Martian pseudo-frost terrain

Martian pseudo-frost terrain
Click for original image.

Cool image time! It is always dangerous to come to any quick conclusions about what you see from pictures from another planet. The photograph to the right, rotated, cropped, reduced, and sharpened to post here, was taken on August 19, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows what at first glance looks like a surface similar to frosting seen on window panes on Earth in the winter, where water condensation freezes to form crystalline patterns.

Your first glance would be wrong. This terrain is about 120 miles north of the Martian equator, placing inside the dry equatorial regions where no near-surface ice is known to exist. If this geological feature is formed by the same condensation processes that create ice frost, then it must involve the deposition of some other type of material.

The explanation would also have to account for the change in the terrain, from finely patterned on the right to more crystalline on the left.
» Read more

India schedules Gaganyaan launch abort test for October 21st

India’s space agency ISRO has now scheduled the first unmanned launch abort test of its Gaganyaan manned capsule for October 21, 2023.

The test Crew Module (CM), according to the statement, will be akin to the pressurized module that’ll hold crew members during their ascent to space — this version, however, will be unpressurized. It will be launched via a single-stage liquid rocket specifically developed for this mission that will simulate an abort scenario; the true CM, by contrast, will ride atop a 143-foot-tall (43.5-meter) Launch Vehicle Mark-3 (LVM3) rocket with a solid stage, liquid stage and cryogenic stage. The latter recently received human safety certifications, R. Hutton, project director of the Gaganyaan mission, said during a conference last month.

At present ISRO is targeting 2024 for the first manned mission, but that target date remains very uncertain.

Massive landslide in Martian canyon

Massive landslide in Martian canyon
Click for original image.

Cool image time! The picture to the right, cropped, reduced, enhanced, and annotated to post here, was taken on September 5, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The image shows a gigantic landslide collapse on the southern interior wall of a long meandering canyon on Mars dubbed Bahram Vallis. The collapse was what scientists call a mass wasting event, in which the entire section of cliff wall breaks off and moves downward as a large unit. In this case the falling section, a half mile wide and long, got squeezed near the bottom, piling up rather than flowing out into the canyon floor.

At this particular location the canyon is 2.4 miles wide, with cliff walls about 1,700 feet high. Imagine when this piece broke off: In one instance a giant section of mountain about a half mile long fell about a thousand feet. Even in Mars’ thin atmosphere the sound must have been thunderous.
» Read more

Michael Knowles – Celebrating Columbus

An evening pause: I posted this two years ago, and think it should be seen again. As I wrote then,

On this day when all should be celebrating Christopher Columbus and his willingness “sail beyond the sunset,” to use a phrase from Tennyson, this short video give us an accurate picture of the man, his times, and his achievements. It also puts the lie to the bigoted, hateful, leftist slanders that have been used in recent years to poison his legacy.

Gale Crater as seen by Curiosity from the heights of Mount Sharp

Gale Crater as seen by Curiosity from the heights of Mount Sharp
Click for original image.

Overview map
Click for interactive map.

Though Curiosity still lies more than 13,000 feet below the peak of Mount Sharp, in its ten years on Mars it has climbed a considerable distance uphill since leaving the floor of 97-mile-wide Gale Crater, about 2,400 feet. The panorama above, taken today by one of Curiosity’s navigation cameras and rotated and cropped to post here, gives us a good sense of the elevation the rover has gained in that time.

The overview map to the right provides some perspective. Curiosity’s present location is indicated by the blue dot, with the yellow lines indicating the direction of this panorama. Though Curiosity climbed up from that valley on the lower left, none of its route is visible in this picture, as the weaved up from the left and the steepness of the ground hides the lower sections.

The mountain chain in the distance, about 20 to 25 miles away, is the north rim of Gale Crater. Beyond it can faintly be seen other mountains, which form the rim of another smaller crater to the north. The peak of Mount Sharp, about 23 miles to the south and in the opposite direction, forms the wide central peak of Gale Crater, unusual in that it fills much of the crater and rises higher than the crater’s rim, factors which were part of the reason this location was chosen as Curiosity’s landing site.

