Spiders on the rim of a Martian crater

Spiders on the rim of a Martian crater
Click for original image.

Cool image time! The picture to the right, cropped to post here, was taken on December 29, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows strange spidery formations on the rim of a 17-mile-wide crater about 500 miles from the south pole of Mars.

Scientists think these spider features are formed due to the seasonal cycle on Mars. In the winter at the poles the carbon dioxide in the atmosphere falls as snow in the polar regions, creating a thin dry ice mantle that covers everything. When spring arrives, sunlight goes through the clear mantle to heat its base, causing that dry ice to sublimate into gas that is trapped below the mantle. Eventually that mantle cracks at a weak point and the gas escapes, spewing dark dust on its top. By summer the mantle is entirely gone, and the black splotches disappear as they blend back into the same colored ground.

At the south pole the ground appears to be firmer and more structurally sound than at the north pole. The trapped gas appears to travel upward along the same tributary paths to the same escape points each year, thus carving these spidery features that are permanent features.
» Read more

One instrument on Perseverance has a problem

One of the instruments on the Mars rover Perseverance appears to have a problem that is preventing it from using its laser to collect spectroscopic data of the nearby Martian surface.

Data and imagery from NASA’s Perseverance Mars rover indicate one of two covers that keep dust from accumulating on the optics of the SHERLOC instrument remains partially open. In this position, the cover interferes with science data collection operations. Mounted on the rover’s robotic arm, SHERLOC uses cameras, a spectrometer, and a laser to search for organic compounds and minerals that have been altered in watery environments and may be signs of past microbial life.

The mission determined on Jan. 6 that the cover was oriented in such a position that some of its operation modes could not successfully operate. An engineering team has been investigating to determine the root cause and possible solutions. Recently, the cover partially opened. To better understand the behavior of the cover’s motor, the team has been sending commands to the instrument that alter the amount of power being fed to it.

Should this troubleshooting fail to fix the dust cover, the rover’s other instruments can still compensate, gathering spectroscopy in other ways. Losing SHERLOC however will still reduce the data that Perseverance can obtain.

German-built mini-rover for Japanese Phobos mission shipped to Japan

A German-built mini-rover, dubbed Idefix, has now been shipped to Japan to intergrate it as a secondary payload on that country’s MMX mission to the Martian moon Phobos.

The rover itself weighs 25 kilograms (55 pounds), is 51 centimeters long (20 inches), and is designed to explore up to 100 meters of Phobos’ surface. During one of MMX’s closest approaches to Phobos, the rover will be released at an altitude between 40 and 100 meters above the surface and touch down on Phobos. The drop utilizes the low gravity of Phobos, which will allow IDEFIX to just fall onto the surface, roll, and then raise itself to prepare for the roughly three-month-long mission. The gravity of Phobos is only roughly 1/1000th of the gravity of Earth, which can be attributed to the moon’s small size. Phobos only has a diameter of approximately 27 kilometers.

“Thanks to the low gravity, IDEFIX will need between 60 to 80 seconds from release to the touchdown on Phobos. The impact will be with less than one meter per second,” explained Professor Markus Grebenstein, who is DLR’s project lead for IDEFIX, in an interview with NSF.

If all goes right, the rover’s mission will last at least 100 days. MMX itself it scheduled to reach Phobos in 2029.

Meanwhile, scientists used one of the Perseverance’s high resolution cameras to capture another partial eclipse of the Sun by Phobos. This is not the first such Phobos eclipse that Perseverance has photographed (see for example here and here), but it is neat nonetheless.

Martian dunes with strange splotches

Martian dunes with splotches

Cool image time! The picture to the right, cropped to post here, was taken on December 20, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the science team labels as “Dunes with Blotches.”

