

Based on another status update issued today by the InSight science team, the electricity generated by the Mars lander’s dust-covered solar panels increased again slightly in the past week, going from 410 watt-hours per day to 420 watt-hours per day.

The graph to the right shows the trends since May. The science team had expected the power levels to steadily drop throughout the summer so that by early September the lander would die.

Instead, the power levels remained steady throughout the summer, and have in the past two weeks actually risen slightly, thus extending InSight’s life.

If at any moment a strong gust of wind or dust devil sweeps over InSight, the panels could be blown clear and it would gain a rebirth. The longer it manages to survive, the greater the chance that this might happen.

InSight’s power level goes up!

InSight's power levels as of September 5, 2022

The most recent status update on the Mars lander InSight, released today, shows a slight rise in the amount of power generated by its dust-covered solar panels.

As shown on the graph to the right, on August 27, 2022 the power level was 400 watt-hours generated per Martian day. On September, 5, 2022, the power level was 410 watt-hours per Martian day, the first power increase since late July. At the same time, the dust in the atmosphere continued to clear, going from a tau level of .88 to 0.8. Outside of the winter dust season tau is usually between 0.6 and 0.7.

The slight power increase continues to suggest that the lander’s death might be delayed. At 400 watt-hours per day, it has been able to run its seismometer since the beginning of July. With this slight increase, the chance increases that InSight will finally get that one gust of wind or dust devil that will blow the dust off its solar panels and allow it to recover some power and operate for longer.

Crazy badlands in the equatorial region of Mars

Badlands in the equatorial regions of Mars
Click for full image.

Cool image time! The photo to the right, rotated and cropped to post here, was taken on June 17, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The section highlighted is at full resolution, in order to make clear the absolutely crazy and complex terrain seen in the full image.

This terrain is not glacial, as the location is only about 1 degree south of the Martian equator. There might have been surface or near surface ice here once in the past, but there is none now.

Could we be looking at some form of lava flow? This is possible, because a close look at the context map at the image link suggests this region has been partly covered by some material, obscuring some craters to the east and west. However, there is no visible evidence anywhere in this region of a volcanic vent or caldera. If this covering material was volcanic it is very unclear where it came from.

The overview map below does not really provide any answers, but at least gives the context.
» Read more

A “what the heck?!” mesa in the southern polar regions of Mars

A
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on July 28, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label a “Circular and Banded Landform.”

I put this mesa into a geological category I dub “What the heck?!” We are clearly looking at a mesa, probably no more than 200 feet high, if that. What makes it baffling are the parallel bands that not only cut across the mesa but extend in the same direction for many miles in all directions. Though at first glance these bands appear to be dunes, their rocky eroded look along the mesa’s northwest rim suggests instead the bands are the top edge of many vertically oriented parallel layers, which at this mesa’s flanks are eroding alternatively at different rates.

The overview map below shows us where this mesa is located, relative to the south pole.
» Read more

Ingenuity completes 31st flight

Perseverance's location on September 2, 2022
Click for interactive map

Though no details have yet been released, the engineering team for the Mars helicopter Ingenuity has posted the numbers for the helicopter’s 31st flight, which took place yesterday.

Ingenuity flew 318 feet to a height of 33 feet for 56 seconds. The maximum ground speed was 10.6 mph. The white dot on the map to the right indicates the approximate landing spot. The blue dot Perseverance’s location as of September 3rd.

The flight plan had been to fly 319 feet, so Ingenuity landed one foot short of that plan.

That difference does not indicate any problems. However, one of the present goals of the engineering team is to improve their landing accuracy in order to provide data for the future sample return helicopter that is now in development to come and get Perseverance’s sample cores. That future helicopter will need to be able to land very precisely, and they are using Ingenuity to refine the Martian flight software.

An example of the youngest big lava flow on Mars

An example of the youngest big lava flow on Mars
Click for full image.

