New Democrat head of House subcommittee covering NASA says he supports Artemis

The new Democrat head of the House appropriations subcommittee that covers NASA funding, Matt Cartwright (D-Pennsylvania), appears to support the Artemis program established during the Trump administration, though he has also indicated that he does not favor the timeline imposed by Trump to land a manned mission on the Moon by ’24.

Cartwright’s embrace of Artemis during [a] July 2020 webinar was a change from 2019 when he was one of several members reacting skeptically to a supplemental budget request from the Trump Administration after it unexpectedly accelerated the timeline for putting people back on the Moon from 2028 to 2024. He complained NASA did not even have a cost estimate for the entire effort, yet expected Congress to embrace it.

In 2018, he expressed concern about proposed cuts by the Trump Administration to NASA’s earth and space science activities especially climate programs and WFIRST (now the Roman Space Telescope). He urged NASA to follow the Decadal Surveys produced by the National Academies of Sciences, Engineering, and Medicine.

What his prior views presage now that he chairs the subcommittee remains to be seen. It is widely expected the 2024 deadline will be pushed back, perhaps to the 2028 date NASA originally planned, but Cartwright appears favorably disposed towards the agency overall.

Delaying the Moon landing by SLS forever is the real goal, so the jobs program can be extended without any risks. To actually fly might result in a failure, something that no politician wants.

In the end it will not be SLS anyway that gets Americans back to the Moon. It costs too much and is badly designed. It might fly once or twice, but after that Congress will drop it while keeping Artemis, albeit in a very different form. Instead of having NASA design and build things, the new Artemis will be built by the many companies who were awarded fixed priced contracts during the Trump administration to develop their own hardware as fast as possible and as inexpensively as possible.

The distinction is important, because the latter is more likely to succeed in a reasonable amount of time.

At the same time, with Congress on board and a Democrat in the White House, it is not surprising that the policy is immediately shifting to a slower timeline. Can’t get this done too fast! I must also add that 2028 was not NASA’s original date for its return to the Moon. Before the Trump administration took control of Artemis, NASA had wanted to complete Gateway first, which based on all of NASA’s previous schedules would have pushed a lunar landing into the 2030s. Do not be surprised if this sluggish schedule is reinstated.

In fact, with the present incompetents in charge in Washington, I fully expect China to own the Moon, while U.S. politicians brainlessly dither on how to spend pork.

Chang’e-5’s lunar samples less dense than expected

Because the lunar samples retrieved by China’s Chang’e-5 probe were less dense than expected, it ended up recovering only 3.8 pounds of material rather than the targeted 4.4 pounds.

The probe had estimated the lunar rocks to have a density of 1.6 grams per cubic millimetre, based on data from past missions by other countries, said Pei Zhaoyu, the mission spokesman. Going by that figure, the probe stopped taking samples after just 12 hours, apparently assessing that the target had been reached. “However, from tests, the actual density might not be that high,” Pei told reporters.

This is not a failure, but a discovery. In order to make sure the lander did not recover too much material, weighing too much, they needed to set limits based on the expected weight of the material recovered. That these samples taken from the Mons Rümker volcano complex are lighter than expected reveals something about them. It suggests the lava here was different than lava samples taken elsewhere.

The conjunction of Jupiter and Saturn, as seen from the Moon

Jupiter and Saturn as seen by LRO
Click for full image.

With Jupiter and Saturn closer to each other in the sky than they have been in about 800 years, the science team for Lunar Reconnaissance Orbiter (LRO) decided to aim that lunar orbiter at the two gas giants to get a picture.

The photo to the right, cropped and expanded to post here, was also enhanced by the science team to brighten Saturn so that it would match Jupiter. As they note at the link,

[LRO] captured this view just a few hours after the point of closest separation (0.1°) between the two giant planets. With the sharp focus of the NAC [camera], you can see that the two planets are actually separated by about 10 Jupiter diameters

Both planets however look fuzzy in the image, probably because the camera was not designed to obtain sharp images from this distance. Nonetheless, this is a very cool photo.

Chang’e-5 lunar orbiter heading to Sun-Earth Lagrange point

The new colonial movement: Chinese engineers have decided to extend the mission of the Chang’e-5 lunar orbiter by shifting its orbit so that it is transferred to one of the five Sun-Earth Lagrange points.

Amateur radio operators first confirmed the Chang’e-5 orbiter was still in space and heading towards the moon. Official confirmation has now been provided as to the spacecraft’s status.

