Icy scarps in the high southern latitudes of Mars

Icy scallops in the high southern latitudes of Mars
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on May 30, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label “Patching Mantling Unit,” located at about 57 degrees south latitude in a region where scientists have found good evidence of near surface ice. The top layer, or mantle, is likely patchy because it has a high content of water ice and is sublimating away. That almost all the cliffs are south-facing, which in the southern hemisphere gets the least direct sunlight, supports this supposition. For example, in the crater at the bottom of the image the ice would have disappeared first from the north-facing interior rim slopes, with the sublimation slowly working its way northward. Thus we have that butte extending out from the north rim.

The global map below not only indicates the location of these scallops with the green dot, it illustrates the overall icy nature of most of the Mars.
» Read more

Roscosmos forbids its astronauts from using Europe’s robot arm

In response to the final decision this week by the European Space Agency to officially end its cooperation with Russia on its ExoMars mission, Roscosmos today forbid its astronauts from using Europe’s new robot arm that was recently installed on the Russian Nauka module of ISS.

Russia’s crew onboard the International Space Station (ISS) will stop using the European ERA manipulator arm in response to the European Space Agency’s (ESA) refusal from cooperation on the ExoMars project, CEO of Russia’s state space corporation Roscosmos Dmitry Rogozin said on Tuesday.

“In my turn, I instruct our ISS crew to stop using the European Robotic Arm (ERA). Let [ESA Director General Josef] Aschbacher along with his boss [EU foreign policy chief Josep] Borrell fly to space and do at least something useful in their entire lives,” he wrote on his Telegram channel.

The arm was designed to work on the Russian part of ISS, so it appears this decision by Rogozin is an example of someone cutting off his nose to spite his face. It essentially reduces Russia’s capabilities on the station.

As for ExoMars, it is unclear what will happen to the lander that Russia built to put Europe’s Franklin rover on Mars. Roscosmos has said it might proceed with its own mission to Mars, using that lander, but it has not made the full commitment to do so.

The highest point on Mars

The highest point on Mars
Click for full image.

Today’s cool image is cool not because of anything visible within it, but because of its location. The picture to the right, cropped to post here, was taken on May 27, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). While the terrain shown is a relatively featureless plain of craters and gullies not unlike the surface of the Moon, what we are really looking at is the peak of Mars’ tallest mountain, Olympus Mons.

That’s right, this spot on Mars sits about 70,000 feet above Mars’ mean “sea level”, the elevation scientists have chosen as the average elevation on Mars from its center. At 70,000 feet, this peak is more than twice as high as Mount Everest on Earth.

Yet you wouldn’t really know you are at this height if you stood there. The scale of this mountain is so large that this peak, which actually forms the southern rim of the volcano’s 50 to 60 mile wide caldera, is actually relatively flat. If you stood here, you would not see the vast distant terrain far below. Instead, you’d see an ordinary horizon line in the near distance only slightly lower than where you stand.
» Read more

Collapse pits on Mars

Elongated collapse pit on Mars
Click for full image.

Cool image time! The photo to the right, cropped to post here, was taken on May 21, 2022 and was today’s picture of the day from the high resolution camera on Mars Reconnaissance Orbiter (MRO). Dubbed “An Elongated Collapse Pit” by the science team, their caption explains:

This observation can help to tell whether or not there is a subterranean connection to this pit. As an added bonus, the much smaller depression to its south also appears to be another collapse pit.

This image had already been in my queue for a future cool image post, but since the scientists have posted it, it is time that I did as well.

In the inset I have brightened the image drastically to try to illuminate the darkest spots in both pits. The elongated pit appears to slope downward towards a hole in the southeast corner, while the interior of the second pit to the south remains completely dark. Both appear to suggest a void below that both reach.

The wider context image and overview map below shows that there is further evidence of more voids in this region of Mars, dubbed Ceraunius Fossae, because of its many north-south parallel fissures.
» Read more

More lacy Martian rocks

lacy Martian rock
Click for full image.