Overview map

Cool image time! The photo above, rotated, cropped, and reduced to post here, was taken on May 13, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows two dramatic ancient flows of flood lava. The arrows indicate what I think is the direction of flow for each, though the direction of the flow to the north appears more certain. In a wider context camera image the bulk of the evidence suggests the southern flow is heading west (as indicated by the arrow), but there are scalloped mesas within it that suggest the opposite.

The overview map above marks the location of this picture by the white cross inside the Athabasca Valles flood lava, thought by some scientists [pdf] to be Mars’ youngest major lava event that erupted about 600 million years ago and in just a matter of a few weeks poured out enough lava to cover an area about the size of Great Britain.

The general trend of the Athabasca flow was to the south, splitting into a big western and southeastern flows. This picture captures the southern edge of that southeastern flow, which might help explain why the flow directions in the picture seem so different from the main Athabasca flow. On a large scale, the flow was to the southeast. On a small scale at the edges the flow could go in many directions as the lava looks to find its level.

The Medusa Fossae Formation is the largest volcanic ash deposit on Mars, and is thought to be the source of most of the red planet’s dust. Though the origin of the ash is not yet known, it likely came from the eruptions that formed the planet’s giant volcanoes to the east and west.

Computer model: Glaciers move slower in Mars’ gravity

Using a computer model that compared glacier flows on Earth and Mars, scientists have concluded that past glaciers on Mars flowed more slowly than on Earth, and produced different types of erosion features that might explain the red planet’s many riverlike geological features.

The new study modeled how Mars’ low gravity would affect the feedback between how fast an ice sheet slides and how water drains below the ice, finding under-ice channels would be likely to form and persist. Fast water drainage would increase friction at the interface of rock and ice. This means ice sheets on Mars likely moved, and eroded the ground under them, at exceedingly slow rates, even when water accumulated under the ice, the authors said.

From the paper [pdf]:

We show quantitatively that the lower surface gravity on Mars should alter the behavior of wet-based ice masses by modifying the subglacial drainage system, making efficient, channelized drainage beneath Martian ice both more likely to form and more resilient to closure. Using as an example the case of the ancient southern circumpolar ice sheet, we demonstrate that the expected finger-print of wet-based Martian ice sheets is networks of subglacial channels and eskers, consistent with the occur-rence of valley networks and inverted ridges found on the Martian highlands.

This paper confirms the sense I have gotten from the planetary community about glaciers on Mars, that it could be the flow of glaciers that formed its many meandering canyons, not liquid water. The case however is not yet proven, as this is only a computer model.

Gullies and glaciers in a crater on Mars

The gullies and glaciers in Avire Crater
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on July 10, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the floor of 4-mile-wide Avire Crater, located at about 41 degrees south latitude inside the much larger 185-mile wide Newton Crater.

This picture was taken as part of a long term monitoring program of the many gullies that flow down the slopes of the crater’s interior rim. In fact, the gullies of this crater have so interested scientists that one even proposed [pdf] this location as a potential future rover landing site.

Avire Crater, a small … gullied crater within Newton Crater, provides many aspects ideal to a future rover mission. It has been previously hypothesized to be the location of a former paleolake with multiple episodes of ponding and deposition. Gullies occur almost continuously on the southwest wall clockwise to the northeastern wall. Dark-toned dunes are present in the northern portion of the crater, in some places obscuring gullies while cut by gullies in others. No changes in the extent or appearance of the dunes have been observed since they were first imaged … in January of 2000. The dunes lack superimposed craters, indicating that the gullies that cut through them are geologically very youthful. Layered lobate features are present at the base of the gullies on the northern wall, seen in many other craters on Mars (not always in association with gullies), which have been suggested to have formed as terminal moraines of ice-rich flows; in Avire, these features have also been suggested to be paleolake deposits. The crater floor is obscured by mid-latitude “fill” material, hypothesized to be partially comprised of ice based on morphologic evidence that the material has been partially removed.

As gullies, dunes, and “fill” material occur in many places on Mars, a single rover mission to a site containing these features would provide valuable information applicable to thousands of other locations across the planet.