This picture also allows scientists to get a sense of the dust levels in the Martian atmosphere, which change seasonally depending on dust storm activity. Since it is now summer on Mars, when dust activity is low, the air is relatively clear.

Distorted Martian craters

Overview map

Distorted Martian craters
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on March 15, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The white dot on the overview map above marks the location, on the west end of the 2,000-mile-long northern mid-latitude strip I label glacier country because almost every image suggests the presence of ice and glaciers.

Where this crater is located the terrain is shifting from mesas and criss-crossing canyons to the northern lowland plains. Thus, the features that suggest the presence of ice shift from glacial in nature (flowing down hollows and cliffsides or within canyons) to that of a near-surface ice sheet, which acts to distort impact craters and leave large splash aprons around them.

The straight depression cutting into the crater near the center top that is also aligned with craters to the southwest suggests that these craters are either sinkholes into a void created by a fault line, or the impacts all occurred at the same time, as the asteroid broke up while cutting through the Martian atmosphere.

Either could be true. The data is insufficient to determine which.

Enigmatic terrain amid camera problems on Mars Reconnaissance Orbiter

Enigmatic terrain amid MRO camera problems
Click for original image.

Today’s cool image not only shows us some puzzling lava terrain on Mars, it highlights the continuing camera problems on Mars Reconnaissance Orbiter (MRO) that began last month and now appear to be permanent.

The picture to the right, cropped, reduced, and sharpened to post here, was taken on July 29, 2023 by the high resolution camera on MRO. The black strip through the middle of the picture highlights MRO’s ongoing problem, as described by the science team in its monthly download of new MRO high resolution pictures:

The electronics unit for CCD RED4 started to fail in August 2023 and we have not been acquiring images [data] in this central swath of the images. The processing pipelines will be updated to fill this gap with the IR10 data for some products. The 3-color coverage is now reduced in width.

The picture shows the failure of this electronics unit. The color strip is now only about half as wide as normal, with the other half the black strip with no data. As the problem first appeared in July, and remains unresolved, it probably is permanent. Though MRO’s high resolution camera can still produce images, they will be less useful, their center strip blank.

This failure should not be a surprise. In fact, it is remarkable that so little has gone wrong with MRO considering its age. The spacecraft was launched in 2005, entered Mars orbit in 2006, and has been working non-stop now for about seventeen years. Moreover, it was built in the early 2000s, making it almost a quarter century old at this point. How much longer it can survive is an open question, but a lifespan of twenty years is usually the limit for most spacecraft. The Hubble Space Telescope however gives us hope MRO can last longer, as Hubble has now been in orbit for 33 years, and continues to operate.

Despite this data loss, the picture still shows some intriguing and puzzling geology
» Read more

Axiom partners with clothing fashion company Prada on its spacesuit design

Capitalism in space: The commercial space station company Axiom is now partnering with the Italian fashion company Prada to create its lunar spacesuits, being developed under a $228.5 million NASA contract.

Prada will assist Axiom in working on the outer layer of its spacesuit, which has to protect the suit’s inner layers from the space environment, including lunar dust, without hindering its mobility. “When it comes to the design side of that piece of it makes a lot of sense because Prada has a lot of experience in the design, the look and feel,” Suffredini said. “More importantly, there’s these technological challenges to try to overcome as well.”

The article at the first link emphasizes Prada’s experience with high tech fabrics, including composites, but this deal is inspired as much by good public relations. Both companies get some good publicity by this deal.

Nova-C ready for launch in mid-November

The Moon's south pole, with Nova-C landing site indicated
Click for interactive map.

Capitalism in space: The commercial lunar lander company Intuitive Machines yesterday unveiled its now ready-for-launch Nova-C lander, set for launch on a Falcon 9 rocket during a six-day launch window beginning on November 16, 2023.

Steve Altemus, chief executive of Intuitive Machines, estimated the odds of success at “upwards of 65% to 75%,” higher than the historical average. That’s based, he said, on the experience the company has built up with key technologies on the lander, such as precision landing and its propulsion system.

