Northrop Grumman purchase of Orbital ATK approved

Capitalism in space: Northrop Grumman’s acquisition of Orbital ATK has been approved by the Federal Trade Commission.

With this purchase, the name Orbital ATK will recede into history. This division of Northrop Grumman will now be called Northrop Grumman Innovation Systems. Here at Behind the Black I will simple call it Northrop Grumman.

The FTC ruling carried with it one caveat:

As a condition for the approval of the merger, the company will have to supply solid rocket motors “on a non-discriminatory basis under specified circumstances,” the FTC ruled.

Ensuring competition in the solid rocket motors industry is a key issue for the Defense Department because only two manufacturers remain in the business, Orbital ATK and Aerojet Rocketdyne. The Air Force plans to acquire a new strategic intercontinental ballistic missile, the so-called Ground Based Strategic Deterrent, with Northrop Grumman and Boeing competing for the award. The intent was for both Orbital ATK and Aerojet to supply both prime contractors. The FTC decision requires Northrop Grumman to separate its solid rocket motors business with a firewall so it can continue to support Boeing.

It will be up to the Defense Department to ensure compliance with the firewall mandate.

It is unclear from the press report what this firewall accomplishes. It sounds like there was fear that Northrop Grumman would not have sold its solid rocket boosters to competitor Boeing, but I don’t see that happening. This acquisition was designed to put Northrop Grumman back in the rocket business just as that business is booming. Part of that business is selling solid rockets.

Either way, the company that David Thompson started in the early 1980s to challenge the big space companies, Orbital Sciences, has now completely vanished into one of those big space companies.

China offers big bucks to attract foreign science talent

Link here. In China’s recent push to build big science facilities, such as the giant radio telescope FAST, it has faced a shortage of qualified homegrown Chinese scientists to run those new facilities.

To solve this problem, China is now offering big bucks to any scientist, even foreigners, willing to move to China.

On 22 May, the Ministry of Science and Technology issued guidelines that encourage science ministries and commissions to consult foreign experts and attract non-Chinese to full-time positions within China. In a striking change, foreign scientists are now allowed to lead public research projects.

In the past decade, China has aimed to build up its scientific capacity by luring back some of the tens of thousands of Chinese scientists working abroad. The latest measures emphasize that non-Chinese talent is also welcome. Drafted in December 2017 but not previously made public, they are “a confirmation of things that have been going on for a while,” says Denis Simon, an expert on China’s science policy at Duke Kunshan University in China, a branch campus of the Durham, North Carolina–based Duke University.

Simon says foreign scientists are drawn by China’s increased spending on R&D, which is rising twice as fast as its economic growth. Increasingly ambitious big science projects, such as a massive particle accelerator now under study, are a lure as well, says Cao Cong, a science policy specialist at the University of Nottingham Ningbo in China, an affiliate of the U.K. university. The opportunity for foreign scientists to serve as principal investigators for publicly funded programs is a significant new incentive, says Liang Zheng, who studies science and technology policy at Tsinghua University in Beijing.

Of course, moving to a nation ruled under totalitarian communist rule has its drawbacks:

Relocating to China comes with challenges. Gibson teaches in English but needs Chinese language help handling administrative matters and grant applications. Restricted access to internet sites such as Google is also a hurdle. “My research and my teaching regularly rely on access to online resources and search platforms [that are] blocked in China, so this is an impediment to my work,” Gibson says. But he has found workarounds. China shut down many virtual private networks, which provide access to blocked overseas sites, but a few remain. “There’s a saying: ‘Everything in China is difficult, but nothing is impossible,’ which I think reflects the situation very accurately,” Gibson says.

I would also expect that any American who makes this move will face significant security problems with the U.S. government upon their return.

Another intriguing pit on Mars

pit on Mars

Cool image time! In the June release of images from the high resolution camera on Mars Reconnaissance Orbiter, I came across the image on the right, cropped slightly to post here, of a pit in a region dubbed Hephaestus Fossae that is located just at the margin of Mars’s vast northern plains.