Cool image time! Because the Curiosity team is presently conducting a drilling campaign at its present position in the lower mountains of Gale Crater, the rover has not moved in the past few weeks. At these times, the science team also has the rover’s other cameras do extensive surveys of the surrounding terrain, including high resolution mosaics by its high resolution camera.

To the right is one photo from the most recent mosaic, cropped to post here. It was taken on July 10, 2022, and shows one many layered rock on the ground near the rover. Though no scale is provided, I suspect the extended flake from this rock is somewhere between six to twelve inches long.

Another illustration of the alien nature of Mars. This flake could not exist on Earth, where the heavier gravity and atmosphere would have acted to break it.

The colorful layers of the Martian north pole icecap

Colorful layers in the Martian north pole ice cap
Click for full image.

Wider view
Click for full image.

Today’s cool image above, rotated, reduced, and annotated to post here, comes from today’s picture of the day for the high resolution camera on Mars Reconnaissance Orbiter (MRO), which in turn is a retrospective of a captioned image first taken in 2010. The photo to the right, rotated, cropped, and reduced to post here, shows a larger area to provide some context. For this image north is towards the top. The rectangle indicates the area covered by the picture above.

The ice cap at the north pole is about 600 miles across and a little less than 7,000 feet deep, made up of many layers that are a mixture of water ice and cemented dust and sand. From the picture’s caption:

In many locations erosion has created scarps and troughs that expose this layering. The tan colored layers are the dusty water ice of the polar layered deposits; however a section of bluish layers is visible below them. These bluish layers contain sand-sized rock fragments that likely formed a large polar dunefield before the overlying dusty ice was deposited.

The lack of a polar ice cap in this past epoch attests to the variability of the Martian climate, which undergoes larger changes over time than that of the Earth.

The overview map below provides some further context.
» Read more

From the rim to the floor of Valles Marineris

Overview map

From the rim to the floor of Valles Marineris
Click for full image.

For today’s cool Martian image, we begin from afar and zoom in. The overview map above shows the solar system’s largest canyon, Valles Marineris, 1,500 miles long, and 400 miles wide at its widest. The white dot on the north rim of the section of the canyon dubbed Melas marks the location of the photo to the right, rotated, cropped and reduced to post here and taken on January 28, 2011 by the wide angle context camera on Mars Reconnaissance Orbiter (MRO).

I have added elevation numbers to this picture to give it some understandable scale. From the rim to the interior canyon floor — a distance of about ten miles — the canyon wall drops about 19,000 feet. Compare this with Bright Angel Trail in the Grand Canyon, which from the rim to the Colorado River drops about 4,400 feet in about the same distance. The wall of Valles Marineris is about four times steeper.

Even that doesn’t give you the full scale. Having hiked down to that interior canyon floor, you are still about 10,000 feet above Valles Marineris’s main canyon floor, with fifteen more miles of hiking to go to reach it.

The white rectangle marks the area covered by the MRO high resolution image below.
» Read more

How did sand dunes get to the top of a Martian mesa?

Sand dunes at the top of a Martian mountain
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was taken on January 1, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO) and shows one of the peaks of a 5,000+ foot high mesa inside Juventai Chasma, one of Mars’ deep mostly-enclosed chasms north of Valles Marineris.

I grabbed this picture because its label, “Bedform Change Detection in Juventae Chasma”, suggested something had changed from past photos, probably related to the sand dunes that hug the upper slopes of this peak. Unfortunately, in comparing this image with the earliest high-res image taken by MRO back in February 2018, I could not spot any change, probably because the resolution of the pictures released is not as high as MRO’s raw images.

However, the caption written for that 2018 image tells us where that change has likely occurred:

This image reveals a unique situation where this small dune field occurs along the summit of the large 1-mile-tall [mesa] near the center of Juventae Chasma. The layered [mesa] slopes are far too steep for dunes to climb, and bedform sand is unlikely to come from purely airborne material. Instead, the mound’s summit displays several dark-toned, mantled deposits that are adjacent to the dunes and appear to be eroding into fans of sandy material.