The blotches, or as I call them splotches, are the round dark patches on dunes themselves. Though their darkness is reminiscent of the dark patches that appear as spider features in the south polar regions of Mars, there are problems linking the two. The spiders form when the winter mantle of dry ice that falls as snow begins to weaken when the Sun reappears in the spring. Sunlight travels through the clear dry ice to warm the base of the mantle, causing it to sublimate into carbon dioxide gas. That gas however is trapped at the base, and only escapes when the thin mantle cracks at weak points. As the gas puffs out it carries with it dust, which leaves dark patches on the surface that disappear when the mantle disappears entirely by summer.

In the southern hemisphere at the poles the ground is somewhat stable, so the trapped gas appears to travel along the same paths each year to the same weak spots. This in turn causes it to carve spidery patterns in the ground, like river tributaries, except here the tributaries of gas flow uphill to their escape point. At the north pole the ground is not as stable. Instead we have many dunes, so that the dry ice mantle sublimates away at different places each year. There is no chance to form such spider patterns over time.

Making these splotches more puzzling is the season. This picture was taken in the winter, at a time one would think no dry ice is sublimating away.
» Read more

More hiking possibilities on Mars!

More hiking possibilities on Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on September 27, 2023 by the high resolution camera on Mars Reconniassance Orbiter (MRO). Dubbed a “terrain sample” by the science team, this picture was likely chosen not as part of any specific research project but to fill a gap in the camera schedule so as to maintain that camera’s proper temperature.

When the team needs to do this they try to pick interesting targets. In this case the location is the region of many many parallel north-south fissures that extend for more than 800 miles south of the giant but relative flat shield volcano Alba Mons. These fissures are grabens, cracks formed when underground pressure pushed the ground up and caused it to spread and crack.

What attracted me to this picture is the ridgeline. It struck me as a wonderful place to hike. I have even indicated in red the likely route any trail-maker would pick to go from the valley below up onto the ridge, and then along its knifelike edge to the south. The height of the cliff down to the east valley averages about six hundred feet, guaranteeing beautiful scenery the entire length.
» Read more

A small Martian volcano?

A small Martian volcano?
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on December 21, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The science team labeled it a “fresh crater”, but that description I think is misleading, as it implies a recent impact.

The crater does not look like a fresh impact crater to me. Such things on Mars usually appear very dark, as the impact dredges up dark material. This crater is not dark. More significant is the crater itself. The small 300-foot-wide inner crater, surrounded by a circular plateau and all sitting inside the larger 1,200-foot-wide crater is completely unique compared to any impact crater I have ever seen. Impacts in soft material, such as ice-impregnated ground, can cause concentric ripple rings, but they don’t look like this.

Instead, this crater more resembles the caldera of a volcano, where subsequent eruptions can produce overlapping depressions at the volcano peak. (See for example this picture of Olympus Mons.)

Moreover, the crater sits on top of a peak approximately 300 feet high. While impacts in ice-impregnated ground on Mars can produce splash aprons as seen here, the crater usually sits at about the same elevation as the surrounding terrain, not at the top of a peak. This peak suggests the apron was forned not by a splash but repeated flows coming down from the top.
» Read more

JPL to lay off 8% of its work force plus 40 contractors

Claiming the uncertainty of its federal budget allocation due to Congress’s inability to pass a new budget, the Jet Propulsion Lab (JPL) earlier today announced it was laying off 8% of its work force, 530 employees, plus 40 contractors.

In a memo to JPL staff Feb. 6, [director Laurie] Leshin said that a lack of a final 2024 appropriations bill — NASA is operating on a CR [continuing resolution] that runs until March 8 — forced the layoffs after taking other measures such as a hiring freeze and reductions in MSR [Mars Sample Return] contracts and other spending, as well as the earlier contractor layoffs. “So in the absence of an appropriation, and as much as we wish we didn’t need to take this action, we must now move forward to protect against even deeper cuts later were we to wait,” she wrote.

Uncertainty about how the Mars Sample Return project should be designed and built had caused Congress to express doubts about the project, with the Senate suggesting major cuts. NASA responded by loudly pausing the project and suggesting its own cuts. JPL has now followed up with these layoffs. Both have I think done so as a lobbying tactic, and as expected in this game of budget lobbying these actions have caused many legislators to scream in horror: “We really didn’t mean it! We really don’t want to cut anything!”