Below and to the right is an annotated second image showing the area around this pit. If you click on it you can see the full resolution image, uncropped, and unannotated.

wider view of pit

The scale bar is based on the 25 centimeter per pixel scale provided at the image link. Based on this, this pit is only about ten to fifteen meters across, or 30 to 50 feet wide. The image webpage says the sun was 39 degrees above the horizon, with what they call a sun angle of 51 degrees. Based on these angles, the shadow on the floor of the pit suggests it is about the same depth, 30 to 50 feet.

The shadows suggest overhung walls. This, plus the presence of nearby aligned sinks, strongly suggests that there are extensive underground passages leading away from this pit.

For a caver on Earth to drop into a pit 30 to 50 feet deep is nowadays a trivial thing. You rig a rope (properly), put on your vertical system, and rappel in. When you want to leave you use that same vertical system to climb the rope, using mechanical cams that slide up the rope but will not slide down.

On Mars such a climb would be both easier and harder. The gravity is only one third that of Earth, but the lack of atmosphere means you must wear some form of spacesuit. Moreover, this system is not great for getting large amounts of gear up and down. Usually, people only bring what they can carry in a pack. To use this Martian pit as a habitat will require easier access, preferable by a wheeled vehicle that can drive in.

The pit’s location however is intriguing. The map below shows its location on a global map of Mars. This region is part of the Utopia Basin, the place with the second lowest elevation on Mars.
» Read more

NASA administrator in talks about commercializing ISS

In a wide-ranging news article today, NASA administrator Jim Bridenstine revealed that the agency is in discussions with many private corporations about the possibility of privatizing ISS.

Bridenstine declined to name the companies that have expressed interest in managing the station, and said he was aware that companies may find it “hard to close the business case.” But he said there was still seven years to plan for the future of the station, and with the White House’s budget request “we have forced the conversation.”

Bridenstine’s approach to ISS’s future seems reasonable to me. At some point the federal government needs to face the station’s future, and now is a better time to do it then later.

The article however confirmed my generally meh opinion of Bridenstine. First, he reiterated his born-again new belief in human-caused global warming, a belief that seemed to arrive solely for him to gain the votes to get him confirmed in the Senate.

Second, he said this about LOP-G, NASA’s proposed international space station that would fly in lunar space.

Known as the Lunar Orbiting Platform Gateway, the system would be built by NASA in partnership with industry and its international partners, he said.

“I’ve met with a lot of leaders of space agencies from around the world,” he said. “There is a lot of interest in the Gateway in the lunar outpost because a lot of countries want to have access to the surface of the moon. And this can help them as well and they can help us. It helps expand the partnership that we’ve seen in low Earth orbit with the International Space Station.”

But the first element of the system wouldn’t be launched until 2021 or 2022, he said. [emphasis mine]

The highlighted words illustrate why Bridenstine seems like a lightweight to me. LOP-G might be flying near the Moon, but nothing about it will provide anyone any access to the lunar surface. Not only will it not be operational in any manner for more than a decade, at the soonest, but it doesn’t appear designed to make reaching the lunar surface any easier. Instead, it mostly seems designed to justify SLS and Orion, and provide that boondoggle a mission.

Still, Bridenstine has in the past been generally in favor of commercial space, and that position appears to be benefiting NASA’s commercial crew partners. Prior to Bridenstine’s arrival the decisions of NASA’s safety panel acted to repeatedly delay the launch of the manned capsules being built by SpaceX and Boeing. Now that safety panel seems to have seen the light, and is suddenly more confident in these capsules. I suspect Bridenstine might have had some influence here.

Russia announces plans to build reusable rocket

I’ll believe it when I see it: Russia announced this week new plans to build a reusable smallsat rocket where the first stage would fly back and land vertically.