Hu Hao, a chief designer of the third (sample return) phase of the Chinese lunar exploration program, told China Central Television (Chinese) Dec. 20 that the orbiter is now on an extended mission to a Sun-Earth Lagrange point. Hu said the extended mission was made possible by the accurate orbital injection by the Long March 5 launch vehicle, the same rocket which failed in July 2017 and delayed Chang’e-5 by three years. The Chang’e-5 orbiter has more than 200 kilograms of propellant remaining for further maneuvers.

While unspecified, it is believed that the Chang’e-5 orbiter will enter orbit around L1, based on the reference to planned solar observations. The orbiter is equipped with optical imagers. The team will decide on a further destination after tests and observations have been conducted, Hu said.

It makes great sense to keep the orbiter operating, and since lunar orbits tend to be unstable, going to a Lagrange point makes even more sense.

However, this decision raises an interesting point for the future. There are only five Lagrange points in the Earth-Sun system. All have great value. All also can likely sustain a limited number of satellites and spacecraft. Who coordinates their operations? What happens if China fills each with its spacecraft? For example, the James Webb Space Telescope is aiming for Lagrange point #2, a million miles from Earth in the Earth’s shadow. While Chang’e-5 is presently heading to a different point, what happens if China changes its mind and puts Chang’e-5 in Webb’s way?

As far as I know, there has been no discussion of this issue in international circles.

Samples from space!

Scientists from both the Japanese Hayabusa-2 mission to the asteroid Ryugu and the Chinese Chang’e-5 mission to the Moon announced yesterday the total amount of material they successfully recovered.

The numbers appear to diminish the Japanese success, but that is a mistake. Getting anything back from a rubble-pile asteroid that had never been touched before and is much farther away from Earth than the Moon was a very great achievement. The 5.4 grams is also more than fifty times the minimum amount they had hoped for.

This is also not to diminish the Chinese achievement, They not only returned almost four pounds, some of that material also came from a core sample. They thus got material both from the surface and the interior of the Moon, no small feat from an unmanned robot craft.

Scientists from both nations will now begin studying their samples. Both have said that some samples will be made available to scientists from other countries, though in the case of China it will be tricky for any American scientist to partner with China in this research, since it is by federal law illegal for them to do so.

Chang’e-5 sample return capsule successfully recovered in China

The new colonial movement: The sample return capsule for China’s Chang’e-5 mission, the first to bring lunar samples back to Earth since 1976, has been successfully recovered in the inner Mongolia region of China today.

Chinese officials confirmed the roughly 660-pound (300-kilogram) capsule landed at 12:59 p.m. EST (1759 GMT) Wednesday, or 1:59 a.m. Thursday in Beijing.

Recovery crews dispatched to the remote landing zone converged on the capsule in helicopters and off-road vehicles, traveling across the snow-covered plains of Inner Mongolia in the middle of the night. Ground teams reached the Chang’e 5 return module within minutes to begin operations to secure the capsule, and planted a Chinese flag in the frozen soil next the spacecraft.

Crews plan to transport the module to Beijing, where scientists will open the sample carrier and begin analyzing the moon rocks.

For China this success is a major milestone for its government-run space program. They have demonstrated superb technical capabilities that will serve them on many more future missions. They have also signaled to the world and the U.S. that they mean business in space, and that their published plans to build colonies on the Moon are serious. They have also made it clear that they will enforce control over any territory they occupy, notwithstanding the rules of the Outer Space Treaty. Any American government that makes light of these facts and refuses to aggressively compete with China is going to quickly discover it shut out of the most valuable locations on the Moon.

Chang’e-5 on its way back to Earth

The new colonial movement: Chang’e-5 today successfully fired four engines for 22 minutes to leave lunar orbit and begin its journey back to Earth, with a planned arrival date in China for its sample return capsule around December 15/16th.

The return capsule is expected to land in northern China in the Inner Mongolia region after separating from the rest of the spacecraft and floating down on parachutes. The material would be the first brought back since the Soviet Union’s Luna 24 probe in 1976.

The rocks and other debris were obtained both by drilling into the moon’s crust and scooping directly off the surface. They may be billions of years younger than those brought back by earlier U.S. and Soviet missions, possibly offering insights into the moon’s history and that of other bodies in the solar system.

The landing sequence is the last major engineering challenge, though hardly as challenging as the autonomous rendezvous and docking in lunar orbit.