The curved ridgeline in the crater floor is thought to be a moraine. The “fill” material to the south is essentially glacial in nature. Both, as well as the gullies, appear to have been shaped either a paleolake that once existed in the crater or by cyclical glacier activity. By going to this one crater, scientists could study all these different geological features at one time.
» Read more

Ingenuity’s flight plan for its next and 31st flight

Perseverance's location on September 2, 2022
Click for interactive map

The Ingenuity engineering team today released the flight plan for the helicopter’s next flight on Mars, its thirty-first since arrival.

The flight is scheduled for no earlier than September 6, mid-day on Mars, and will travel about one minute to the west for a distance of about 319 feet. The white dot on the overview map to the right shows the approximate landing spot, with the green dot marking Ingenuity’s present position. The blue dot marks Perseverance’s present position as it moves to the south and west after leaving the first delta cliff face it studied during the past few months.

The flight’s main goal is to reposition the helicopter to keep it close to the rover to facilitate communications. However, the engineering team has also now adjusted its goals to also practice hitting very precise landing spots. This goal is to develop the engineering and software that can be used on the helicopter that is not yet built that NASA and ESA intend to use to recover Perseverance’s core samples for return to Earth. That helicopter will not only have to very precisely land right next to those samples in a position allowing it to grab them, it must also land very precisely next to the sample return spacecraft to deposit them within it.

On Mars you can find glaciers everywhere in the mid-latitudes

Glacial material in Mars' rift zone
Click for full image.

Cool image time! If you ever decide to have some fun exploring the archive of images being sent back to Earth by the high resolution camera on Mars Reconnaissance Orbiter (MRO), always remember that the latitude of the image will almost immediately help to explain the strange features that you see in each picture.

The hi-res photo to the right, rotated, cropped, and reduced to post here, was taken on May 22, 2022 and provides us a great example. The jumbled features in the depression on the image’s right half surely look like the glacial features seen routinely in the 2,000-mile-long strip found in the 30 to 60 degree band in the chaos terrain of the northern lowland plains. In fact, it is likely that cycles of ebb and flow of those glaciers helped shape this chaos of buttes and mesas and cross-cutting canyons.

This picture however is nowhere near any chaos terrain, or that 2,000 long strip. In fact, it is instead in an area that appears mostly formed by tectonic and volcanic activity, as the overview map below shows.
» Read more

Experiment on Perseverance has successfully produced oxygen repeatedly

An engineering experiment on the Mars rover Perseverance, dubbed MOXIE, has now successfully produced oxygen from the carbon dioxide in the Martian atmosphere, and has done so seven different times. After filtering an air sample…

…the air is then pressurized, and sent through the Solid OXide Electrolyzer (SOXE), an instrument developed and built by OxEon Energy, that electrochemically splits the carbon dioxide-rich air into oxygen ions and carbon monoxide. The oxygen ions are then isolated and recombined to form breathable, molecular oxygen, or O2, which MOXIE then measures for quantity and purity before releasing it harmlessly back into the air, along with carbon monoxide and other atmospheric gases.

Since the rover’s landing in February 2021, MOXIE engineers have started up the instrument seven times throughout the Martian year, each time taking a few hours to warm up, then another hour to make oxygen before powering back down. Each run was scheduled for a different time of day or night, and in different seasons, to see whether MOXIE could accommodate shifts in the planet’s atmospheric conditions.

During each run, the instrument produced about six grams of oxygen per hour, though a recent run produced more than 10 grams per hour, about half what a human needs to survive.

MOXIE runs only for short times, because it uses so much power the rover can’t do other work during runs. It is also only a technology test, so its operation is given a lower priority. Nonetheless, it appears that this test has successfully demonstrated that future astronauts on Mars will have a system for producing an unlimited supply of breathable oxygen. The next step would be to scale this up to produce enough oxygen to also fuel the astronaut’s return rocket.