In other words, somewhere in the full resolution image scientists have spotted a change in the bedform sands that make-up these high mountain dunes that hug the peak. Since the data so far has suggested that the source for the sand of these high elevation dunes likely comes from the mesa itself — not from any distant source — any change found will help confirm or disprove that hypothesis.

The white box indicates the area covered by the close-up higher resolution picture below. Also below is an overview map, showing both the location of this mountain in Juventai Chasma as well as Juventai’s location relative to Valles Marineris.
» Read more

Engineers propose flying gliders on Mars

Proposed sailplane flights in Valles Marineris
Proposed sailplane flights in Valles Marineris. Click for full image.

Engineers at the University of Arizona are developing a prototype sailplane that they think could fly for long distances on Mars at higher altitudes than a helicopter and not be reliant on solar batteries.

Using dynamic soaring, the sailplane utilises increases in horizontal wind speed with gaining altitude to continue flying long distances. It’s the same process albatrosses use to fly long distances without flapping their wings and expending crucial energy.

After lifting themselves up into fast, high-altitude air, albatrosses then turn their bodies to descend rapidly into regions of slower, low-altitude air. With the force of gravity providing downward acceleration, the albatross uses this momentum to slingshot itself back to higher altitudes. Continuously repeating this process enables albatross and other seabird species to cover thousands of kilometres of ocean, flap-free.

It’s the inspiration for the sailplane’s own propulsion system, enabling it to cover the canyons and volcanoes dotted across the red planet currently inaccessible to Mars rovers.

The graphic above, figure 1 from the engineers’ research paper, shows one possible sailplane mission, deploying two gliders, one to observe the canyon wall and a second to survey the canyon floor. Both would become a weather station upon landing. While the paper doesn’t state a Mars location for this concept, the graphic strikes a strong resemblance to the section of Valles Marineris where scientists have recently taken “Mars Helicopter” high resolution images using Mars Reconnaissance Orbiter (MRO). This paper and those images might be related, or they could be illustrating the general interest by many scientists for this Mars’ location.

Regardless, the engineers are now planning test flights at 15,000 feet elevation, an elevation that will most closely simulate the atmosphere of Mars, on Earth.

The new damage on Curiosity’s wheels

Comparing a Curiosity wheel from January to June 2022
To see the original images, go here and here.

On June 23, 2022 the Curiosity team provided a major update on the rover’s status on Mars, noting that because of new damage discovered on one of wheels, they were increasing the frequency of their wheel checks from once every 1000 meters of travel to once every 500 meters.

The team discovered that the left middle wheel had damaged one of its grousers, the zig-zagging treads along Curiosity’s wheels. This particular wheel already had four broken grousers, so now five of its 19 grousers are broken.

The previously damaged grousers attracted attention online recently because some of the metal “skin” between them appears to have fallen out of the wheel in the past few months, leaving a gap.

The photo comparison to the right might be showing that specific wheel, or not. The top image was taken January 11, 2022, and when compared then with an image taken six months earlier showed little change. Thus, in January 2022 it seemed the wheels were holding up well as Curiosity traveled into the mountains.

The new image at the bottom, taken June 3, 2022, shows new damage (as indicated by the plus sign) which had occurred sometime in the past six months. During that time the rover had attempted to cross the incredibly rough ground of the Greenheugh Pediment, and had been forced to retreat because the ground was too rough.

This most recent wheel survey in June thus confirms that the decision to retreat was a wise one. It appears that while the rover’s wheels can take the general roughness of the terrain in the foothills of Mount Sharp, the Greenheugh Pediment was beyond the wheels’ capabilities.

One of Perseverance’s two wind sensors damaged by wind-blown material

According to the principal investigator for Perseverance’s two wind sensors, one was recently damaged by a wind-blown tiny pebble.