New data confirms and localizes uplifted lunar dust as seen by Apollo astronauts

The uncertainty of science: In a paper released today, scientists reveal the detection of electrostatic dust events on the Moon similar to those observed by Apollo astronauts, and find that these events might not be global but instead confined to craters during twilight. From the abstract:

Lunar horizon glows observed by the Apollo missions suggested a dense dust exosphere near the lunar terminator. But later missions failed to see such a high‐density dust exosphere. Why the Apollo missions could observe so large number of dust grains remains a mystery. For the first time, we report five dust enhancement events observed by the Lunar Dust Experiment on board Lunar Atmosphere and Dust Environment Explorer [LADEE] mission, which happen near a twilight crater with dust densities comparable to the Apollo measurements. Moreover, the dust densities are larger on the downstream side of the crater and favor a higher solar wind temperature, consistent with an electrostatic dust lofting from the negatively charged crater floor. We also check the Apollo observations and find similar twilight craters, suggesting that the so‐called dust exosphere is not a global phenomenon but just a local electrified dust fountain near twilight craters.

The dust clouds the astronauts thought they saw near the horizon have been theorized to be dust uplifted by static electricity. However, all later missions had so far failed to detect this phenomenon, until now. That the result also pinpoints the location and ties it to twilight is important for future missions to the Moon. Astronauts can thus minimize any damage by this dust by shutting down operations during lunar twilight periods.

Beresheet-2 will have two landers instead of one

The new colonial movement: SpaceIL, the Israeli non-profit company that built the failed Beresheet-1 lunar lander, yesterday announced its plans to build Beresheet-2, this time with an orbiter and two lunar landers, and launch it by ’24.

The two landers would be much smaller than the first spacecraft — about 260 pounds each, fully fueled, compared with a bit less than 1,300 pounds for Beresheet — and they would land on different parts of the moon. The orbiter would circle the moon for at least a couple of years. The three spacecraft of Beresheet 2 would together weigh about 1,400 pounds.

Even though the designs would be new, they would reuse many aspects of Beresheet, and the founders said they had learned lessons that would increase the chances of success for the second attempt. SpaceIL will again collaborate with Israel Aerospace Industries, a large satellite manufacturer.

SpaceIL is looking for funding from both private and Israeli government sources. It is also looking for funds from other nations, a decision which revealed the most intriguing part of this announcement:

SpaceIL hopes that international partnerships will pay for half of the cost of Beresheet 2. Mr. Damari said the United Arab Emirates, a small but wealthy country in the Persian Gulf that has set up an ambitious space program in recent years, was one of seven nations interested in taking part. He declined to name the other six.

If this flight ends up to be a partnership between Israel and the United Arab Emirates it will send shockwaves through the Arab world, most especially among the supporters of the terrorist leaders ruling the Palestinian territories.

Mysterious object in solar orbit identified as upper stage for Surveyor 2

Since August astronomers have been trying to figure out the nature of a mysterious object in solar orbit that did not match their expectations for either a comet or an asteroid. Dubbed 2020 SO, astronomers have now identified it as the upper stage booster used to send the unmanned lunar lander Surveyor 2 towards the Moon in 1966.

Surveyor 2 was a failure when it began tumbling and crashed into the Moon instead of doing a soft landing. Its upper stage meanwhile was sent on a path that would have it miss the Moon and go into orbit around the Sun. That orbit finally brought it back to Earth this year.

2020 SO was captured by Earth’s gravity in November and came within 27,400 miles from Earth on December 1. That’s when Reddy and his colleagues at the IRTF were able to capture the infrared spectrum of another Centaur D rocket booster—this time from a 1971 launch of a communication satellite. When they compared that spectrum to the data gathered about 2020 SO, the spectra matched. 2020 SO is also a Centaur rocket booster, most likely the one used for the Surveyor 2 mission.

2020 SO is now moving away from the Earth and should escape Earth’s gravity within a few months, at which point it will follow a new solar orbit. But astronomers expect it to return to Earth in 2036, and they will be ready to learn even more when it does.

This booster is essentially an early example of space archeology. Someday colonists in space will go and catch it to bring it back to one of their museums on the Moon or Mars, to be studied and admired as a major marker of their own past history.

Chang’e-5 ascender sent to crash on Moon

The new colonial movement: Even as the Chang’e-5 orbiter/return capsule awaits its window for leaving lunar orbit, Chinese engineers have separated the ascender capsule that brought the samples from the surface and sent it to crash on the Moon.