Expect our bankrupt Congress to fold and provide NASA and JPL the blank check it wants to fly a Mars mission that will cost billions, be years late, and likely be beaten to Mars by SpaceX’s Starship (which could do the job for a tenth the cost).

Curiosity’s damaged wheels continue to appear stable despite the rough Martian terrain

A new look at Curiosity's worst wheel
To see the original images, go here and here.

The rover Curiosity on Mars has for more than two years been traveling across a very rocky and rough terrain as it climbs higher and higher on Mount Sharp inside Gale Crater. Since the rover’s wheels experienced far more damage than expected early in its mission, when it was on the floor of the crater where the terrain was not as severe, engineers have adopted a whole range of techniques to try to reduce any further damage.

First, they increased the safety margins on the software that guides Curiosity. It picks its way very carefully through the rocks, and stops immediately if it finds itself crossing terrain that is too rough.

Second, the science team does a photo survey of the wheels after every kilometer of travel. The two pictures to the right compare the damage on the rover’s most damaged wheel, with an image from the previous survey on top and the most recent image, taken yesterday, on the bottom. I have numbered the same treads, called grousers, in the two images to make it easier to compare them.

As you can see, it does not appear as if the damage has increased in the 210 sols or seven months of travel since the last survey. This wheel looks bad, but it is the worst wheel on the rover, and the strategies that the engineering team adopted years ago to reduce further damage continue to work, even as Curiosity traverses some very rough ground.

The software requires the rover to travel shorter distances in each drive when the ground is this rough, but the consequence is that it will last much longer, and thus have a better chance of reaching higher elevations on Mount Sharp.

Perseverance snaps its first picture of grounded Ingenuity

Overview map
Click for interactive map.

Ingenuity on dune, as seen by Perseverance on February 4, 2024
Click for original image.

Perseverance on February 4, 2024 finally moved into a position where it was close enough to take its first picture of the now grounded Ingenuity helicopter. That picture, cropped, reduced, and enhanced to post here, is to the right, taken by the rover’s left high resolution camera. You can see Ingenuity sitting on the slope of a dune near the upper right.

The overview map above provides the context. The green dot marks Ingenuity’s final resting spot. The blue dot marks Perseverance’s present location, with the yellow lines indicating approximately the area covered by the photo.

Whether the rover is now close enough to get good imagery for a final engineering test of Ingenuity — where its rotors will be rotated and shifted slowly to determine the extent of the propeller damage — is not clear. Perseverance could move much closer, but its science team might not want to cross these dunes out of fear the rover would get stuck. They might move forward a few more feet, to the top of the south bank of Neretva Vallis, before doing that test.

A spot where the surface of Mars cracked

The spot where Mars cracked
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on September 14, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a small section of the Cerberus Fossae cracks, a parallel series of cracks that stretch more than 700 miles across the volcanic plains of Mars.

These cracks formed when the ground spread apart, creating a void in which the surface collapsed. You can see this process illustrated quite clearly by the crater in the lower right, as indicated by the arrow. The crater had existed prior to the crack. When the ground split and collapsed, only the northeast quadrant of the crater was destroyed.

These cracks might also have been the source of Mars’ most recent large volcanic event, as shown by the overview map below.
» Read more

Curiosity looks ahead at very rough terrain higher on Mount Sharp

Panorama on Sol 4086, February 3, 2024
Click for full image.

The rough terrain higher on Mount Sharp
Click for original image.

Cool image time! The picture to the right, reduced and enhanced to post here, was taken on February 3, 2024 by the high resolution camera on the Mars rover Curiosity. The area it covers is indicated by the rectangle on the panorama above, which has been cropped, reduced, and enhanced to post here. That panorama was created from 46 photos taken by the rover’s right navigation camera on that same day.