It is also based on lessons learned from those failed missions. “Each one of those things that we witnessed in terms of anomalies that caused the failures of those missions, we have internalized,” he said. “Therefore, I think our odds are higher.”

If successful, Nova-C will land closer to the Moon’s south pole than any previous lander, as shown on the map to the right, and will function like India’s Pragyan rover for one lunar day, about two weeks. It will also land right next to a crater with a permanently shadowed interior, though it will have no way to travel into it. The company also two more lunar lander contracts with NASA, with the second Nova-C mission scheduled for 2024, and a third not yet scheduled.

SLIM leaves Earth orbit and is on its way to the Moon

SLIM's planned route to the Moon

The Japanese lunar lander SLIM fired its engines on September 30, 2023 to begin its journey to the Moon. The map to the right indicates the planned route after this trans-lunar injection burn, first flying past the Moon to put it on a trajectory that will bring it back to the Moon at the proper speed and direction for its landing several months hence.

The main goal of this mission is engineering, to test the ability of an autonomous unmanned spacecraft to land precisely within a small target zone about 300 feet across. If proven, this ability will make it possible to send unmanned landers to many places that are presently impossible due to their rough topography.

The route that SLIM is taking to the Moon is also unusual, and is probably also an engineering test of its own. Flybys of planets to change a spacecraft’s path is not a new technique, but in the past it has been used to slingshot the probe to another object, not send it back to that planet.

Layered ice sheets on Mars?

Overview map

Layered ices sheets on Mars?

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on June 22, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The white spot near the center of the overview map above marks its location, deep inside the 2,000-mile-long region in the northern mid-latitudes I call glacier country, as everything there seems covered with glacial features of some kind. All the features in this picture are smaller than 50 feet high, based on the resolution of the topographical data obtained by Mars Global Surveyor in the 1990s.

What makes this picture interesting are the layers, made most obvious in the terraced mesa in the upper left. Surrounding this mesa for dozens of miles in all directions are similar layered features, all suggesting that the glacial ice sheets that appear to coat this region have either have been sublimating away over time, or when growing grew less with each subsequent growth cycle.

Though both have or are likely happening, the latter most likely explains the terraces, as there is a lot of evidence on the surface of Mars showing that each subsequent growth cycle produced smaller glaciers and ice layers.

From the perspective of future colonists, this picture once again shows that water will readily accessible on Mars, as long as you travel north or south of the equator at least 30 degrees of latitude. This location is at 42 degrees north, and is very typical of this whole region.

Updated map of Yutu-2’s travels on far side of the Moon

Map showing Yutu-2 full route on Moon
Click for original image.

The Chinese agency operating the Yutu-2 rover on the far side of the Moon today released an updated map showing the rover’s full route since landing, the first update since January 2023. That map is to the right, reduced to post here. The landing site is in the lower right, with the rover presently in the upper left.

Since January the rover has apparently traveled only about 300 feet, even though it has had about eight lunar days to travel. Note too that the last update was also the first in three months. It appears the Chinese are either having issues with the rover (not surprising as it has been operating on the Moon for almost five years, since January 2019), or they have decided they don’t need to tell anyone what they are doing.

Since the rover was not expected to last more than a few lunar days (several Earth months), the former is more likely.

Is this the source of the sand for the giant dune sea that surrounds the Martian North Pole?

Overview map

Circling the north pole of Mars is a gigantic dune field dubbed Olympia Undae, with its densest regions (marked in red on the overview map to the right) estimated to be 700 miles long and covering 120 degrees of longitude.

Where does all the sand come from that created this dune ocean? We now have a rough idea. The arrows on the map to the right indicate the direction of the prevailing winds, as recently determined by scientists studying the orientation of dunes. From this it appears that much of the dust comes from the north polar icecap itself, from its lower layers where dust and ice are cemented together. The prevailing winds, especially in the canyons that cut into the icecap, drive that dust out from the lower layers, where it over eons has piled up in that circular ocean of sand.