This decision makes sense, as lunar orbits tend to be unstable, and to leave the ascender there after the orbiter and return capsule leave could make it a piece of uncontrollable space junk threatening future missions.

The engine burn that will send the orbiter/return capsule back to Earth is expected early December 12th, with the return capsule landing in China on December 16th.

Chang’e-5 sample capsule docks with return vehicle in lunar orbit

According to the official Chinese state-run press Chang’e-5’s capsule containing samples from the Moon has successfully rendezvoused and docked with its return vehicle in lunar orbit, the first time an unmanned craft has done such a thing autonomously.

The news report at this point provides no other details, other than to state that the return capsule and orbiter will next separate from the ascent capsule and “wait for the right time to return to Earth.” Earlier reports had suggested an arrival on Earth around December 16, which would suggest an exit from lunar orbit in about a week.

LRO snaps picture of Chang’e-5 on Moon

Chang'e-5 on the Moon, taken by LRO
Click for full image.

The science team for Lunar Reconnaissance Orbiter (LRO) late yesterday released an image taken of Chang’e-5 on the surface of the Moon. The image to the right, reduced to post here, is that photo.

China’s Chang’e 5 sample return spacecraft made a safe touchdown on the lunar surface at 10:11 EST (15:11 UTC) 01 December 2020. LRO passed over the site the following day and acquired an off-nadir (13° slew) image showing the lander centered within a triangle of craters.

The LROC team computed the coordinates of the lander to be 43.0576° N, 308.0839°E, –2570 m elevation, with an estimated accuracy of plus-or-minus 20 meters.

If all goes well, the return capsule, which lifted off from the Moon yesterday, will dock with the return vehicle in orbiter later today.

Chang’e-5 completes sample collection; lifts off from Moon

UPDATE: The official state-run Chinese press has announced that the ascent capsule with the lunar samples has lifted off from the Moon. The rendezvous and docking is next, which is likely the most difficult technical task for the autonomous unmanned probe. No word yet on when that will occur.

Original post:
——————

The new colonial movement: China’s Chang’e-5 lunar lander has completed its sample collection on the Moon, and is set to lift-off sometime today for a rendezvous and docking with its return vehicle in lunar orbit.

The milestone signaled the start of the mission’s return voyage, which includes an ambitious series of automated maneuvers to blast off from the lunar surface Thursday and rendezvous with an orbiter circling the moon. Chang’e 5 will attempt the first-ever docking between two robotic spacecraft in lunar orbit, then transfer the moon rock container into the return craft.

If all goes according to plan, Chang’e 5’s sample container should re-enter Earth’s atmosphere and parachute to a landing in China’s Inner Mongolia region around Dec. 16.

If successful, this will the ninth spacecraft to bring samples back from the Moon, and the first since the 1970s. It will also firmly establish China as a major space power that is presently competitive to the U.S. and has also bypassed Russia completely. Even though it is likely they stole much of the technology for doing such planetary missions, China’s engineers have done a good job of refining and improving the engineering, as shown by the number of firsts being achieved by this Chang’e-5 mission.

First images from Chang’e-5 on the Moon

Panorama of Chang'e-5 landing site
Click for full image.

The new colonial movement: China’s state-run press has now released several images taken by Chang’e-5 on the lunar surface, including movies showing the landing and the ongoing digging operations.

The photo to the right, cropped and reduced to post here, is part of a fisheye panorama of the entire landing site. I have cropped it to show only the central part. Except for the distant mountain, the terrain is very flat, which is not surprising as this is the Ocean of Storms mare.

Note however how deep the landing pad is pressed into the ground. This gives a sense of the dust layer that covers the surface.

The link above, as well as this link, show additional images as well as the two movies.

Take off is next, followed by the autonomous rendezvous and docking in lunar orbit with the craft that will bring the sample capsule back to Earth sometime around December 16.

Change’-5 successfully gets sample from drilling

The new colonial movement: According to the state-run Chinese press, Chang’e-5 has successfully obtained its first lunar sample from a 2-meter deep drilled hole.

After making a successful soft landing at 11:00 p.m. BJT on Tuesday, the lander started rolling out its solar panel wings and unlocking some of the payloads onboard to prepare for sample collection.

The lander first drilled a 2-meter-deep hole, digging out soil, and sealed it up at 4:53 a.m. on Wednesday [today]. Next, it will use its robotic arms to scoop up more samples from the lunar surface for backup.