Those rough small peaks are higher on Mount Sharp, though far below its summit. The summit itself is not visible, and in fact has never been visible to Curiosity since it landed on Mars in August 2012. The peak is about 26 miles to the south and about 16,000 feet higher up, with much of the mountain in the way.

These small, rough peaks are in an area that the rover will likely never go, as shown in the overview map below.
» Read more

One last engineering test planned for Ingenuity

Engineers plan to do one last engineering test with Ingenuity, slowly rotate its propellers while collecting imagery, likely from both the helicopter and Perseverance.

Teddy Tzanetos, Ingenuity Project Manager, said that NASA and JPL still aren’t sure what caused the damage to Ingenuity’s blades; it remains unclear whether the helicopter’s power dipped during landing, causing unwanted ground contact, or if it accidentally struck the ground to cause a “brownout.”

Tzanetos added that NASA and the Jet Propulsion Laboratory (JPL) will slowly rotate the helicopter’s blades and “wiggle” them, or adjust their angle, while collecting video in order to allow the team to determine the extent of Ingenuity’s damage. However, Tzanetos said that no matter what such imaging will show, the dual-rotor drone has flown its last flight and will soon end its mission.

This test will likely not occur until Perseverance gets into a position where it can film the test also. The helicopter’s cameras look downward, so all it will be able to photograph is the shadow of those blades as they move. Perseverance can look directly at it, and if it gets into a position slightly higher than Ingenuity it can get a good viewing angle down at the blades.

At the moment the rover is about a thousand feet to the east, though steadily working its way towards it.

Have these Martian dunes changed in sixteen years?

Comparing two MRO images taken 16 years apart
Click here and here for the original images.

Overview map

Cool image time! The two pictures above, both rotated, cropped, reduced, and enhanced to match and to post here, were taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) sixteen years apart. The first, on the left, was taken on February 23, 2007, while the second, on the right, was taken on November 1, 2023.

What drew me to both images was the label for the second: “Dune Change in Arabia Region Crater.” To find out if this image had revealed any changes in the dunes I went back and found the earliest MRO picture of this location, and sized and enhanced the dunes in both to match.

Do you see any changes? I don’t. However, that really means nothing. These are not the highest resolution versions that MRO obtains, and a very careful comparison of those best images might detect more subtle changes than our eyes can perceive in the versions above. Also, there might be brightness changes that require careful software analysis.

The white dot on the overview map to the right marks the location, in Arabia Terra, the largest transition region on Mars between the northern lowland plains and the southern cratered highlands. The inset shows the half filled crater in which these dunes sit. The grayed area on the floor of the crater marks the entire dune field, extending eastward to the crater rim from this one spot, indicated by the black dot.

It is likely that the dust is blown into this crater and gets trapped there. Whether the dunes move or change is not clear, though if they do the changes are small, even after almost two decades. Instead, the two pictures suggest these dunes have hardened into a form of sandstone, that can be eroded over time by the wind, but only very very slowly.

A plateau of friable rock on Mars

A plateau of friable rock on Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on September 13, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The science team labels this “Friable Outcrops in Aeolis Dorsa.” What we are looking at is the northeasternmost tip of a 30-mile long plateau that marks the northern edge of Mars southern cratered highlands. For most of its length the top of that plateau is relatively smooth, broken by some vague surface features and a few scattered craters (suggesting it is relatively young). However, as you approach the plateau’s edges and especially that northeastern tip the surface begins to break up into the rough terrain shown to the right. It appears that the prevailing winds from the north are scouring the soft topsoil here and causing it to wear away, leaving behind those innumerable small ridges, almost all of which are oriented from north-to-south.

But why is the topsoil here soft and so easily scoured?
» Read more

Ingenuity’s final resting site on Mars

Overview map
Click for interactive map.

Ingenuity's damaged propeller
Click for orignal image.

The photo to the right was downloaded from Ingenuity today, and looks downward at the ground below the helicopter, showing the shadow of one of its propellers, with the damage at its tip indicated by the arrow.