Perseverance: Evidence of both past lava and liquid water on the floor of Jezero Crater

Figure 6: Two models for geological history of Jezero Crater

Two new papers (here and here), published last week in Science and using data obtained during Perseverance’s first year of roving on Mars, strongly suggest that the floor of Jezero Crater was first formed by lava flows, either from impact or later flows from eruptions, followed by a period where liquid water interacted with these igneous materials to produce the chemistry seen today. From the first paper:

After emplacement of the igneous rocks on the crater floor, multiple forms of aqueous interaction modified—but did not destroy—their igneous mineralogy, composition, and texture. Evidence for alteration includes the presence of carbonate in the Séítah abrasion patches, the iron oxides in the Máaz formation abrasion patches (which we presume are due to iron mobilization and precipitation), and the deposition of salts including sulfates and perchlorate. More broadly, the appearance of possible spheroidal weathering textures suggests that aqueous alteration played a role in rock disintegration.

The graphic to the right, figure 6 in the first paper, shows two different models for the geological formation of the floor of Jezero Crater. “Basalt emplacement” are the lava flows.

According to the press release today [pdf], the first core samples that the rover gathered for later pickup and return to Earth will likely show the following:

The salts include sulfates, similar to Epsom salts, which are common on Mars. Most importantly, high levels of chlorine-containing salts are also present, such as chlorides (“table salt”) and perchlorates. These highly soluble salts reveal that the rocks were soaked in brines, and hence contain clear evidence of liquid water.

The on-going big geological mystery of Mars remains. The data suggests liquid water once existed as some form in Jezero Crater. Other data suggests liquid water existed elsewhere on Mars as well. Yet, no model exists that anyone accepts with any confidence that makes it possible for liquid water to exist on the Martian surface. Its atmosphere has always been either too cold or thin.

To underline this conundrum, note that in the graphic above, neither model includes a time period when liquid water sat on top of these layers. Though the evidence calls for liquid water at some time, the scientists do not feel confident enough to include it in these initial models.

One possible explanation that I sense some scientists are beginning to consider is the chemical interaction of melted ice at the base of past long gone ice glaciers. The ice would be frozen, but the glacier’s movement might create pockets of liquid water at its base, which over eons might result in these chemical reactions. If Jezero Crater had once been filled with glaciers, as many Martian craters in the mid-latitudes appear to be now, this could have provided the water necessary for the chemical modifications the scientists are finding.

This theory however is entirely speculative on my part, and has not yet been proposed by any scientists, though I have seen hints of it in a number of different research papers.

InSight power levels continue to hold steady

InSight power levels through August 27, 2022

According to a new update posted today by the InSight science team, the power being generated by the lander’s dust-covered solar panels once again did not decline last week, holding at 400 watt-hours generated per day for the fifth week in a row.

The graph to the right shows the trends since May. The dust in the atmosphere is indicated by the red line, marking what scientists call the tau level. A normal level outside of the winter dust season should be between 0.6 and 0.7 tau. Even though that dust season has been ending, that level has remained high, thus cutting off more of the sunlight that the Mars lander could use to generate the electricity needed by its seismometer.

That the power generated continues to hold steady however suggests that InSight’s seismometer might be able to continue working into September, detecting Martian earthquakes. The scientists had predicted the spacecraft would die sometime around now. Without doubt they are thrilled their prediction appears wrong.

That the lander might last longer also increases the chance that it might experience a wind event, such as a dust devil, that could blow the solar panels clear of dust and save the lander entirely. All it needs is one such event, which sadly has not occurred since InSight landed on Mars in 2018.

Martian auroras as seen by UAE’s Al-Amal orbiter

Aurora types on Mars
Click for full image.

Using data gathered by the Al-Amal orbiter (“Hope” in English), scientists have identified three types of aurora on Mars. The image to the right, figure 1 from their paper, shows these types, crustal field aurora, patchy aurora, and sinuous aurora. From the abstract:

We categorize discrete auroral patterns into three types: those near strong vertical crustal magnetic field, patchy aurora near very weak crustal fields, and a new type we call “sinuous,” an elongated serpentine structure that stretches thousands of kilometers into the nightside from near midnight in the northern hemisphere.