According to preliminary estimates, the reusable system will cut the cost of payload delivery by 1.5 or 2 times compared to traditional rockets. Every self-guided booster will be designed to fly 50 missions without replacement of its main engines burning a mix of cryogenic liquid oxygen and liquid methane. The system was expected to be based on mobile launchers and its maiden flight was scheduled for 2022, the FPI press release said.

If this project actually does happen, it will be because there has been a political shift within Russia’s government-run space industry. I suspect this because last week they cancelled plans to build a lightweight but expendable smaller version of Proton. Now they are aiming to build a reusable rocket instead. It appears that they have realized they need to cut their costs to compete, and the expendable Proton wasn’t doing it, while a reusable rocket might.

If this is true, then this is good news for Russia’s space future. At the same time, the slowness at which they have made this shift illustrates the disadvantage of their centralized government-run system. Instead of competition within Russia pushing many different independent companies to move forward quickly, all decisions must be made through political maneuvering within Roscosmos, a process that is always slower and more cumbersome.

New Horizons awakened to begin preparations for January 1 2019 flyby

The New Horizons engineering team has brought the spacecraft out of hibernation to begin preparations for its January 1 2019 flyby of Kuiper Belt object 2014 MU69, which they have dubbed Ultima Thule.

New Horizons will begin its approach phase of the MU69 flyby on August 16, 2018, when it will begin imaging MU69 and the area around it to begin acquiring data about the KBO and its surroundings. Also, New Horizons will look for potential debris that could pose a hazard to itself, such as moons or rings.

Should any potential dangers be found, New Horizons has four planned opportunities to make trajectory changes from early October to early December 2018. The backup trajectory has a distance from MU69 of 10,000 kilometers (around 6,200 miles). Using the backup trajectory would lead to less and/or lower-quality science data gathered due to the probe flying by MU69 further away than planned.

The approach phase will last from August 16 to December 24, 2018, after which the core phase will begin.

The core phase begins just one week before the flyby and continues until two days afterward. It contains the flyby and the majority of the data gathering.

Based on this schedule, we should begin to get some interesting pictures of Ultima Thule by the fall.

China launches weather satellite

The juggernaut of China’s 2018 launch effort marches on, with the launch of a weather satellite today.

The article also notes that China will do at least two more June launches.

In June we can expect at least two other orbital launches from China. From Xichang, a Long March-3B/Y1 will launch of a new pair of navigation satellites and China is also preparing the launch of the PRSS-1 (Pakistan Remote Sensing Satellite) that will take place from the Taiyuan Satellite Launch Center using a Long March-2C/SMA, together with the PakTES-1 satellite.

The leaders in the 2018 launch standings:

17 China
11 SpaceX
5 Russia
5 ULA

This launch once again puts China in a tie with the U.S. in the national rankings, 17 launches each.

Smallsat rocket company Firefly gets contract

Capitalism in space: The smallsat rocket company Firefly Aerospace had gotten a six-launch contract from Surrey Satellite Technology Limited (SSTL).

Firefly Aerospace, Inc. (Firefly), a developer of orbital launch vehicles for the small to medium satellite market, announced today the execution of a Launch Services Agreement (LSA) with Surrey Satellite Technology Limited (SSTL) for use of the Firefly Alpha launch vehicle.

“Firefly is pleased to enter into an LSA with SSTL to provide up to six Alpha launches from 2020 through 2022,” said Firefly CEO Dr. Tom Markusic. “The Alpha launch vehicle allows for deployment of SSTL satellites as a primary payload to their preferred orbit, rather than flying as a secondary payload on a larger launch vehicle.”

This company had been driven into bankruptcy by a Virgin Galactic lawsuit. It has now risen from the dead. Its rocket has not yet flown, but that it got a launch contract indicates some confidence in them by Surrey. The company says it will do the first launch late in 2019, and become operational by 2020.

Curiosity’s new drilling technique declared a success

In order to bypass a failed feed mechanism in the rover’s drill, Curiosity’s engineering team has declared successful the new techniques they have developed for drilling and getting samples.