If all goes right, they will collect a second sample from the surface using a scoop, and then the ascent capsule will take off tomorrow. It will then rendezvous and dock with the orbiter and return capsule.

LRO looks at Yutu-2

Yutu-2's travels on the Moon through October 2020
Click for full image.

The new colonial movement: The Lunar Reconnaissance Orbiter (LRO) science team today released an update of the travels of China’s Yutu-2 lunar rover, presently operating on the far side of the Moon.

The photo to the right, reduced and annotated to post here, shows the rover’s present position, having traveled about 1,650 feet to the northwest in the 22 months since landing. The goal, according to Yutu-2’s science team, is to get the rover beyond the present ejecta field of debris thrown from a large impact to the north, and reach a basalt covered region about a mile away. At the pace they are setting, about 100 feet per lunar day, it is going to take them about another three years to get there. Whether the rover will last that long is the question, but I suspect they are hopeful, based on the almost two years of operations so far.

If you go to the link you can also see a short movie showing month-by-month where the rover ended up when it shut down for each long lunar night.

Chang’e-5 lands on Moon

The new colonial movement: According to official Chinese reports, Chang’e-5 has successfully soft-landed on the Moon in preparation for its gathering of samples to bring back to Earth.

The Chang’e 5 lander began final descent at 09:58 EST (14:58 UTC) with an expected touchdown 15 minutes later at 10:13 EST (15:13 UTC).

All broadcasts of the event were abruptly stopped just before the landing burn was to begin — throwing the mission into question with CCTV in China at first saying landing coverage would resume at 21:00 EST — an 11 hour delay to the landing. Minutes later, official sources — via social media — proclaimed a successful landing.

Blocking a broadcast like this is very typical of totalitarian governments, and totalitarian societies. Think about that the next time Youtube or Google or Facebook or Twitter or an American university silences speech they don’t like.

As for the lander, all other news reports that I have so far found provide no further details. It appears that all we know comes from a single sentence announcement of success from the Chinese press.

Chang’e-5 now in lunar orbit

The new colonial movement: China’s lunar sample return probe Chang’e-5 has now entered in lunar orbit, with its landing to occur in three days.

Over the next week, the probe, composed of four parts – the orbiter, lander, ascender and Earth re-entry module – will perform multiple complicated tasks on a tight schedule.

The four parts will separate into two pairs. The lander and ascender will head to the moon and collect samples, while the orbiter and Earth re-entry module will continue to fly around the moon and adjust to a designated orbit, getting ready for the docking with the ascender.

The landing operation is expected in three days. Once touched down on the lunar surface, the lander will collect two kilograms of lunar sample.

The plan once on the surface is to gather a sample from the surface as well as from a six-foot deep core sample.

China successfully launches its Chang’e-5 lunar sample mission

screen capture at Long March 5 launch of Chang'e-5
Screen capture from launch live feed

The new colonial movement: China today successfully used its Long March 5 rocket to launch its Chang’e-5 on the first lunar sample return mission since the 1970s.

If all goes well, the return capsule will return to Earth with its sample on December 15th.

China provided a live stream, in English, which I have embedded below the fold.

The leaders in the 2020 launch race:

31 China
21 SpaceX
12 Russia
5 ULA
5 Rocket Lab

The U.S. still leads China 34 to 31 in the national rankings.
» Read more

The Apollo 12 crew’s excursions on the Moon, 51 years ago

In celebration of the anniversary this week of the Apollo 12 mission to the Moon in November 1969, the science team for the Lunar Reconnaissance Orbiter (LRO) have created a wonderful animation showing step-by-step where and when Pete Conrad and Alan Bean walked during their two EVAs on the lunar surface.

That video is below. It highlights strongly the need of any future short-term mission to any planetary landing to have a vehicle on board. Conrad and Bean accomplished a lot during their two four-hour walks, but nowhere near as much as they could have accomplished if they could have driven about on their EVAs. In fact, in the 1960s NASA had already recognized this, and was to put a rover on the last three Apollo lunar landings.

Senate fails to fully fund manned lander for Trump’s 2024 lunar mission

The Senate appropriations committee’s budget recommendations for NASA, released yesterday, has refused to fully fund the development of the manned lander needed for Trump’s 2024 lunar mission.