It is this damage that forced NASA management to retire the helicopter yesterday. With the tip of one of Ingenuity’s two propellers damaged, the helicopter simply can no longer fly reliably, or at all.

The green dot on the map above shows Ingenuity’s final resting spot. The blue dot shows Perseverance’s present position. Perseverance will surely at some point approach Ingenuity closely to get better pictures of the damage to help engineers better figure out what happened and why. For example, did the propellor simply break during flight? And if so, why?

I freely admit that my optimistic speculations last week were wrong, that Ingenuity was merely having communications issues with Perseverance. I also suspect the Ingenuity engineers were hoping the same thing, and were far more disappointed than I to discover otherwise.

Ingenuity’s mission on Mars is over

Ingenuity takes off!
Ingenuity takes off on its first flight, April 19, 2021.
For full images go here and here.

NASA today announced that Ingenuity’s mission on Mars has now ended due to damage sustained to one of its propellers during its 72nd flight.

While the helicopter remains upright and in communication with ground controllers, imagery of its Jan. 18 flight sent to Earth this week indicates one or more of its rotor blades sustained damage during landing, and it is no longer capable of flight.

Ingenuity’s engineering mission was designed initially to simply prove that air-powered flight in Mars’ thin atmosphere was possible by a test program of four flights over 30 days. It worked so well that it just kept going and going. During its almost three years of operation on Mars, the helicopter completed 72 flights, for a total air time of about 128 minuntes. It flew a total of about eleven miles, reaching a maximum speed of over 22 miles per hour and a top altitude of about 79 feet. On its 69th flight it traveled a record 2,315 feet, almost a half mile.

All future Mars missions have been changed forever by the success of Ingenuity and its designers and engineers. For example, there are already hints of a helicopter mission to Mars’ giant canyon Valles Marineris. In addition, NASA redesigned its Mars Sample Return Mission to include helicopters based on what it learned from Ingenuity.

More important, Ingenuity suggests that when settlers finally colonize the red planet, it is very possible that air travel will start out more important than ground transport. In fact, long distance roads might never be built, for any number of reasons, because air travel will be available from the beginning.

Saw-toothed razor rocks on Mars

Saw-toothed razor rock on Mars
Click for original image.

Looking at the base of Kukenan
Click for original image.

Cool image time! The picture above, cropped and enhanced to post here, was taken on January 22, 2024 by the high resolution camera on the Mars rover Curiosity.

The photo gives us a fine example of the many very strange and delicate formations seen on Martian rocks and boulders as it slowly weaves its way up Mount Sharp, inside the slot canyon Gediz Vallis. On Earth such thin flakes like these are generally only seen inside caves, where there is almost no life to disturb their development and the natural conditions are as benign as well. On Mars, the only thing that can disturb this rock is the wind, and though over time it can erode things the thin atmosphere allows such flakes to form, aided by the gravity about 39% that of Earth’s.

The photo to the right, cropped, reduced, and sharpened to post here, was taken the same day by the rover’s left navigation camera, and illustrates the overall rocky nature of all of the terrain surrounding Curiosity. It looks to the southeast, at the base of nearby 400-foot-high Kukenan.

For a map showing Curiosity’s location (as well as another weird Martian rock, see my prevous post on January 17, 2024, A rock tadpole on Mars.

An ancient Martian river system now meandering ridges

Context camera mosaic of river system.

An ancient Martian river system
Click for original image.

Cool image time! The picture to the right, cropped and reduced to post here, was taken on August 27, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It was featured by MRO’s science team yesterday, in which Shane Byrne of the Lunar and Planetary Lab University of Arizona wrote the following:

River beds often get filled with gravel and the surrounding terrain is often built up of fine-grained mud from river overflows. The gravely river bottom and the fine-grained surroundings can lead to a strange phenomenon that geologists call inverted channels. After the river disappears, the fine-grained surroundings can be easily eroded away leaving the gravely river bed as a high-standing ridge.