They had successfully completed a new drill hole two weeks ago, but are only now are satisfied that the new method for depositing samples in the laboratories will work.

This delivery method had already been successfully tested at JPL. But that’s here on Earth; on Mars, the thin, dry atmosphere provides very different conditions for powder falling out of the drill. “On Mars we have to try and estimate visually whether this is working, just by looking at images of how much powder falls out,” said John Michael Moorokian of JPL, the engineer who led development of the new sample delivery method. “We’re talking about as little as half a baby aspirin worth of sample.”

Too little powder, and the laboratories can’t provide accurate analyses. Too much, and it could overfill the instruments, clogging parts or contaminating future measurements. A successful test of the delivery method on May 22 led to even further improvements in the delivery technique.

Part of the challenge is that Curiosity’s drill is now permanently extended. That new configuration no longer gives it access to a special device that sieves and portions drilled samples in precise amounts. That device, called the Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA), played an important role in delivering measured portions of sample to the laboratories inside the rover.

I suspect that they still need to do more tests, and that the new method of shaking off material from the drill itself will not always work. At the same time, it reopens the option of using the drill and getting samples from it, which is a very good thing.

Boulder-sized asteroid discovered just before it hit Earth

The Catalina Sky Survey, designed to find asteroid with the potential of hitting the Earth, discovered a boulder-sized such asteroid this past weekend just hours before it burned up in the atmosphere.

Although there was not enough tracking data to make precise predictions ahead of time, a swath of possible locations was calculated stretching from Southern Africa, across the Indian Ocean, and onto New Guinea. Reports of a bright fireball above Botswana, Africa, early Saturday evening match up with the predicted trajectory for the asteroid. The asteroid entered Earth’s atmosphere at the high speed of 10 miles per second (38,000 mph, or 17 kilometers per second) at about 16:44 UTC (9:44 a.m. PDT, 12:44 p.m. EDT,6:44 p.m. local Botswana time) and disintegrated several miles above the surface, creating a bright fireball that lit up the evening sky. The event was witnessed by a number of observers and was caught on webcam video.

When it was first detected, the asteroid was nearly as far away as the Moon’s orbit, although that was not initially known. The asteroid appeared as a streak in the series of time-exposure images taken by the Catalina telescope . As is the case for all asteroid-hunting projects, the data were quickly sent to the Minor Planet Center in Cambridge, Massachusetts, which calculated a preliminary trajectory indicating the possibility of an Earth impact. The data were in turn sent to the Center for Near-Earth Object Studies (CNEOS) at NASA’s Jet Propulsion Laboratory in Pasadena, California, where the automated Scout system also found a high probability that the asteroid was on an impact trajectory. Automated alerts were sent out to the community of asteroid observers to obtain further observations, and to the Planetary Defense Coordination Office at NASA Headquarters in Washington. However, since the asteroid was determined to be so small and therefore harmless, no further impact alerts were issued by NASA.

The video at the link makes it appear that the asteroid has hit the ground, but that is not what happened.

SpaceX successfully launches commercial satellite

Capitalism in space: SpaceX has successfully launched a commercial satellite using a previously flown first stage.

They did not attempt to recover the used first stage as it was one of their older stages, which they are clearing out as they move to the final Block 5 version of the Falcon 9.

The top leaders in the 2018 launch race:

16 China
11 SpaceX
5 Russia
5 ULA

In the national standings the U.S. has moved back ahead of China, 17-16.

Stratolaunch still lacks a launch vehicle

In a news interview today about their plans for the next year or so, the CEO of Stratolaunch danced around the lack of a committed and appropriate rocket to act as a second stage for the giant airplane.

At the first flight event, we are going to talk a little bit about what is our suite of product offerings in terms of launch vehicles. We haven’t really talked much about that up until this point, but once we get the plane flying, we want to reveal to everyone exactly what we’re talking about. We have talked about the Pegasus system [from Orbital ATK] and we are going to launch the Pegasus on our first launch. It’s a very small rocket, but it’s a very good rocket, very reliable, which is one of the reasons we want to launch that first.