Pebbles carried aloft by strong Red Planet gusts recently damaged one of the wind sensors, but MEDA can still keep track of wind at its landing area in Jezero Crater, albeit with decreased sensitivity, José Antonio Rodriguez Manfredi, principal investigator of MEDA, told Space.com. “Right now, the sensor is diminished in its capabilities, but it still provides speed and direction magnitudes,” Rodriguez Manfredi, a scientist at the Spanish Astrobiology Center in Madrid, wrote in an e-mail. “The whole team is now re-tuning the retrieval procedure to get more accuracy from the undamaged detector readings.”

…Like all instruments on Perseverance, the wind sensor was designed with redundancy and protection in mind, Rodriguez Manfredi noted. “But of course, there is a limit to everything.” And for an instrument like MEDA, the limit is more challenging, since the sensors must be exposed to environmental conditions in order to record wind parameters. But when stronger-than-anticipated winds lifted larger pebbles than expected, the combination resulted in damage to some of the detector elements.

The term “pebble” implies a larger-sized particle than what probably hit the sensor. I suspect the “pebble” was no more than one or two millimeters in diameter, at the most.

Strange pitted and isolated ridges on Mars

Context camera image of isolated ridges
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on February 17, 2012 by the wide-view context camera on Mars Reconnaissance Orbiter (MRO). It shows a section of the northern lowland plains of Mars, latitude 31 degrees north, where several very inexplicable and isolated ridges can be seen.

One ridge meanders mostly in a north-south direction, while a second instead meanders east-west. The shape of both says that neither has anything to do with any past impact crater. In fact, their random snakelike shape doesn’t really fit any obvious explanation. For example, they do not fit the look of the many fossil rivers found on Mars, where the hardened and dry riverbed channel resists erosion and becomes a ridge when the surrounding terrain erodes away.

What geological process caused them? In the decade since this photo was taken the scientists who use MRO have only been able to snap a handful of high resolution images of these ridges. The image below is the most recent, covering the area in the white rectangle above.
» Read more

Glacial features in a Mars crater at 29 degrees south latitude?

Glacial features in Mars crater
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was taken on January 2, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Simply labeled “slope features,” it was likely taken to monitor the gullies and streaks on the interior walls of this 4-mile-wide crater. Scientists have been using MRO to track the coming and going of frost on this crater’s interior walls since 2016.

Equally intriguing however are what appear to be squashed layers within the crater’s interior. These appear to be some form of glacial feature created by repeated climate cycles, similar to the glacial features routinely seen throughout the 30 to 60 degree mid-latitude strips north and south.

What makes the glacial features in this particular crater particularly intriguing is its location, as shown in the overview map below.
» Read more

The lava tubes on the western slopes of Alba Mons as potential Martian colonies

Lava tubes on western flank of Alba Mons
Click for full figure.

In a new paper detailing work they first began in 2019, scientists have now carefully mapped the extensive lava tubes that appear to radially descend westward from the caldera of Alba Mons, the volcano on Mars that has the largest surface area but with a relatively low peak.

The mapped population of 331 lava tube systems has a mean length of 36.2 km, with a total length in the western flank geologic map quadrangle of ∼12,000 km. Individual lava tube systems extend up to ∼400 km, and it is likely that some of our mapped lava tubes are connected such that the total number is actually smaller and lengths (average and maximum) longer.

The map above, figure 10 of their paper, shows volcanic ridges as yellow, collapsed lava tube segments as red, and collapsed lava tube on the volcanic ridge as maroon. The wider map below, shows where this region is located, and gives the larger context.
» Read more

Scientists want your help cataloging the clouds on Mars

In order to fully identify all the clouds seen in the sixteen years of data collected by the cloud instrument on Mars Reconnaissance Orbiter (MRO), scientists have now organized a citizen-scientist project to catalogue those clouds.

The project revolves around a 16-year record of data from the agency’s Mars Reconnaissance Orbiter (MRO), which has been studying the Red Planet since 2006. The spacecraft’s Mars Climate Sounder instrument studies the atmosphere in infrared light, which is invisible to the human eye. In measurements taken by the instrument as MRO orbits Mars, clouds appear as arches. The team needs help sifting through that data on Zooniverse, marking the arches so that the scientists can more efficiently study where in the atmosphere they occur.

You can join up by going here.