The Senate Appropriations Committee released its recommendations for all 12 FY2021 appropriations bills today. The Commerce-Justice-Science (CJS) bill provides NASA with $23.5 billion, $1.75 billion less than requested. The House-passed bill keeps the agency at its current level of $22.6 billion, so the final compromise likely will be somewhere in that range. NASA’s request for Human Landing Systems (HLS) for the Artemis program was particularly hard hit on both sides of Capitol Hill.

NASA had requested $3.4 billion for building the lunar lander in time for 2024. The House appropriated $628 million. Today’s Senate recommendation budgeted $1 billion. This practically guarantees that no manned lunar mission will happen by 2024.

None of this is a surprise. The politicians in Congress from both parties don’t really want to rush this program. For them it is better to stretch it out for as long as possible, spending mucho bucks in their states and districts. Nothing will be accomplished, but they will be able to tell their constituents they brought the jobs home.

Useless and empty jobs, but jobs nonetheless.

United Arab Emirates announce plans for lunar rover mission

The new colonial movement: The United Arab Emirates (UAE) has announced plans to launch its first unmanned probe to the Moon, a small rover dubbed Rashid with a target launch date in 2024.

The Mohammed Bin Rashid Space Centre (MBRSC) in Dubai says its in-house teams will develop, build and operate the 10-kilogram rover, which is named after the late Sheikh Rashid bin Saeed Al Maktoum, who ruled Dubai at the UAE’s creation in 1971.

The team will hire an as-yet unannounced space agency or commercial partner to carry out the launch and landing, the riskiest part of the mission. If successful Rashid would be one of several rovers made by private firms and space agencies that are set to populate the Moon by 2024.

This project is a great opportunity for the various new private aerospace companies in the U.S. developing interplanetary capabilities for sale to others.

Overview of China’s lunar sample return mission

Chang'e-5 landing site on Moon

Link here. The Chinese mission, the first to bring back lunar samples since the 1970s, is now set for launch on November 24, 2020.

Chang’e-5 includes a lander, ascender, orbiter and returner. After the spacecraft enters the Moon’s orbit, the lander-and-ascender pair will split off and descend close to Mons Rümker, a 1,300-metre-high volcanic complex in the northern region of Oceanus Procellarum — the vast, dark lava plains visible from Earth. Once the craft has touched down, it will drill up to 2 metres into the ground and extend a robotic arm to scoop up about 2 kilograms of surface material. The material will be stored in the ascender for lift-off.

The descent and ascent will take place over one lunar day, which is equivalent to around 14 Earth days, to avoid the extreme overnight temperatures that could damage electronics, says Clive Neal, a geoscientist at the University of Notre Dame in Indiana.

…Once the ascender is back in lunar orbit, the samples will be transferred to the returner. This in-flight rendezvous will be complex and “a good rehearsal for future human exploration”, says James Carpenter, a research coordinator for human and robotic exploration at the European Space Agency in Noordwijk, the Netherlands. China plans to send people to the Moon from around 2030.

The Chang’e-5 spacecraft will then journey back to Earth, with the lander parachuting toward Siziwang Banner in Inner Mongolia, northern China, probably sometime in early December.

The location, as shown in the image above, is in the northern mid-latitudes of the Moon’s nearside, and is a place where some relatively recent volcanic activity might have occurred, though still in the far past.

Water molecules detected on Moon

Using NASA’s SOFIA airborne telescope, scientists have detected for the first time what they think is a very small amount of actual water molecules in areas of the Moon far from the poles.

SOFIA has detected water molecules (H2O) in Clavius Crater, one of the largest craters visible from Earth, located in the Moon’s southern hemisphere. Previous observations of the Moon’s surface detected some form of hydrogen, but were unable to distinguish between water and its close chemical relative, hydroxyl (OH). Data from this location reveal water in concentrations of 100 to 412 parts per million – roughly equivalent to a 12-ounce bottle of water – trapped in a cubic meter of soil spread across the lunar surface.

This result confirms data obtained by India’s Chandrayaan-1 lunar orbiter about a dozen years ago..

There are many caveats. First and foremost, there remain uncertainties about whether they have actually detected water molecules. From their paper’s abstract:

Widespread hydration was detected on the lunar surface through observations of a characteristic absorption feature at 3 µm by three independent spacecraft. Whether the hydration is molecular water (H2O) or other hydroxyl (OH) compounds is unknown and there are no established methods to distinguish the two using the 3 µm band. However, a fundamental vibration of molecular water produces a spectral signature at 6 µm that is not shared by other hydroxyl compounds. [emphasis mine]

This detection points to water for sure, but it remains very uncertain.