But it’s a 50,000 pound rocket. This plane can carry 550,000 pounds, so it’s an undersized rocket for the capabilities we’re talking about.

They hope this first launch will occur by summer of this year.

Reuseability lowers SpaceX launch price to $50 million

Capitalism in space: Reuseability lowers SpaceX launch price to $50 million.

The article is mostly about tonight’s commercial launch of an SES communications satellite. In it however it notes this comment by Musk:

SpaceX is in the process of flying and discarding older, less advanced Block 4 first stages to clear inventory – the company will likely fly just one more before moving its entire manifest to the Block 5 iteration, which CEO Elon Musk says can fly up to 10 times with minimal refurbishment between missions. Beyond that, the boosters could launch up to 100 times with moderate inspections and changes.

The next-generation vehicles feature improved reusability, upgraded thrust, retractable black landing legs that can reduce time between launches, a new black interstage and a slightly larger payload fairing, to name a few. It will also help SpaceX reduce costs from $60 million to about $50 million per launch, Musk said in May. [emphasis mine]

This price is about a third less than what both Arianespace and ULA have estimated they will charge for their new rockets, Ariane 6 and Vulcan respectively. This is also about half the price that the Russians had been charging for their Proton, which used to be the lowest price in town.

I’ll make a prediction: The drop in prices has only just begun.

The upcoming Falcon Heavy schedule

Link here. After the estimated October launch of an Air Force technology demonstration satellite, the next launch is a communications satellite for Saudi Arabia set for the December/January time frame.

After that there are no scheduled Falcon Heavy launches, though three companies, Intelsat, Viasat, and Inmarsat, have options for launches.

In related SpaceX news, the company came within 200 feet of catching one half of the fairing from last week’s launch. The picture of the fairing coming down by parachute is very cool, and indicates that SpaceX is very close to recovering them.

Certain microbes survive in clean rooms by eating the cleaning fluids

Researchers have found that the reason certain microbes seem to survive in all spacecraft clean rooms is that those microbes actually live off the very cleaning fluids used to scrub the rooms.

Despite extensive cleaning procedures, however, molecular genetic analyses show that the clean rooms harbor a diverse collection of microorganisms, or a spacecraft microbiome, that includes bacteria, archaea and fungi, explained Mogul. The Acinetobacter, a genus of bacteria, are among the dominant members of the spacecraft microbiome.

To figure out how the spacecraft microbiome survives in the cleanroom facilities, the research team analyzed several Acinetobacter strains that were originally isolated from the Mars Odyssey and Phoenix spacecraft facilities.

They found that under very nutrient-restricted conditions, most of the tested strains grew on and biodegraded the cleaning agents used during spacecraft assembly. The work showed that cultures grew on ethyl alcohol as a sole carbon source while displaying reasonable tolerances towards oxidative stress. This is important since oxidative stress is associated with desiccating and high radiation environments similar to Mars.

The tested strains were also able to biodegrade isopropyl alcohol and Kleenol 30, two other cleaning agents commonly used, with these products potentially serving as energy sources for the microbiome.

With this information, the space engineering community will be able to refine their clean room operations to eliminate these microbes so as to better sterilize spacecraft heading on life-seeking missions.

Cubesats heading to Mars complete first course correction

The two cubesats, MarCO-A and MarCO-B, that were launched with NASA’s InSight Mars lander, have both completed their first course corrections, the first ever done in interplanetary space by cubesats.

While MarCO-A corrected its course to Mars relatively smoothly, MarCO-B faced some unexpected challenges. Its maneuver was smaller due to a leaky thruster valve that engineers have been monitoring for the past several weeks. The leak creates small trajectory changes on its own. Engineers have factored in these nudges so that MarCO-B can still perform a trajectory correction maneuver. It will take several more weeks of tracking to refine these nudges so that MarCO-B can follow InSight on its cruise through space.