All three types generally occur during the Martian night, and evolve quickly over periods of less than 45 minutes. The first type, which is generally the brightest, forms over terrain where Mars’ residual magnetic field is strongest and vertically oriented, and was most often seen over the southern cratered highlands centered between the large impact basins Argyre and Hellas. The third type, sinuous aurora, was more unusual:

These we are calling “sinuous discrete aurora,” due to their thin, elongated, and sometimes serpentine shapes. They share several key traits: (a) they appear in the northern hemisphere away from strong crustal fields, (b) they usually connect to the dayside in the far north but also sometimes separately at lower latitudes, (c) they extend for thousands of kilometers into the night side, (d) they appear on both dusk and dawn sides, and (e) their shapes change moderately and brightnesses shift by factors of up to two over timescales of ∼20 min (i.e., the time between swaths, as shown in the differences between Figures 1j and 1k [in the figure above).

The existence of aurora on Mars has been known since the 2000s. These observations however are the first that show more details beyond a fuzzy patch.

Curiosity in the valley of Gediz Vallis

Curiosity's view on sol 3576 (August 28, 2022)
Click for full image.

Overview map
Click for interactive map.

The panorama above was created by Curiosity’s right navigation camera on August 28, 2022, and shows the strangely paved Martian terrain directly in front of the rover now that it is inside the valley of Gediz Vallis, scattered flat rocks interspersed with dust. The yellow lines in the overview map to the right indicates the area covered by this panorama. The red dotted line indicates the rover’s likely future route to circle around the small mesa Chenapua.

The paved rocks however may not be separate, but merely covered in their low spots by dust. What makes these light rocks significant is that they appear to be the first close examples of the sulfate-bearing layer that the rover has seen in the higher reaches of Mount Sharp since it landed in Gale Crater more than ten years ago. You can see this bright layer clearly in the distance in a panorama taken by Curiosity in June 2021. The rover has now finally reached it, and is about to delve into another layer in the geological history of Mars, a layer that appears easily weathered and carved by the thin Martian atmosphere.

Other details in this panorama are of important note. In the overview map, I have indicated that a recurring slope lineae is supposed to exist on the cliff face of the mesa dubbed Orinoco. These lineae, seen from orbit, appear to be streaks on slopes that come and go seasonally. No one has come up with a theory to explain them, though the most favored theory today says they are staining dust flows of some kind.

However, if you click on the panorama and zoom in on the cliff face of Orinoco, you will see an incredibly rough rocky terrain. It seems impossible for any streak of any kind to flow down this cliff anywhere, suggesting that the streaks might possibly be like the rays that radiate out from craters on the Moon, visible only from orbit and invisible on the surface.

The marker layer is another important geological target, now almost within reach. This flat layer is found in many places on the flanks of Mount Sharp, all at about the same approximate elevation. It is distinctly flat and relatively smooth. Knowing why it stands out so differently from the layers above and below will help geologists better write the geological history of this Martian mountain and the crater in which it sits.

Swirls and mesas in Valles Marineris

Swirls and mesas in Valles Marineris
Click for full image. For the original of the inset go here.

Cool image time! The picture to the right, rotated and cropped to post here, was taken on June 13, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label as “fractures in West Candor Chasma,” one of the side canyons that form Mars’ gigantic Valles Marineris, the largest canyon system known in the solar system.

To my eye, I don’t see fractures as much as swirling and curving outcrop ridges, as if the twisted layering here is so steeply tilted so that it is almost vertical, with the more resistant edges sticking up out of the dust and dunes. The color corrected inset zooms in on some of these swirls, though this better view hardly clarifies things. Note how the upper curves seem to suddenly cut off, almost as if someone had sliced them with a knife. Don’t ask me to explain.

The overview map shows us where this spot is within Valles Marineris.
» Read more

Eroding glacial ice on Mars, dipping in the wrong direction

Dipping wrongway ice terraces
Click for full image.