A thick and syrupy flow on Mars

A thick and syrupy flow on Mars
Click for full image.

Overview map

Cool image time! The photo above, rotated, cropped, and reduced to post here, was taken on March 5, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label as a “viscous flow feature,” which is another way of saying the flow was thick and syrupy.

Nor is such a flow unusual in this area of Mars. It is located in a region of chaos terrain dubbed Protonilus Mensae, which is also the central mensae region in the 2,000-mile-long strip in the northern mid-latitudes of Mars I label glacier country. The overview map above of Protonilus Mensae — covering about 500 miles in width — shows how common such flows are in this place. The black rectangles mark the locations of other cool images I have featured, as follows:

The red rectangle indicates the location of today’s cool image.

The glacial aspect of everything in this region is even more emphasized by the wider view provided by MRO’s context camera below.
» Read more

New research suggests flowing water existed intermittently on Mars from 2.5 to 3.6 billion years ago.

Based on a study of alluvial fans on Mars, river sediment thought to have been placed at the foot of mountains, scientists have concluded that liquid water could have been flowing from as 2.5 to 3.6 billion years ago.

“We’ve known for decades that Mars had rivers and lakes around 3.5 billion years ago, but in the past few years there has been a growing body of evidence that substantial amounts of liquid water continued to erode the Martian surface for hundreds of millions of years,” said Morgan, lead author on “The global distribution and morphologic characteristics of fan-shaped sedimentary landforms on Mars” that appears in Icarus. “Water-formed landforms, such as river deltas and alluvial fans, are the most unambiguous markers of past climate. So we conducted a global survey for these features and explored patterns in their distribution and morphologic properties.”

Morgan and co-authors including PSI Senior Scientist Alan Howard found that alluvial fans are found at lower elevations than the more ancient valley networks, suggesting that stable liquid water became restricted to lower, warmer regions as Mars cooled and dried.

…What is particularly interesting about the Martian fans is that many formed much later than the valley networks, which have long been considered the strongest evidence for surface water on early Mars. Valley networks largely date to around 3.6 billion years ago, but alluvial fans date to 2.5 to 3 billion years ago.

This research merely increases the fundamental geological mystery of Mars. While the surface evidence strongly tells us that liquid water once flowed on the surface, no climate model exists that satisfactorily makes that possible. The atmosphere appears to have always been too cold and thin for liquid water.

Perseverance’s first climb

Perseverance's first climb
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken by the high resolution camera on the Mars rover Perseverance on June 16, 2022, shortly after it began its first climb up from the generally flat floor of Jezero crater and onto the delta that once in the far past flowed through a gap into that crater.

I have rotated the image about 8.5 degrees to make horizontal the crater floor and the distant rim of the crater (barely visible through the atmosphere’s thick winter dust). This shows that the rover was then climbing what appears to be a relative low angle grade, hardly as challenging as the serious grades that Curiosity has been dealing with now for the past two years in the foothills of Mount Sharp. Nonetheless, Perseverance has begun climbing.

To see where the rover is see the overview map from the start of this week. Unfortunately, I have been unable to determine the direction of this photo. It could be looking west, south, or east, based on features inside Jezero Crater. I therefore cannot tell you the distance to the rim, which depending on the direction, could be from five to twenty-five miles away.

A major update from Curiosity’s science team

Panorama of Mars
Click for full image.

layered flaky rocks
Click for full image.

In a press release today, the Curiosity science team provided a major update on the rover’s recent travels in the mountain foothills of Gale Crater.

First and foremost was the new information about the rover’s wheels, which was buried near the bottom of the release:

The rover’s aluminum wheels are … showing signs of wear. On June 4, the engineering team commanded Curiosity to take new pictures of its wheels – something it had been doing every 3,281 feet (1,000 meters) to check their overall health. The team discovered that the left middle wheel had damaged one of its grousers, the zig-zagging treads along Curiosity’s wheels. This particular wheel already had four broken grousers, so now five of its 19 grousers are broken.