These ridges show the location of the old river beds in Mars’ distant past. The angle at which the ridges join together indicate that these rivers flowed from top-right to bottom-left (i.e. southwest).

The picture above is a mosaic produced from the global survey taken by MRO’s lower resolution context camera. It gives us a fuller picture of this river system, with the rectangle showing the small area covered by the photo on the right. Overall this ancient and extinct river of ridges travels more than thirty miles downhill from the northeast to the southwest.
» Read more

Ingenuity team confirms the helicopter is healthy

In a slightly more detailed status update today, the engineering team that operates the Mars helicopter Ingenuity has confirmed that the helicopter is healthy and apparently undamaged after its 72nd flight.

During that last flight, a vertical up-and-down hop to allow communications with the helicopter and thus obtain better information as to its status and location, contact was lost as Ingenuity descended to land.

On Saturday, Jan. 20, communications were reestablished between Ingenuity and NASA’s Perseverance rover. The Ingenuity team has determined the helicopter is power-positive and is sitting vertically on the surface. Next steps include running further diagnostic checks, commanding Ingenuity to take photos of its location on the surface, and performing a spin test.

It is still unclear if full communications have been restored. Ingenuity must be within line-of-sight of the rover Perseverance for this to happen, and it appears that still might not be so. During its 71st flight the helicopter landed prematurely in an unexpected spot, apparently limiting communications significantly. The 72nd flight was likely to locate it more precisely and gather data.

Another apparent splat on Mars

Another apparent splat on Mars
Click for original image.

This cool image poses a mystery that might be important for future colonists. The picture to the right, cropped, reduced, and sharpened to post here, was taken on October 23, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The science team merely labels this vaguely as simply “landforms.” What it appears to be is an ancient flow of mudlike material or a delta that moved from the west to the east. Its nature is even more evident in the full picture. The top of the delta however appears corroded and old, with a number of craters on top suggesting it has been here for a long time.

Its mudlike appearances suggests water was involved, possibly as ice impregnated within the soil. However, the location says no, unless this occurred so long ago that the entire climate of Mars and this region was vastly different. And in fact, it might have been.
» Read more

Perseverance looks back at the floor of Jezero Crater

Overview map
Click for interactive map.

Looking out across Jezero Crater
Click for original image.

Cool image time. The picture to the right, cropped, reduced, and enhanced to post here, was taken today by the left high resolution camera on the Mars rover Perseverance.

Though I am guessing somewhat, I think this image looks east and down into the floor of Jezero Crater, as indicated by the yellow lines in the overview map above. The mountains in the distance are not the easter rim of Jezero, which is generally indistinct, but some peaks inside the crater itself. They appear higher because Perseverance is looking down at them from the delta, near the western rim.

The white line on the map shows the rover’s entire journey so far since landing in February 2021, about 14.77 miles. Since Perseverance’s recent travels should be within this picture, and I can see no rover tracks, it suggests my guess as to what the picture looks at could be very wrong. No matter. Up until now the landscape inside Jezero Crater has in general been less spectacular than seen by Curiosity in Gale Crater many miles away. This picture however shows us that Perseverance can provide us some good views also. It is also a precursor to the views we shall get once the rover exits Jezero and begins to explore the rough regions to the west.

Ingenuity’s status uncertain but likely healthy

Overview map
Click for interactive map.

Updates from the engineering team that operates the Mars helicopter Ingenuity in the past two days have suggested the helicopter might be in trouble. First the team issued a status update yesterday that indicated communications had been lost prematurely during the helicopter’s 72nd flight.

The flight was designed as a quick pop-up vertical flight to check out the helicopter’s systems, following an unplanned early landing during its previous flight. Data Ingenuity sent to the Perseverance rover (which acts as a relay between the helicopter and Earth) during the flight indicates it successfully climbed to its assigned maximum altitude of 40 feet (12 meters). During its planned descent, communications between the helicopter and rover terminated early, prior to touchdown.

A further update today said that communications had been regained, but also noted that the engineering team still did not have a full understanding of the helicopter’s status.