The white cross marks the location of today’s cool image, an attempt by scientists to photograph at high resolution one of the sources of this sand, on the edge of the icecap.
» Read more

A gully in Mars’ glacier country

Overview map

A gully in Mars' glacier country
Click for original image.

Cool image time! The picture to the right, cropped, reduced, sharpened, and brightened to post here, was taken on July 8, 2023 by the high resolution camera on Mars Reconnaisance Orbiter (MRO).

The white dot in the southwest corner of 146-mile-wide Lyot Crater on the overview map above marks the location, smack dab in the middle of the 2,000-mile-long northern mid-latitude strip I dub glacier country, since practically every high resolution picture shows some glacial features. This picture is no different. The material in the upper right of the picture appears to be ice that fills the crater and laps up against its interior slope. The gully appears to suggest a drainage down into that ice that partly covered it.

The elevation change from the high to low points is about 4,500 feet. What drained down this slope to carve this gully however remains an unsolved mystery, though most scientists presently favor some form of water or brine flow in the past and no longer active.

The base of the long and deep south rim of Valles Marineris

Overview map

The base of southern slope of Valles Marineris
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on July 14, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), showing the very bottom section of the long and endlessly deep south slopes of Valles Marineris, the largest known canyon in the solar system.

The many layers here are likely evidence of repeated volcanic flood lava events, over several billion years, after which the canyon formed.

On the overview map above the black dot in the southeast section of the area of the canyon dubbed Melas marks this location. The picture’s northeast corner is essentially the floor of Valles Marineris. From this point the elevation gain to the southwest corner of the picture 3.5 miles away is about 3,300 feet.

The rim itself however is far far higher, about fifty miles farther to the southwest and climbing about 22,000 feet more. Along those fifty miles you’d have to also climb over two intervening mountain ranges, one about 4,000 feet high and the second about 6,000 feet high.

Valles Marineris is big, so big it is hard to imagine a canyon this size. It makes many moutain ranges on Earth seem small.

A mountain buried by lava on Mars

A mountain buried by lava on Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on July 6, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

This 500-to-600-foot-high hill represents what is likely the top of a much larger mountain, now buried by the flood lava that surrounds it. The edge of that flood lava can be seen best along the base of the hill’s northern slope, where this now hardened lava had washed up against that slope.

That this Martian mountain is very old can be discerned from two features. One, it had to have been there when the lava flowed, and scientists estimate these lava flows are at least one billion years old. Second, peak’s rounded shape and eroded edges (showing terraced layers) suggest it has been here for far longer, allowing Mars’ thin atmosphere and climate to weather it down.
» Read more

Almost all of Mars’ geological mysteries in one spot

Almost all of Mars' geological history in one spot

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on June 30, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The scientists label it “Mesas in shallow trough,” but that is only describes a small part of what can be seen here, as I interpret it.

The picture itself shows a small portion of the floor of an unnamed 32-mile-wide crater, with the crater’s southeast interior rim beginning its rise in the lower right. First, note the meandering hollow in the upper left, suggesting some past flow. Second, note the pattern of small ridges on the flat crater floor, suggesting some past drying process that left cracks that later filled with material that formed the ridges at a later time. Third, the mesas themselves suggest chaos terrain, often formed on Mars in connection with glacial flows. Fourth, note that the trough which holds the mesas is on the edge of the crater floor, suggesting the trough and mesas mark the erosion that once occurred at the edge of some material, possibly ice, that once filled that floor.

The trough and small meander also signify something far larger that can only be seen when we zoom out.
» Read more

Strange wormlike tube features on slopes of Martian shield volcano

Strange tubes on Mars
Click for original image.

Cool image time! The picture to the right, cropped to post here, was taken on June 21, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The scientists label the strange tubelike features that are scattered throughout this picture as “landforms,” which is correctly vague because their origin is utterly inexplicable. The ground here is on the eastern slope of a small 20-mile-wide very flat shield volcano located about 150 miles northwest of the giant volcano Ascraeus Mons. The dark wind streaks point down that grade to the east, away from the shield volcano’s peak about 1,000 feet away. (If you look at the full image this indistinct peak is at dead center, with a linear depression (the volcano’s vent) beginning there and heading to the northeast for about four miles.)