The previously damaged grousers attracted attention online recently because some of the metal “skin” between them appears to have fallen out of the wheel in the past few months, leaving a gap.

The team has decided to increase its wheel imaging to every 1,640 feet (500 meters) – a return to the original cadence. A traction control algorithm had slowed wheel wear enough to justify increasing the distance between imaging.

» Read more

A snakelike Martian ridge

A snakelike Martian ridge
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on November 22, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the science team labeled a sinuous ridge. Make sure you also look at the full image. The ridge goes on to the south, but then fades way as an almost perfect ramp, only to have another even more wiggly but thinner north-south ridge begin only a few feet to the west.

Sinuous ridges like this are found in many places on Mars. Almost always their origin is thought the result of a former river channel that became a ridge when the surrounding softer material eroded away.

That explanation however does not seem to work for this ridge. It has too many other inexplicable features. For example, note how the peak of the ridge smoothly transitions from sharp to flat-topped. It has a soft appearance that is strengthened by the gap near the top.

It is almost as if this ridge is a kind of elongated sand dune! And guess what: The overview map below gives that explanation some believability.
» Read more

InSight team decides to shorten lander’s life to operate seismometer longer

The InSight science team has decided to continue to operate the lander’s seismometer through August rather than turning it off at the end of June, even though that longer use will drain InSight’s batteries sooner and kill the lander shortly thereafter.

The previous plan would have allowed the lander to survive through the end of the year, but would have meant no earthquake data would have been gathered after June.

To enable the seismometer to continue to run for as long as possible, the mission team is turning off InSight’s fault protection system. While this will enable the instrument to operate longer, it leaves the lander unprotected from sudden, unexpected events that ground controllers wouldn’t have time to respond to.

“The goal is to get scientific data all the way to the point where InSight can’t operate at all, rather than conserve energy and operate the lander with no science benefit,” said Chuck Scott, InSight’s project manager at NASA’s Jet Propulsion Laboratory in Southern California.

Apparently they have realized that it is now very unlikely that a dust devil will come by and clear the dust from InSight’s solar panels, so keeping the spacecraft alive longer — but getting no data — does not make sense.

Has work begun on a dedicated helicopter mission to Mars?

Overview map

The easternmost point in the Mars Helicopter traverse
Click for full image.

In my routine searches through the image archive for the high resolution camera on Mars Reconnaissance Orbiter, I recently came upon several images labeled “Candidate Mars Science Helicopter Traverse” that I at first thought referred to Ingenuity’s extended mission in Jezero Crater.

A closer look however revealed these photos have nothing to do with Ingenuity or Jezero Crater. Taken in November ’21, January ’22, and March ’22, the images instead cover parts of the south rim of Valles Marineris, the solar system’s largest canyon, and appear to be research for a future dedicated Mars helicopter mission. The overview map above shows the location of these photos by the black dots. Three locations have each been imaged twice to produce a stereoscopic view that can precisely measure the topography.

The photo to the right, cropped and reduced to post here, shows the easternmost image, taken November 3, 2021. Not only does it show ample flat areas, the picture captures an impressive avalanche flow coming down from that southern interior canyon slope.

All the images were requested by planetary scientist Edwin Kite of the University of Chicago. Though I tried several times to contact Dr. Kite to get more information, he unfortunately did not respond. It could be this work is still too preliminary and thus he does not wish to comment.

Nonetheless, the extent of the three sets of images give us a fair idea of the kind of missions Kite and others might be considering. From east to west the distance between the images is about four hundred miles, and covers a traverse of the southern interior slopes of Valles Marineris along that entire length. The photos look mostly at the base of the canyon’s slope, each showing clearly that a helicopter flying there would have plenty of landing spots.

Obviously this first dedicated Mars helicopter mission might not cover this entire distance. Right now these images could simply be the first tentative research on choosing potential landing areas. Regardless, it appears that at least one scientist has already concluded that Ingenuity has proven such helicopter missions make sense, and is beginning to target one of Mars’s most spectacular locations, Valles Marineris, for that mission.