We’ve reestablished contact with the #MarsHelicopter after instructing @NASAPersevere
to perform long-duration listening sessions for Ingenuity’s signal.

Based on the information released (or lack thereof) from the previous flight, the 71st, it is my sense that the situation is not as dire as these reports suggest, and that the situation might simply be related to issues of communications. Let me explain why I have come to this conclusion.
» Read more

Scientists: Evidence of large deposits of buried ice along Martian equator

Theorized buried ice deposits on Mars
Click for original figure from paper.

Using data obtained from Europe’s Mars Express orbiter, scientists believe they have detected evidence of a very large and extensive deposit of buried ice in the dry Martian equatorial regions, buried within the Medusae Fossae Formation, what is thought to be the largest volcanic ash deposit on Mars.

The blue-to-orange areas inside the Medusae on the map to the right, taken from figure 5 of the paper, shows where they have detected potential buried ice, at depths ranging from one to two thousand feet below the surface. The orange areas indicate the thickest ice deposits, as much as two miles thick. From the paper’s abstract:

The MARSIS radar sounder [on Mars Express] detects echoes in Medusae Fossae Formation deposits that occur between the surface and the base which are interpreted as layers within the deposit like those found in Polar Layered Deposits of the North and South Poles. The subsurface reflectors suggest transitions between mixtures of ice-rich and ice-poor dust analogous to the multi-layered, ice-rich polar deposits.

Assuming this detection is real, this would be the largest reservoir of potential water in the dry equatorial regions found yet, comparable to another similar buried detection deep below the giant canyon Valles Marineris but much larger.

Accessing this water however will not be simple, as it is deep underground. You couldn’t just drill a well, as it is ice, not a liquid water table. It would have to mined like minerals on Earth. There are uncertainties about this conclusion as well. It is possible the detection is not water but volcanic ash or dust compacted in a way that mimics an ice detection.

A rock tadpole on Mars

A rock tadpole on Mars

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on January 11, 2024 by the left navigation camera of the Mars rover Curiosity.

The picture was highlighted in yesterday’s update from the rover’s science team, describing the team’s upcoming geological goals for the next few days.

We have observed resistant, polygonal fractures/ridges in many recent bedrock blocks. There is much speculation among the team as to the origin of these features. Hypotheses have different implications for past environments, and the polygonal fractures are therefore of high interest. As well as the polygonal fractures, there are more continuous linear veins. The relationship between the polygonal and linear fractures can also help to inform our interpretations

You can see the polygonal fractures in the full image. The thin line of rock sticking up from the tadpole illustrates one of these continuous linear veins. The material that fills the vein is obviously more resistent to erosion, so as the wind (and maybe ancient ice or water activity) scoured the rock into its tadpole shape, the vein material remained.
» Read more

Gullies and avalanches in Martian crater

Gullies and avalanches in a Martian crater
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on September 17, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows two significant features, both of which suggest the action of near-surface water ice to change to surface of Mars.

First are the gullies on the cliff wall, which also happens to be the interior slope of a 30-mile-wide crater. Since the first discovery of gullies on Mars, scientists have pondered their origin, with all their hypothesises always pointing to some form of water process. One popular theory [pdf] points to some form of intermittent water flow linked to long term climate cycles caused by the extreme shifts in the red planet’s rotational tilt, from 11 to 60 degrees. Another theory suggests the gullies form from the winter-summer freeze-thaw cycle and the accumulation of frost during winter.

The second feature are the three avalanche debris piles at the base of these gullies. The long extent of each suggests the avalanches flowed more like wet mud than falling rocks. If the ground here was impregnated with ice, than this look makes sense.
» Read more

The divide in a giant Martian lava river

The divide in a giant Martian lava river
Click for original image.