Why these many tubes are all oriented in a northwest-southwest direction, at right angles to the slope, is baffling, especially because they hold to that same orientation all across the shield volcano, no matter the downward direction of the slope.
» Read more

Independent review: NASA’s Mars sample return mission is in big trouble

Perseverance's first set of core samples, placed on the floor of Jezero Crater
Perseverance’s first set of core samples,
placed on the floor of Jezero Crater

An independent review of NASA’s Mars sample return mission (MSR) to pick up the core samples being collected by the rover Perseverance has concluded that the project has serious fundamental problems that will likely cause it to be years late and billions over-budget, assuming it ever flies at all.

You can read the report here [pdf]. After thirteen pages touting the wonders and importance of the mission to get those samples back to Earth, the report finally gets to its main point:

However, MSR was established with unrealistic budget and schedule expectations from the beginning. MSR was also organized under an unwieldy structure. As a result, there is currently no credible, congruent technical, nor properly margined schedule, cost, and technical baseline that can be accomplished with the likely available funding.

Technical issues, risks, and performance-to-date indicate a near zero probability of [the European Mars orbiter intended to bring the sample back to Earth] or [the Earth sample facility] or [the Mars ascent vehicle] meeting the 2027/2028 Launch Readiness Dates (LRDs). Potential LRDs exist in 2030, given adequate funding and timely resolution of issues.

• The projected overall budget for MSR in the FY24 President’s Budget Request is not adequate to accomplish the current program of record.

• A 2030 LRD for both [the sample return lander] and [the Mars orbiter] is estimated to require ~$8.0-9.6B, with funding in excess of $1B per year to be required for three or more years starting in 2025.

Based on this report, a mission launch in 2030 is only “potentially” possible, but only wild-eyed dreamers would believe that. It also indicates that the budget for each component listed above requires several billion dollars, suggesting the total amount needed to achieve this mission could easily exceed in the $30 to $40 billion, far more than the initial proposed total budget for the U.S. of $3 billion.

None of this is really a surprise. Since 2022 I have been reporting the confused, haphazard, and ever changing design of the mission as well as its ballooning budgets. This report underlines the problems, and also suggests, if one reads between the lines, that the mission won’t happen, at least as presently designed.

The report does suggest NASA consider “alternate architectures in combination with later [launch readiness dates].” Can you guess what might be an alternate architecture? I can, and its called Starship. Unlike the proposed helicopters and ascent rocket and Mars Orbiter, all of which are only in their initial design phases, Starship is already doing flight tests (or would be if the government would get out of the way). It is designed with Mars in mind, and can be adapted relatively quickly for getting those Perservance core samples back.

Otherwise, expect nothing to happen for years, even decades. In February 2022 I predicted this mission would be delayed from five to ten years from its then proposed ’26 launch date. A more realistic prediction, based on this new report, is ten to twenty years, unless NASA takes drastic action, and the Biden administration stops blocking Starship testing.

A close-up of the giant crack that almost splits Mars

A close-up of the crack that splits Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on June 28, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The intended science focus of the image is likely the floor of this canyon on the lower right, showing what appears to be a patch of uprised topography surrounded by what looks like glacial debris, which at this latitude of 39 degrees north is expected on Mars.

The grade at this location is downhill to the southwest, so if this is a glacier it is flowing in that direction.

The cliff is about 3,000 feet high, dropping that distance in about a mile and a half. Thus, this is only slightly less steep than the very steep cliff wall of the caldera of Olympus Mons, highlighted as a cool image two days ago.

What makes this canyon interesting — besides its spectacular scenery — is its larger context, recognized when one looks at this location from afar and thus sees how it shaped a vast portion of the global surface of Mars.
» Read more

Visible ice layers in a crater in the lower mid-latitudes of Mars?