Today’s cool image is a variation of a similar phenomenon shown in a cool image I posted in July, dipping terraced layers stepping downhill toward a cliff face, rather than away from the cliff as you would expect. That previous example was located in chaos region in the northern mid-latitudes that I dub glacier country.

This example is instead found a completely different region of Mars, halfway across the planet. The photo to the right, cropped, reduced, and annotated to post here, was taken on March 1, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The arrows indicate the downward trend of those dipping layers, toward the cliff face.

The overview map below provides the context.
» Read more

A pit in the dry-ice polar cap of Mars

A pit in the dry-ice cap of Mars
Click for full image.

This cool image is possibly of some of the most alien terrain on Mars. The photo to the right, rotated and cropped to post here, shows a pit (not a peak) in the dry-ice cap that covers a small portion of the southern polar ice cap on Mars. North is up. It was taken on June 16, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). In fact, at 88 degrees south latitude, the image is just about as far south as it is possible for MRO to take pictures. Beyond this the orbit does not reach.

If you look close, you can see that there are several distinct layers in the sunlight eastern interior slopes of the pit. The base of the pit itself appears to have ripples, as if their might be Martian dust trapped inside.

This is a very cold and alien place. The ground is made of dry ice. The temperatures are always cold, well below minus 100 degrees Fahrenheit.

If you look at the full image, you will see that, except for the very tiny pit nearby to the east, this pit is all by itself. If the underlying terrain caused this sinkhole to form, why only here?

The overview map below shows the location, which might help explain things.
» Read more

Perseverance gets a glimpse into the history of Jezero crater

A glimpse into the history of Jezero Crater
Click for full image.

Cool image time! The photo to the right, cropped, reduced, and enhanced to post here, was taken on August 17, 2022 by one of Perseverance’s high resolution camera. It shows the exposed layers of a nearby cliff face that comprises the end of the delta that once flowed into Jezero Crater in the distant Martian past.

My guess is that this cliff is about 20 feet high. The more massive, thicker and younger layers near the top, compared to the thinner and older layers below, suggest a major change in the cyclic events. The early cycles that lay down this delta were initially shorter and able to place less material with each cycle, while the last few cycles were longer, producing thicker layers.

The difference in layers also strongly suggests that all the blocks at the foot of the cliff fell from more massive layers at the top. Material that broke off from the lower thinner layers has likely long ago eroded away.

InSight power levels remain steady on Mars

InSight's status through August 21, 2022

The InSight science team today released its weekly update on the lander’s ability to generate power from its dust-covered solar panels, I have charted the new numbers, through August 21, 2022, on the graph to the right. From the update:

InSight was generating an average of 400 watt-hours of energy per Martian day, or sol. The tau, or level of dust cover in the atmosphere, was estimated at .88 (typical tau levels outside of dust season range from 0.6-0.7).

For the fourth straight week the daily power level remained steady, not dropping as predicted by engineers to a point in August that the mission would end. As it appears the seismometer can function when the panels produce 400 watt-hours per day, the lander is thus holding its own instead of shutting down.

That the amount of dust in the atmosphere increased slightly is both good and bad news. The good news: Even with slightly more dust, InSight’s power levels did not drop. The bad news: There is still plenty of dust in the air that can settle on the solar panels and further degrade their ability to generate electricity.

InSight’s future is thus a day-to-day thing, though it appears at this moment that it can likely continue to gather earthquake data for another week.

Ingenuity completes 30th flight

The Mars helicopter Ingenuity sometime during the August 20-21 weekend successfully completed its 30th flight, a short hop designed to check out its systems after a two-month pause during the dusty Martian winter.

The tweet mentions the flight was also an effort to clear off any dust that settled on the helicoper’s solar panels. In addition, the flight tested precision landings in anticipation of the present plans to use a helicopter on a future mission to recover Perseverance’s Martian samples.

The tweet provides no information about the flight, but this update from August 19, 2022 describes the flight plan:

When things get underway, the helicopter will climb to a max altitude of 16.5 feet (5 meters), translate sideways about 6.5 feet (2 meters), and then land. Total time aloft will be around 33 seconds.