“We’re cautiously optimistic that MarCO-B can follow MarCO-A,” said Joel Krajewski of JPL, MarCO’s project manager. “But we wanted to take more time to understand the underlying issues before attempting the next course-correction maneuver.”

Once the MarCO team has analyzed data, they’ll know the size of follow-on maneuvers. Several more course corrections will be needed to reach the Red Planet.

Since these two cubesats are an engineering test, even MarCo-B’s fuel leak issue provides valuable information that will make future interplanetary missions more likely and viable.

The surface properties of 122 asteroids revealed

Using archive data produced by the Wide-field Infrared Explorer telescope (WISE, renamed NEOWISE) astronomers have been able to estimate the surface properties of 122 small asteroids located in the asteroid belt.

“Using archived data from the NEOWISE mission and our previously derived shape models, we were able to create highly detailed thermophysical models of 122 main belt asteroids,” said Hanuš, lead author of the paper. “We now have a better idea of the properties of the surface regolith and show that small asteroids, as well as fast rotating asteroids, have little, if any, dust covering their surfaces.” (Regolith is the term for the broken rocks and dust on the surface.)

It could be difficult for fast-rotating asteroids to retain very fine regolith grains because their low gravity and high spin rates tend to fling small particles off their surfaces and into space. Also, it could be that fast-rotating asteroids do not experience large temperature changes because the sun’s rays are more rapidly distributed across their surfaces. That would reduce or prevent the thermal cracking of an asteroid’s surface material that could cause the generation of fine grains of regolith. [emphasis mine]

If this conclusion holds, it means that mining these asteroids might be much easier. Dust can be a big problem, as it can clog up equipment and interfere with operations. It also acts to hide the underlying material, making it harder to find the good stuff.

Heavier astronauts more likely to have vision issues in zero-G

An analysis of the physical characteristics of astronauts who develop vision problems after long missions in weightlessness has found that heavier body weight increases the risk.

The research team examined data collected by NASA from astronauts who had made long-duration space flights (averaging 165 days). The data included the astronauts’ sex and pre-flight height, weight, waist and chest size, as well as information about post-flight eye changes. The findings were related to body weight, not body mass index. They found that none of the female astronauts analyzed—who weighed less than the males—returned to Earth with symptoms of SANS. To rule out sex differences as a cause for the disparity, the researchers also examined the men’s data separately. “Pre-flight weight, waist circumference and chest circumference were all significantly greater in those who developed either disc edema or choroidal folds. This was still true when only the male cohort was analyzed,” the researchers wrote. “The results from this study show a strong relationship between body weight and the development of ocular changes in space.”

That such small differences in weight can make such a difference suggests again that adding just a small amount of artificial gravity, rather than 1g, might mitigate these issues. No tests of this however have ever been done, mostly because the engineering is complex and expensive. For humans we would need to build a vessel large enough that any rotation would be unnoticed. If the vessel is small it must rotate faster and the body’s inner ear gets confused. However, if we only need to simulate a tiny amount of gravity the spin rate can be reduced, simplifying the engineering.

Proposed new FCC regulations would shut out student cubesats

We’re here to help you! Proposed new FCC regulations on the licensing of smallsats would raise the licensing cost for student-built cubesats so much that universities would likely have to shut down the programs.

In a move that threatens U.S. education in science, technology, engineering and math, and could have repercussions throughout the country’s aerospace industry, the FCC is proposing regulations that may license some educational satellite programs as commercial enterprises. That could force schools to pay a US$135,350 annual fee – plus a $30,000 application fee for the first year – to get the federal license required for a U.S. organization to operate satellite communications.