Water and dry ice at the Martian north polar ice cap

water and dry ice at the Martian north pole
Click for original image. Click here for full image.

In our third Martian cool image of the day, we go to the north pole of Mars, as seen from orbit by the high resolution camera of Mars Reconnaissance Orbiter (MRO). Taken on March 30, 2022 and cropped and reduced to post here, this picture shows some of the distinct and unique geological features found only on the polar caps of Mars. From the caption by Candy Hansen of the Planetary Science Institute in Tucson, Arizona:

Both water and dry ice have a major role in sculpting Mars’ surface at high latitudes. Water ice frozen in the soil splits the ground into polygons. Erosion of the channels forming the boundaries of the polygons by dry ice sublimating in the spring adds plenty of twists and turns to them.

Spring activity is visible as the layer of translucent dry ice coating the surface develops vents that allow gas to escape. The gas carries along fine particles of material from the surface further eroding the channels. The particles drop to the surface in dark fan-shaped deposits. Sometimes the dark particles sink into the dry ice, leaving bright marks where the fans were originally deposited. Often the vent closes, then opens again, so we see two or more fans originating from the same spot but oriented in different directions as the wind changes.

The top layer of translucent dry ice falls as dry ice snow during the winter, than sublimates away with the arrival of spring. Since this photo was taken in autumn, we are looking at features left over from the activity from the spring and summer.

Perseverance peers towards the rim of Jezero Crater

Perseverance peers through winter haze
Click for full image.

Overview map
Click for interactive map.

In our second cool image from Mars today, the Mars rover Perseverance gives us its own long distance view of the dusty winter air inside Jezero Crater. The photo above, cropped and reduced to post here, was taken on June 16, 2022 by the rover’s left high resolution camera, and looks to the southwest towards the crater’s western rim.

As with today’s previous cool image from Curiosity, we can see several ranges, each with distance faded more by the dust that hangs in the air during the winter on Mars. In the foreground right is the nearest cliff of the delta that flowed into Jezero over time in the past. Next is a knob and ridge line, also part of that delta flow but farther away. Third are some farther ridges that might have been part of that flow but maybe not.

Faintest of all are the highest mountains that form the western ridge of Jezero Crater, barely visible in the haze.

The blue dot in the overview map to the right marks Perseverance’s approximate position when the photo was taken. The yellow lines my guess as to the area covered by the photo. The green dot marks Ingenuity’s present position after its last flight, much closer to the delta that I had predicted.

Martian mountains, near and far

Navigation image
Click for full image.

Martian mountains, near and far
Click for full image.

Cool image time! The photo to the right, taken on June 18, 2022 by high resolution camera on the Mars rover Curiosity, provides a close-up of the area indicated by the arrow in the navigation camera image above taken three days earlier.

Because the rover had moved uphill slightly during those three days, the close-up can peek over what was the most distant ridge to see farther up Mount Sharp. (For context take a look at the overview map here.) All told, this close-up to the right shows four mountain ridges/ranges. First we have the ridgeline to the right, partly in shadow, which forms the right wall of the saddle that Curiosity appears heading for. Next we can see to the left the top section of the large 1,500 foot high mesa on the other side of the canyon Gediz Vallis. Note its many layers, all of which are going to become a major item of study as Curiosity gets closer.

Third we have a very rough and tumbled ridgeline, formed in a layer the geologists have dubbed the sulfate bearing unit. This layer tends to be very light in color, and more easily eroded. Curiosity is presently beginning to move into this layer as it climbs.

Finally there is the most distant ridge, which is simply the higher reaches of Mount Sharp though not its peak by a long shot.

The dusty winter air is quite evident by the chariscuro effect, causing the more distant ridges to appear more faded.

Note: This will be the first of three cool Martian images today. Stay tuned.

Wavy crescent ridges on Mars

Wavy crescents on Mars
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was taken on November 19, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the science team has labeled “Crescentic forms,” which in some ways resemble crescents that I featured in a cool image back in November 2020.