A global map of Mars’ future mining regions

A global map of Mars' future mining regions
Click for labeled image.

Using data accumulated in the past decade from orbiters, scientists have now published a global map of Mars, showing the regions on the red planet where there are high concentrations of hydrated minerals, minerals formed in the past in conjunction with the presence of water.

The maps to the right show those regions in various colors, indicating different types of minerals.

On Earth, clays form when water interacts with rocks, with different conditions giving rise to different types of clays. For example, clay minerals such as smectite and vermiculite form when relatively small amounts of water interact with the rock and so retain mostly the same chemical elements as the original volcanic rocks. In the case of smectite and vermiculite those elements are iron and magnesium. When the amount of water is relatively high, the rocks can be altered more. Soluble elements tend to be carried away leaving behind aluminium-rich clays such as kaolin.

The big surprise is the prevalence of these minerals. Ten years ago, planetary scientists knew of around 1000 outcrops on Mars. This made them interesting as geological oddities. However, the new map has reversed the situation, revealing hundreds of thousands of such areas in the oldest parts of the planet.

Though this data once again suggests that liquid water once flowed on the surface of Mars, for future colonists it is more important in that it identifies the regions where the most valuable resources will likely be found. For example, most of the colored regions on the map are located in the dry equatorial parts of Mars. However, south of the giant canyon Valles Marineris is a mineral region at about 30 to 40 degrees south latitude, to the northwest of Argyre Basin. This is also a region with a high concentration of glacial features. The two combined will likely make this region very valuable real estate.

Ingenuity gearing up for 30th flight

The engineering team for the Ingenuity helicopter on Mars announced yesterday that they have successfully completed two some spin-up tests and are preparing for the first short hop following the pause in flights during the height of the Martian winter dust season.

To confirm that she is still flightworthy, we performed a 50-rpm spin on Aug. 6, and on Aug. 15 we performed a high-speed spin, which spun up the rotor system to flight-like speeds of 2,573 rpm for several seconds. Telemetry downlinked after both tests indicates Ingenuity is a go for flight.

Our 30th flight will be similar to our second flight. On April 22, 2021, Flight 2 was the first to include sideways movement: We “translated” 13 feet (4 meters) and then returned before landing. Flight 30 will be shorter, translating sideways only 7 feet (2 meters) and then landing, but with the specific goal of providing a data point on Ingenuity’s ability to accurately approach a landing target. Our navigation system’s performance will be of value to the Sample Recovery Helicopter team (part of the Mars Sample Return Program) in their early design work for a next-generation Mars Helicopter navigation system.

The last sentence references the recent decision to use a helicopter on the future sample return mission to land near the cached Perseverance samples and grab them.

The 30th flight is supposed to occur sometime in the next few days.

Strings in Perseverance’s drill?

String in Perseverance's drill
Click for full image.

Since August 5th, the Perseverance science team has been trying to figure out the origin as well as the consequences of “two string-like pieces” of foreign object debris (FOD as used by today’s acronym-happy scientists) that they have spotted next to one of the rover’s coring drill bits.

The photo to the right, cropped and reduced to post here, looks directly down at that core drill bit and shows one of those strings both to the side of the bit as well in full resolution in the inset. From today’s update:

Since first identified Aug. 5 in imagery of the rover’s sample collection system after a 12th rock core sample was taken, the FOD has been the focus of several methodical diagnostic activities in an attempt to better understand the nature of the debris.

We’ve commanded the rover to move, rotate, or vibrate components we think could harbor FOD. And we’ve obtained multiple sets of images of the components from different angles and in different lighting conditions from rover cameras: Mastcam-Z, Navcam, Hazcam, Supercam, and even the WATSON (Wide Angle Topographic Sensor for Operations and eNgineering) camera located on the rover’s turret. Finally, a thorough review of recent coring and bit-exchange activities confirm that they all executed nominally with no indication of interference from the FOD.