The amount is also very small, and is likely localized, as they also note, “within glasses or in voids between grains sheltered from the harsh lunar environment.” If there it will not be useful for future colonists.

The result is important, however, as it increases the likelihood that there is lots of water ice trapped in the permanently shadowed craters near the poles, in amounts that will be useful to future colonists.

Weird crater on Moon

Strange Ryder Crater on the Moon
Click for full image.

The photo to the right, released today by the science team of Lunar Reconnaissance Orbiter (LRO), takes a overhead view of the unusual crater dubbed Ryder (named after lunar scientist Graham Ryder).

The crater is located on the Moon’s far side, on the edge of the South Pole-Aitken Basin, the Moon’s largest and possibly oldest impact basin. What makes Ryder Crater intriguing is its strange shape, as well as its interior north-south interior ridge.

This crater was featured previously in 2012 in a spectacular oblique image looking east across the crater. Then, the scientists theorized its strange shape was caused by two factors, first that the impact was oblique, and second that it occurred on a steep slope.

Today’s release adds another factor that might explain the interior ridge. The context map below makes that explanation obvious.
» Read more

Chang’e-4 and Yutu-2 awake for 23rd lunar day on far side of the Moon

The new colonial movement: China’s Chang’e-4 lander and Yutu-2 rover have both been reactivated for their 23rd lunar day on far side of the Moon.

Yutu 2 is set to continue its journey northwest from the landing site and will target a roughly 12-inch (30 centimeters) rock on the rim of a nearby crater for analysis with a spectrometer. The rover has used that instrument to analyze a range of specimens in Von Kármán crater, notably causing a stir when it discovered an impact melt breccia initially described as “gel-like.”

It is the hope of the Chinese scientists that this rock will be ejected material from that crater and will have come from the lunar interior.

Also, though you need to read Chinese to understand how to access it, the project has released to the public another batch of data from both spacecraft.

A lunar landslide

Landslide on the Moon
Click for full image.

Cool image time! The image to the right was posted by the Lunar Reconnaissance Orbiter (LRO) science team on October 9, 2020, and shows a spectacular landslide almost a mile and a half long that had occurred on the interior rim of a crater on the Moon.

The top of the rim is on the left, with the landslide breaking out onto the floor of the crater on the right.

The walls of Kepler crater (30 kilometer diameter) exhibit numerous landslides. In this example, a landslide of dark material begins about 100 meters below the rim from a narrow box canyon. The box canyon is about 50 meters wide and 300 meters long. Overall, the slide is extends some 2300 meters (from the end of the canyon to its base). The base of the slide is on a fault block that lies some 1800 meters below the rim. The wall slope is about 33 degrees.

This slide is actually composed of a series of narrow landslides 20-30 meters wide. Along most of the slope, the individual slides overrun each other forming a band of debris up to about 180 meters wide. At the base of the slope, the individual slides can be recognized as they move apart forming a fan of material. A few individual isolated slides also occur adjacent to the main mass. The overlapping nature of these small slides indicate that the overall feature may have formed over a period of time, rather than all at once.

From above and at this resolution, the landslide looks almost like frozen flowing liquid. It allso looks like it began with a scattering of boulders breaking free at the top all at once that quickly consolidated into a single massive avalanche.

At the link you can zoom in or out to look at the entire image, at full resolution.

A donut on the Moon

A donut crater on the Moon
Click for full image.

In this case the donut is a crater dubbed Bell E Crater, with a second concentric rim in its interior. The photo to the right, reduced to post here, was taken by Lunar Reconnaissance Orbiter (LRO) as part of its high resolution survey of the entire Moon. As noted at the first link:

Craters not only vary in shape but also in complexity. There are simple craters and complex craters with ring structures and mountains at the center. Somewhere in between is Bell E, a small crater located within the larger Bell crater. These donut-shaped formations are commonly known as concentric craters. Many questions remain on the origin of donut craters. While there have been several ideas about their origin, including double impacts, the currently favored hypotheses involve volcanic processes and compositional variations.

The article outlines four hypotheses for explaining this crater’s formation, a perfectly aligned double impact, ripples at impact into thick warm lava, layers of different densities, and later volcanic activity. None do a good job of explaining all of the concentric craters found on the Moon, and thus suggest that these craters might have formed from some combination of more than one theory.

1 15 16 17 18 19 36