Visible ice layers in the low-mid-latitudes of Mars?
Click for original image. For the original color image, go here.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on July 14, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows what appear to be horizontal layers in the inner wall of a small one-mile-wide and 150-foot deep unnamed crater on Mars. I have included the color version below, zoomed in to make those layers and their colors very clear.

As I have not contacted the scientists who requested this picture, I can only guess at its purpose. My guess however relates to those horizontal blue layers, reminiscent of the ice layers seen in Martian scarps at the high latitudes at about 50 to 55 degrees.

Normally it is rare to see horizontal layers like this in craters on Mars. Instead, what you usually see are downward-pointing gullies along with drainage and avalanche-type patterns, though the latter two might not be formed by either drainage or avalanches.

In this case these horizontal layers are clear and pronounced, making this crater a possibly important and somewhat unique find, based on its location.
» Read more

Image released of permanently shadowed floor of Shackleton Crater

Shadowcam-LRO mosaic
Click for original image.

NASA today released a mosaic combining images from Lunar Reconnaissance Orbiter’s high resolution camera LROC and the Shadowcam camera on South Korea’s Danuri lunar orbiter that shows for the first time the entire permanently shadowed floor of Shackleton Crater at the Moon’s south pole.

That mosaic, cropped, reduced, and sharpened to post here, is to the right. I have added the black cross to mark the location of the south pole, just inside Shackleton, the large crater on the right. The inset shows the floor of the crater at higher resolution.

LROC can capture detailed images of the lunar surface but has limited ability to photograph shadowed parts of the Moon that never receive direct sunlight, known as permanently shadowed regions. ShadowCam is 200-times more light-sensitive than LROC and can operate successfully in these extremely low-light conditions, revealing features and terrain details that are not visible to LROC. ShadowCam relies on sunlight reflected off lunar geologic features or the Earth to capture images in the shadows.

Thus, in the mosaic to the right the interior of Shackleton was imaged by Shadowcam, and then placed on a mosaic of LROC pictures.

If you click on the full image at high resolution and look closely at the crater floor, it is difficult to determine if there is any ice there. There are several mounds that could be ice, but could also be accumulated dirt and debris. What is most significant however is the smooth interior walls of the crater. It appears it will very possible for a rover to drive down those walls and into Shackleton.

High School students discover new orbital changes from asteroid impacted by DART

In observing Dimorphos, the small asteroid that the probe DART impacted in September 2022, researchers as well as students at a California high school have discovered unexpected orbital changes.

Recent observations have indicated the asteroid is tumbling since the impact. However:

Dimorphos also appeared to be continuously slowing down in its orbit for at least a month after the rocket impact, contrary to NASA’s predictions. California high school teacher Jonathan Swift and his students first detected these unexpected changes while observing Dimorphos with their school’s 2.3-foot (0.7 meter) telescope last fall. Several weeks after the DART impact, NASA announced that Dimorphos had slowed in its orbit around Didymos by about 33 minutes. However, when Swift and his students studied Dimorphos one month after the impact, the asteroid seemed to have slowed by an additional minute — suggesting it had been slowing continuously since the collision. “The number we got was slightly larger, a change of 34 minutes,” Swift told New Scientist. “That was inconsistent at an uncomfortable level.”

Swift presented his class’s findings at the American Astronomical Society conference in June. The DART team has since confirmed that Dimorphos did indeed continue slowing in its orbit up to a month after the impact — however, their calculations show an additional slowdown of 15 seconds, rather than a full minute. A month after the DART collision, the slowdown plateaued.

One explanation proposed for this slowdown points at the spray of rocks and boulders that surrounded Dimorphos after DART’s impact. When some of those boulders fell back onto the asteroid, they might have caused the orbital slowdown, and as the number of new impacts dropped, the slowdown stabilized.

Now that a full year has passed since the impact, it is possible to assess the full orbital changes to the asteroid. Thus, a new report is expected shortly.