Analysis of the latest round of imaging, downlinked earlier today, indicates that while the two small pieces remain visible in the upper part of the drill chuck, no new FOD has been observed. In addition, imagery taken of the ground beneath the robotic arm and turret, as well as the rover deck, also showed no new FOD.

Because these strings do not appear to interfere in any way with the drill’s operation, the science team has decided neither is a cause for concern, and will therefore command the rover to leave this just-completed drill site and move on to the southwest to a location at the base of the delta the rover visited about three months ago.

The strings themselves are likely pieces from the equipment released during the rover’s landing, and might even have come from the tangled string the rover imaged on the nearby ground in July, and that was gone just four days later. The wind had blown it away, and may have even at that time blown pieces into the drill.

A “What the heck!?” crater on Mars

A
Click for full image.

Today’s cool image falls into what I call my “What the heck?” category. The photo to the right, cropped and reduced to post here, was taken on May 31, 2022 by the high resolution camera on Mars Reconnaissance Orbiter. It was also picked by the science team as that camera’s picture of the day on July 12, 2022. From the caption:

This seems to belong to a class of craters in the Cerberus Plains that was flooded by lava, which was subsequently uplifted and fractured by an unknown process. This class of filled, uplifted and fractured craters is informally called “the waffle.” A combination of volcanic and periglacial processes seems possible.

In other words, the scientists only have a vague idea what created the broken up floor of this crater. For example, why did only the material in the interior of the crater get uplifted and fractured? Did this uplift occur before, during, or after the lava event?

The overview map below tells us a little about where that lava came from, and when.
» Read more

Get above 30 degrees latitude on Mars and you can find ice everywhere

Global overview of Mars' ice features

Glacial features inside a Mars crater
Click for full image.

Today’s cool image provides further proof that there is ample near surface ice almost anywhere on Mars once you get above 30 degrees latitude, in either the northern or southern hemispheres. The photo to the right, rotated, cropped, reduced, and annotated to post here, was taken on May 26, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the interior slope of an unnamed 15-mile-wide crater that sits inside the much larger 185-mile-wide Newton crater, located in the cratered southern highlands of Mars.

The black cross on the global map of Mars above marks the location of this crater.

The photo was taken as part of the routine monitoring planetary scientists are doing of the gullies that flow down this crater’s interior rim, a monitoring program that goes back to 2007. It is thought that those gullies might be created by seasonal frost, either water ice or dry ice, that causes erosion.

What struck me about the photo however was the glacial features on the floor of the crater. Near the bottom of the interior slope those features look broken up, as if the pressure from above pushed the ice sheets apart. Farther from the interior slope the features more resemble a typical glacial flow, slowly inching downward toward the crater’s low spot. All these glacial features also lend weight to the theory that water ice somehow caused or contributed to the formation of those gullies.

The global map above shows that this crater, while well within the 30 to 60 degrees mid-latitude band where many Martian glaciers are found, is also far from the many regions on Mars that scientists have mapped as having high concentrations of glaciers. And yet, the glacial features are here as well.

Near surface ice will not be found at every spot on Mars. However, once you get above 30 degrees latitude, the evidence increasingly suggests that you won’t have to go far or dig down deep to find it.

InSight’s power status continues to hold steady on Mars

InSight power status through August 14, 2022

According to a new status update posted today by the science team, the power status for the Mars InSight lander continues to hold steady.

The graph to the right adds the new data, showing that the daily watt hours of power produced each day continues to hold at 400, while the dust in the atmosphere continues to drop towards its normal level of between 0.6 and 0.7 tau during the non-dust seasons.

These new numbers appear to be generally good news. Even though the dust continues to settle out of the atmosphere, it does not appear to be adding dust on the solar panels that would reduce their capability to generate power. Though the science team had predicted that the power levels would cause the mission to end sometime in August, at 400 watts per hour InSight has apparently continued to generate enough electricity to keep its seismometer running for at least another week.

1 15 16 17 18 19 74