Cool image time! The photo to the right, rotated, cropped, reduced, sharpened, and annotated to post here, was taken on September 24, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

As indicated by the arrows, this is a frozen river of lava on Mars, flowing to the southwest and then splitting into two streams, one to the west and the other to the south. Being a Martian lava flow, when it was liquid it flowed much faster than lava on Earth, almost like a thick water. The flow bored into any high features, such as the two mesas in this picture, and streamlined their shapes, tearing material away as the lava moved by quickly. In the process the lava flow exposed many layers in those mesas, indicating many other previous lava flow events.

The crater in the lower mesa, where the stream splits, appears to have been more resistent to the flow, having been compacted into harder and denser material by the impact itself.
» Read more

A cluster of strange terrain in Martian glacier country

Overview map

A cluster of strange terrain on Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on October 21, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The science team labels this “patterned ground.” I see instead a whole range of inexplicable Martian geological features that, while each has been documented previously, each remains puzzling as to its formation process.

First there is the stucco-like peaks of all sizes on the upper left. This surface really looks like it had been wet plaster covered with Saran Wrap that had its peaks pulled up when that wrap was pulled off quickly.

Then there is brain terrain on the right. Always associated with glacier features on Mars, these convolutions are unique to Mars and as yet not entirely understood.

Next there is the circular arc on the middle left. It appears to be the remains of an impact crater now filled partly, but if so why has its northern rim disappeared so completely?

If you look close at the image above as well as the full image, you will find other mysterious features as well.

The location is the white dot on the overview map above. The rectangle in the inset shows the area covered by this picture, part of the floor of an unnamed eighteen-mile-wide and one-mile deep crater. The glacial material that appears to fill its interior as well as the splash apron that surrounds it all suggest the ground here is impregnated with water ice. Located as it is on the western end of the 2,000-mile-long north mid-latitude strip I dub glacier country — where practically every image shows glacial features — this conclusion is not surprising.

In fact, this photo illustrates well the alieness of Mars. We understand glaciers and ice, but on Mars, with its very cold temperatures, one-third Earth gravity, and thin atmosphere, those glaciers and ice are able to do things that we don’t yet understand. Untangling these geological processes will take decades of work, and likely will not be completed until people can walk the Martian surface and study it up close.

And won’t that be fun?

Double-ringed crater near the Starship landing zone on Mars

Double-ringed crater
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on September 10, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label simply as a “double-rim crater.”

If you look close you might not be unreasonable to call this instead a triple-rim crater, as there appear to be two rings on each side of the highest crater rim.

Multple rings in craters are not rare. We see many on the Moon. Most however are associated with very large impacts, and are an expression of the ripples formed at impact, not unlike the ripples seen when you drop a pebble in water. Unlike water ripples, the ripples formed in rock are impact melt that quickly refreezes, thus capturing those ripples as concentric rings.

In this case, these rings likely signal not freezing rock but freezing ice.
» Read more

Endless ash fields on Mars

Endless ash fields on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on September 18, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

It shows the very typical surface on a high plateau in Mars’ dry tropical regions. The dunes you see here, in this very small slice, cover a region about 80 miles square, with the prevailing winds appearing to consistently blow from the northeast to the southwest and forming these endless striations.

The dunes are made of volcanic ash, and the size of this particular ash field gives us a sense of the past volcanic activity that once dominated the red planet. Once, the atmosphere was filled with ash, which covered the ground across large regions. In the subsequent eons the thin Martian atmosphere has reshaped and piled that ash into giant mounds hundreds of miles across, with the surface striated as we see here.
» Read more

Layered volcanic vent on Mars

Layered volcanic vent on Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on August 31, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows what the science team labels as a “vent near Olympica Fossae.”

The grade within the fissure is downhill to its center. Outside the vent the grade is downhill to the north and south, with the overall grade sloping to the west as well. Note the layers on each side of the depression. Each indicates another volcanic flood event that laid down another layer of lava. At some point this vent either blew up through those layers, or it had remained opened during all those many events, the lava flowing out and acting like water to erode the layers on the north and the south.

As always, the scale of Martian geology is daunting, as shown by the overview map below.
» Read more

1 4 5 6 7 8 78