No laser communications system at Tabby’s Star
If alien megastructures exist at Tabby’s Star, new research has precluded the likelihood that those aliens are using lasers for communications within those gigantic structures.
[The scientists checked] for laser signatures, on the not unreasonable grounds that any structure large enough to encase a star – Boyajian [Tabby’s Star] is almost one-and-a-half times the mass of the sun – would have an internal communication system, for which lasers would represent a good candidate medium.
In the latest research, Lipman and colleagues decided to test the idea. They analysed 177 high-resolution spectra from the star, gathered by the Lick Observatory’s Automated Planet Finder telescope as part of the Breakthrough Listen Project. They estimated that the data was so detailed that lasers with power greater than 24 megawatts should show up. To hunt for them, the researchers developed an algorithm to perform a pixel-by-pixel analysis of each spectrum in order to identify “spatially unresolved emission lines that meet the criteria for an artificial laser signal”.
The good news is that they found several. The bad news is that a secondary multi-step analysis designed to pick up false positives discounted them all. “The top candidates from the analysis can all be explained as either cosmic ray hits, stellar emission lines or atmospheric air glow emission lines,” they conclude.
We must remember that alien megastructures are the most unlikely explanation for the random light fluctuations of Tabby’s Star. This research helps to strengthen that conclusion.
If alien megastructures exist at Tabby’s Star, new research has precluded the likelihood that those aliens are using lasers for communications within those gigantic structures.
[The scientists checked] for laser signatures, on the not unreasonable grounds that any structure large enough to encase a star – Boyajian [Tabby’s Star] is almost one-and-a-half times the mass of the sun – would have an internal communication system, for which lasers would represent a good candidate medium.
In the latest research, Lipman and colleagues decided to test the idea. They analysed 177 high-resolution spectra from the star, gathered by the Lick Observatory’s Automated Planet Finder telescope as part of the Breakthrough Listen Project. They estimated that the data was so detailed that lasers with power greater than 24 megawatts should show up. To hunt for them, the researchers developed an algorithm to perform a pixel-by-pixel analysis of each spectrum in order to identify “spatially unresolved emission lines that meet the criteria for an artificial laser signal”.
The good news is that they found several. The bad news is that a secondary multi-step analysis designed to pick up false positives discounted them all. “The top candidates from the analysis can all be explained as either cosmic ray hits, stellar emission lines or atmospheric air glow emission lines,” they conclude.
We must remember that alien megastructures are the most unlikely explanation for the random light fluctuations of Tabby’s Star. This research helps to strengthen that conclusion.