It would be a dramatic increase in costs. The most common type of small satellite used in education is the U.S.-developed CubeSat. Each is about 10 inches on a side and weighs 2 or 3 pounds. A working CubeSat that can take pictures of the Earth can be developed for only $5,000 in parts. They’re assembled by volunteer students and launched by NASA at no charge to the school or college. Currently, most missions pay under $100 to the FCC for an experimental license, as well as several hundred dollars to the International Telecommunications Union, which coordinates satellite positions and frequencies. [emphasis mine]

If these new and very high licensing fees are correct I find them shocking. As noted in the quote, building a cubesat costs practically nothing, only about $5,000. The new fees thus add gigantic costs to the satellite’s development, and could literally wipe the market out entirely. They certainly will end most university programs that have students build cubesats as a first step towards learning how to build satellites.

These new regulations appear to be part of the Trump administration’s effort to streamline and update the regulatory process for commercial space. It also appears that the FCC has fumbled badly here in its part of this process.

Dunes on Pluto?

Dunes on Pluto

Cool image time! Scientists reviewing images taken by New Horizons when it flew past Pluto in 2015 have discovered what appear to be dunes of methane on the icepack of nitrogen of Sputnik Planitia. The image on the right, cropped to post here, shows these dunes. You can see the full image if you click on it.

Following spatial analysis of the dunes and nearby wind streaks on the planet’s surface, as well as spectral and numerical modelling, scientists believe that sublimation (which converts solid nitrogen directly into a gas) results in sand-sized grains of methane being released into the environment.

These are then transported by Pluto’s moderate winds (which can reach between 30 and 40 kmh), with the border of the ice plain and mountain range providing the perfect location for such regular surface formations to appear.

The scientists also believe the undisturbed morphology of the dunes and their relationship with the underlying glacial ice suggests the features are likely to have been formed within the last 500,000 years, and possibly much more recently.

There remains a lot of uncertainty here. The features do look like dunes in the image, but it is also possible that other phenomenon not yet understood could have caused this pattern on the icepack surface. Also, the resolution of the image is not sufficient to really see detail at this level. A different process on the surface could be fooling our eyes.

Nonetheless, the scientists hypothesis makes sense, and fits the data known. It also demonstrates again that, even billions of miles from the Sun, in as alien an environment we can imagine, the planet Pluto is an active and complex place.

Astronomers identify giant exoplanets that might harbor habitable moons

Worlds without end: In reviewing the known exoplanets astronomers have identified more than a hundred giant exoplanets located in the habitable zone that might harbor habitable moons.

The researchers identified 121 giant planets that have orbits within the habitable zones of their stars. At more than three times the radii of the Earth, these gaseous planets are less common than terrestrial planets, but each is expected to host several large moons.

Scientists have speculated that exomoons might provide a favorable environment for life, perhaps even better than Earth. That’s because they receive energy not only from their star, but also from radiation reflected from their planet. Until now, no exomoons have been confirmed.

Using this new database scientists will optimize future instruments on both the ground and in space to look for and study the moons circling these exoplanets.

Radio telescope in Greenland sees first “light”

Astronomers have successfully initiated operations of a new radio telescope dish, the first ever located in Greenland.

The Greenland Telescope is a 12-meter radio antenna that was originally built as a prototype for the Atacama Large Millimeter/submillimeter Array (ALMA) North America. Once ALMA was operational in Chile, the telescope was repurposed to Greenland to take advantage of the near-ideal conditions of the Arctic to study the Universe at specific radio frequencies, collaborating with the National Radio Astronomy Observatory (NRAO) and MIT Haystack Observatory.

ASIAA led the effort to refurbish and rebuild the antenna to prepare it for the cold climate of Greenland’s ice sheet. In 2016, the telescope was shipped to the Thule Air Base in Greenland, 1,200 km inside the Arctic Circle, where it was reassembled at this coastal site. ASIAA also built receivers for the antenna. “It is extremely challenging to quickly and successfully set up a new telescope in such a cold environment, where temperatures fall below -30 degrees Celsius,” said Ming-Tang Chen from ASIAA and the Greenland Telescope project manager. “This is now one of the closest radio telescopes to the North Pole.”

They have also linked this radio telescope to others across the globe, helping to increase the resolution of any data these radio telescopes gather as a unit.