The northern interior rim of the largest volcano in the solar system

Northern interior rim of Olympus Mons
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on July 8, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the northernmost interior rim of the caldera of Olympus Mons, the largest volcano in the solar system.

This one picture provides another way to illustrate the monumental scale of much of Mars’ topography. From the top to the bottom this steep scarp descends about 5,900 feet, in a little more than two miles. Compare that to the trails that descend the Grand Canyon’s south rim, which drop about the same distance but do it in distances ranging from three to five times longer.

In other words, this cliff wall is steep. Finding a route for a trail either up or down would be difficult at best.
» Read more

Ingenuity completes 59th flight, a hop setting a new altitude record

Overview map
Click for interactive map.
On September 16, 2023 the Ingenuity engineering team successfully flew the Mars helicopter for its 59th flight, a vertical hop lasting two minutes and twenty-three seconds that set a new altitude record of 66 feet in the air.

This flight matched the flight plan precisely. Six pictures from the flight were downloaded today, showing the helicopter as it hovered at this top altitude while tilting itself to the ground. To see this tilting, go here and set the date to Sol 915. Click on the first picture and then use the right and left arrow keys to scroll from picture to picture, essentially creating a short animation that shows the change in the helicopter’s shadow on the ground.

On the overview map above, the green dot marks Ingenuity’s location during this flight, with the blue dot marking Perseverance’s present location. It is possible that by tilting, the helicopter was able to take a color picture from the air of the rover to the south, but this is unconfirmed. It could have also tilted to get a view of the ground ahead.

Update on Curiosity’s journey in Mount Sharp, including its future route

Curiosity's future planned route
Click for original image.

The Curiosity science team yesterday released a new 360 panorama taken on August 19, 2023 by the rover’s high resolution camera, as part of an effort to document an important geological location finally reached after two previous attempts failed.

Three billion years ago, amid one of the last wet periods on Mars, powerful debris flows carried mud and boulders down the side of a hulking mountain. The debris spread into a fan that was later eroded by wind into a towering ridge [dubbed Gediz Vallis Ridge], preserving an intriguing record of the Red Planet’s watery past.

Now, after three attempts, NASA’s Curiosity Mars rover has reached the ridge, capturing the formation in a 360-degree panoramic mosaic. Previous forays were stymied by knife-edged “gator-back” rocks and too-steep slopes. Following one of the most difficult climbs the mission has ever faced, Curiosity arrived Aug. 14 at an area where it could study the long-sought ridge with its 7-foot (2-meter) robotic arm.

That panorama can be viewed here. The rover spent eleven days at this geological location, and has since moved on.

Because that panorama covers some of the same ground I have previously posted from the rover’s navigation cameras, I have instead posted above the graphic from the press release, with additional annotations, because that graphic provides new information about Curiosity’s future travels.

The white line marks Curiosity’s past travels as well as the planned route as previously released by the science team. The red line marks the additional route that the rover will follow beyond, weaving its way up Mount Sharp.

OSIRIS-REx makes last course correction before releasing asteroid sample return capsule

OSIRIS-REx’s engineers on September 17, 2023 successfully completed the last course correction necessary before releasing the sample return capsule carrying about nine ounces of material from the asteroid Bennu, set to land in Utah on September 24th.

The spacecraft briefly fired its thrusters Sunday to change its velocity by 7 inches per minute (3 millimeters per second) relative to Earth. This final correction maneuver moved the sample capsule’s predicted landing location east by nearly 8 miles, or 12.5 kilometers, to the center of its predetermined landing zone inside a 36-mile by 8.5-mile (58-kilometer by 14-kilometer) area on the Defense Department’s Utah Test and Training Range.

Details on that landing can be found here. The capsule will be coming in at speeds comparable to that of an Apollo capsule, returning from the Moon, and will use the same maneuvers and parachutes to slow its speed to only eleven miles per hour at landing. Four helicopters will than rush to recover the capsule as quickly as possible to reduce the chance the sample will be contaminated by the Earth’s environment.