Unlike those earlier crescents, today’s are linked together to form a longer wavy line. Furthermore, today’s crescents include some positive relief, with some parts standing above the surrounding terrain. The earlier crescents were entirely carved out of the ground, forming depressions.

And yet, the method of formation for both must be somewhat similar. I say this based on their location, as shown in the overview map below.
» Read more

Rock growths on Mars!

Rock growths on Mars!
Click for full image.

Cool image time! The photo to the right was taken by the high resolution camera on the Mars rover Curiosity on May 15, 2022, and shows several incredibly strange vertical fingers of rock that appear to grow out of the ground. From the caption:

These likely formed as groundwater trickled through rock in the ancient past, depositing mineral cements over time; many years later, when the rock was exposed to the atmosphere, wind eroded the softer material around the cemented portions.

This formation explanation of course is only an educated guess. There are other possibilities, suggested by how cave formations grow over time, that are less likely but still must be considered. For example, maybe we are looking at a feature that grew upward as condensation from Mars’ once thicker and wetter atmosphere deposited new material on it over time.

Unfortunately, the image release does not provide a scale. My guess is that the longest finger is between six to twelve inches long, but it could be much smaller.

Curiosity: Into the mountains

Panorama on Mars, June 15, 2022
Click for full image.

Overview map
Click for interactive map.

Cool image time! The journey of Curiosity into the mountains of Gale Crater continues. The photo above, taken on June 15, 2022 by the rover’s left navigation camera, looks straight ahead at one possible route into those mountains.

The blue dot on the overview map to the right indicates Curiosity’s position. The yellow lines show the approximate area covered by the photo, by my estimate. The recurring slope lineae is a streak that comes and goes seasonally, and could be caused by some form of seepage. The marker layer, as indicated by the arrows, is a geological layer found at about the same elevation in many places on the flanks of Mount Sharp.

The red dotted line indicates the planned route of Curiosity, which it is presently striving to return to, having been forced to retreat from the Greenheugh Pediment because of its too-rough terrain.

For scale, Navarro Mountain is estimated to be about 450 feet high. Thus, the peak in the center of the panorama, which I think is the large mesa in the lower right corner of the overview map, is probably twice that height, about 1,500 to 1,700 feet high, and much higher than the two mesas that frame it on either side. Distance and perspective hide this difference.

When Curiosity finally gets inside Gediz Vallis and close to the side of that many-layered mesa, the view should be unbelievably amazing.

The science team has not yet revealed the precise route they plan to take to return to the planned route. While they may aim straight over the saddle in the photo above, I suspect they will instead bear west, following ground that is less steep.

Ingenuity successfully completes its 29th flight on Mars

Ingenuity's 29th flight, estimated

Based on this tweet posted yesterday, Ingenuity has successfully completed its 29th flight on Mars, placing it in “a better communication position with the rover.”

According to the helicopter’s flight log, the flight lasted about 66 seconds, was about 587 feet long, and had a maximum altitude of 33 feet.

On the overview map to the right the green dot marks Ingenuity’s position before the flight. The yellow line is my guess as to the approximate flight path for this 29th flight. In this new position the helicopter is better aligned with the hollow that Perseverance will climb (as indicated by the red dotted line), and will therefore also have better line of sight communications with it.

The flight itself tells us that the engineers have not only gotten the helicopter recharged, they have developed new flight software to compensate for the loss of a sensor that was used to determine Ingenuity’s elevation.

Perseverance gets close to its first cliff

Perseverance's first cliff
Click for full image.

Time for some cool images from Perseverance! The rover, now on Mars for more than a year, has finally begun its journey up the delta of material that some time in the past flowed through a gap in the rim of Jezero Crater. In doing so, it has also finally got close to a nearby cliff, within fifty feet or so, and used its high resolution left mast camera (mastcam) to take the photos to the right. The first, cropped and reduced to post here, was a wider shot taken on June 10, 2022, with the red arrow pointing to the part of the cliff featured in the second image below, taken on June 12, 2022, after the rover had moved in closer. This second photo is also cropped and reduced to post here.
» Read more

1 17 18 19 20 21 74