New impact craters on Mars

New impact crater on Mars

Cool image time! The high resolution camera on Mars Reconnaissance Orbiter (MRO) keeps finding recent impact craters, all of which the science team try to monitor periodically to see how the surface evolves over time. The image on the right, cropped to post here, is one such crater, the image taken in January 2018 and released with as one of the captioned images from this month’s image catalog release. If you click on the image you can see the full picture.

What is notable about this particular impact are the colors.

The new crater and its ejecta have distinctive color patterns. Once the colors have faded in a few decades, this new crater will still be distinctive compared to the secondaries by having a deeper cavity compared to its diameter.

Those colors of course have importance to researchers, as they reveal the different materials found beneath the surface at this location, normally hidden by surface dust and debris.

Nor is this the only impact crater revealed in this month’s image release. Earlier in the month the science team highlighted an image that captured two small impacts. While all three of these impacts are in the general region called Elysium Planitia, they are not particularly close to each other. They are however surrounding the landing site for the InSight lander now heading to Mars. This last link takes you to my January 28, 2018 post detailing some information about this landing site, and also includes another recent crater impact, found at the center of the landing zone.

It is not clear if these recent impacts are related to each other. As noted by Alfred McEwen of the science team, “Often, a bolide breaks apart in the atmosphere and makes a tight cluster of new craters.” It could be that all these recent impacts came from the same bolide, which is why there appear to be a surplus of them in Elysium Planitia.

Then again, our surface survey of Mars is very incomplete. These impacts could simply be marking the normal impact rate for Mars. We will not know until we have completed a detail survey of all recent impacts on Mars, and have been able to date them all.

Who wants to do it?

China offers its space station to the UN

The United Nations and China have signed an agreement whereby UN member nations can apply to run experiments on China’s space station, due to become operational in the 2020s.

The UN press release states that it is especially interested in applications from developing nations.

This isn’t a surprise. China is following the approach of the Soviet Union under Leonid Brezhnev during the 1970s and 1980s, using its space station program to generate positive international propaganda. This will also give them an opportunity to obtain technology ideas from other nations.

At the same time, this will force China to become more open with other nations, a side effect of Brezhnev’s space station program that was not expected or even wanted by the Russians at the time.

More budget cuts expected for Roscosmos

According to one story in the Russian press today, the Russian space industry, run by Roscosmos, is expected to experience more budget cuts due to a shortage of funds.

The Russian federal space program might face cuts as the Roscosmos state corporation is likely to suffer funding shortages amounting to 150 billion rubles (almost $2.4 billion) in the next three years, a source in the industry told Sputnik.

“The shortages of budgetary funds planned for allocation to Roscosmos from the previous parameters for the next three years is about 150 billion rubles … the lack of funds has already become a reason of delays in the development of interplanetary projects, slowing down construction of the second stage of the Vostochny Cosmodrome and the development of new rocket and space equipment,” the source said.

The shortfall almost certainly comes from a lack of international launch customers, most of whom have shifted their business to SpaceX because of the quality control concerns in the Russian aerospace industry. Whether Russia can regain any of this business in the coming years will depend wholly on whether they can demonstrate some reliability in their launch cadence, something they have failed to do for the past five years.

Canada exits WFIRST project

Like rats fleeing a sinking ship: The Canadian government has decided not to fund that country’s contribution to NASA’s WFIRST space telescope project, presently expected to cost $3.2 billion total (already over-budget in the design phase) and set to launch sometime in the 2020s (don’t bet on it).

The Canadian instrument would have been focused on studying dark energy, the mysterious force that is theorized to cause the universe’s expansion rate to accelerate over vast distances.

I can understand the skepticism of the Canadian government. Why commit anything to a project that is already over-budget and has unreliable support in the U.S. (Trump tried to ax it, Congress restored it, for now)? The project is also so far in the future it makes more sense to spend this money on astronomy projects that could be built and used now.

1 290 291 292 293 294 504