OSIRIS-Rex (renamed OSIRIS-Apophis Explorer or OSIRIS-APEX) will meanwhile fire its engines and head towards the potentially dangerous asteroid Apophis, with a rendezvous scheduled in 2029.

Two galaxies merging

Merging galaxies
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken by the Hubble Space Telescope as part of a survey project to photograph the entire Arp catalog of 338 “peculiar galaxies,” put together by astronomer Halton Arp in 1966. From the caption:

The larger galaxy (in the left of this image) is an extremely energetic galaxy type known as a Seyfert galaxy, which house active galactic nuclei at their cores. Seyfert galaxies are notable because despite the immense brightness of the active core, radiation from the entire galaxy can be observed. This is evident in this image, where the spiraling whorls of the whole galaxy are readily visible. The smaller companion is connected to the larger by a tenuous-seeming ‘bridge’, composed of dust and gas. The colliding galactic duo lie about 465 million light-years from Earth.

Note that if you ignore the blue whorls of the left galaxy, the two bright cores of these merging galaxies are about the same size. As it is unclear how long this merger has been on-going, it is possible that the galaxy on the right, in circling the left galaxy, drew out those whorls and that tenuous bridge. Other scenarios are also possible, however, such as the galaxy on the left stripping and scattering the arms of the galaxy on the right.

A triangular Martian hill

A triangular Martian hill
Click for full image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on May 29, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the science team labels an “unusual shaped hill” that is estimated to be about 20 to 40 feet high.

What makes it unusual? First, it sticks up out of the endless northern lowland plains for no obvious reason, though its shape suggests the existence of bedrock topography that is now buried by the dust and debris that coats the surface of those plains.

Second, the hill itself suggests that it formed after it was covered with debris. Note the crater near its northeast cliff. It appears that the cliff chopped off part of the crater, suggesting that the hill was once level with the surrounding terrain. Some later underground pressure pushed it upward, with its angled sides determined by existing faults.

Why those forces tilted the hill upward as it did, with only its eastern fringes raised, is a question a wide view might answer.
» Read more

New analysis of Chandrayaan-1’s lunar orbital data might explain its detection of widespread surface hydrogen on the Moon

The Earth's magnetic field, shaped by the solar wind
The Earth’s magnetic field, shaped by the solar wind

One of the significant finds coming from India’s first lunar orbiter, Chandrayaan-1, was the detection of hydrogen in many places across the entire lunar surface, in places where it seemed impossible for hydrogen to be there, even if it was locked in a molecule like water.

Researchers in Hawaii now think they have found an explanation by linking that data to the Earth’s long magnetotail, formed by the solar wind pushing against the Earth’s magnetic field. The graphic to the right illustrates that process. The scientists focused on the kind of weathering processes that occurred both when the Moon was inside that tail, and when it was not.

Li and co-authors analyzed the remote sensing data that were collected by the Moon Mineralogy Mapper instrument onboard India’s Chandrayaan 1 mission between 2008 and 2009. Specifically, they assessed the changes in water formation as the Moon traversed through Earth’s magnetotail, which includes the plasma sheet.

“To my surprise, the remote sensing observations showed that the water formation in Earth’s magnetotail is almost identical to the time when the Moon was outside of the Earth’s magnetotail,” said Li. “This indicates that, in the magnetotail, there may be additional formation processes or new sources of water not directly associated with the implantation of solar wind protons. In particular, radiation by high energy electrons exhibits similar effects as the solar wind protons.”

In other words, the evidence suggests that the hydrogen signal seen by Chandrayaan-1 might have been a very temporary implacement of that hydrogen by the solar wind, which ceases during the Moon’s periodic passages through the magnetotail. The Moon’s harsh environment then causes that hydrogen to vanish, only to reappear when it is once again exposed to the solar wind.

None of this is confirmed, so some skepticism is required. If true, however, it would provide further evidence that the hydrogen signal seen at the lunar poles that scientists hope is evidence of ice in the permanently shadowed craters might be nothing of the sort, and we shall find little ice there.

1 15 16 17 18 19 30