Astronomers chemically map a significant portion of the Milky Way

The chemistry of the Milky Way's nearby spiral arms
Red indicates areas with lots of heavier elements, blue indicates
areas dominated by hydrogen and helium. Click for original image.

Astronomers have now used today’s modern survey telescopes — on Earth and in space — to map the chemistry of a large portion of the Milky Way’s nearby spiral arms, revealing that the arms themselves are rich in heavier elements, indicating greater age and the right materials to produce new stars and solar systems like our own.

If the Milky Way’s spiral arms trigger star births as predicted, then they should be marked by young stars, aka metal-rich stars. Conversely, spaces between the arms should be marked by metal-poor stars.

To confirm this theory, as well as create his overall map of metalicity, Hawkins first looked at our solar system’s galactic backyard, which include stars about 32,000 light years from the sun. In cosmic terms, that represents our stellar neighborhood’s immediate vicinity.

Taking the resultant map, the researcher compared it to others of the same area of the Milky Way created by different techniques, finding that the positions of the spiral arms lined up. And, because he used metalicity to chart the spiral arms, hitherto unseen regions of the Milky Way’s spiral arms showed up in Hawkins’ map. “A big takeaway is that the spiral arms are indeed richer in metals,” Hawkins explained. “This illustrates the value of chemical cartography in identifying the Milky Way’s structure and formation. It has the potential to fully transform our view of the Galaxy.”

You can read the science paper here [pdf]. Based on this initial mapping effort, it appears that it will not be long before a large percentage of our own galaxy will be mapped in this manner.

OSIRIS-REx completes last major mid-course correction before sending its sample capsule back to Earth

OSIRIS-REx yesterday completed a 63 second engine burn, successfully aiming the spacecraft so that its September 24th drop off of its sample capsule will hit the Earth as planned.

Preliminary tracking data indicates OSIRIS-REx changed its velocity, which includes speed and direction, by 1.3 miles, or 2 kilometers, per hour. It’s a tiny but critical shift; without course adjustments like this one the spacecraft would not get close enough to Earth on Sept. 24 to drop off its sample of asteroid Bennu. The spacecraft is currently 24 million miles, or 38.6 million kilometers, from Earth, traveling at about 22,000 miles, or about 35,000 kilometers, per hour.

In the two weeks prior to that drop-off the spacecraft will do two more short burns to refine its aim so that the sample capsule will land precisely as planned on the Defense Department’s Utah Test and Training Range near Salt Lake City.

Giant glaciers in the northern Martian mid-latitudes

Overview map

Giant glaciers in the northern Martian mid-latitudes
Click for original image.

It is time for two cool images! The picture to the right, cropped, reduced, and sharpened to post here, was taken on May 10, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and is one of two glaciers imaged by MRO in May that are among a whole series of glaciers flowing down the south wall of the same mesa.

The red dot in the inset and on the overview map above marks the location of the picture to the right. The white dot marks the location of the May 27, 2023 picture, which can be seen here.

The unnamed 10,000-foot-high mesa from which these glaciers flow, located in the middle of the 2,000-mile-long northern mid-latitude strip I dub glacier glacier country, is about 41 miles long and 18 miles wide at its widest point. The glacier to the right falls about 6,000 feet in about four miles, making the grade steep, ranging from 15 to 23 degrees. That steepness explains the split in the glacier, as it flowed around a huge piece of higher bedrock in the middle of this descending hollow.

Both images provide further evidence of the dominance of glaciers in this mid-latitude region. While the glaciers are all covered with dust and debris to protect the ice, and are also thought at present to all be inactive, they also all suggest a very dynamic Martian geological and climate history, one that will likely come alive again as the planet’s rotational tilt naturally shifts back and forth from its present 25 degree tilt to 11 to 60 degrees.

The glaciers also show us again that Mars is not a dry desert, but above 30 degrees latitude it is an icy desert much like Antarctica. Colonists will have no trouble finding water.

Infrared Webb image of a binary baby star system and its surrounding jets and nebula

Webb infrared image of HH 46/47
Click for original image.

Cool image time! The infrared picture to the right, cropped, reduced, and sharpened to post here, was taken by the Webb Space Telescope of the jets and nebula of the Herbig–Haro object dubbed HH 46/47, thought to contain a pair of baby stars under formation.

The most striking details are the two-sided lobes that fan out from the actively forming central stars, represented in fiery orange. Much of this material was shot out from those stars as they repeatedly ingest and eject the gas and dust that immediately surround them over thousands of years.

When material from more recent ejections runs into older material, it changes the shape of these lobes. This activity is like a large fountain being turned on and off in rapid, but random succession, leading to billowing patterns in the pool below it. Some jets send out more material and others launch at faster speeds. Why? It’s likely related to how much material fell onto the stars at a particular point in time.­­­

The stars’ more recent ejections appear in a thread-like blue. They run just below the red horizontal diffraction spike at 2 o’clock. Along the right side, these ejections make clearer wavy patterns. They are disconnected at points, and end in a remarkable uneven light purple circle in the thickest orange area. Lighter blue, curly lines also emerge on the left, near the central stars, but are sometimes overshadowed by the bright red diffraction spike.

To see optical images of HH 46/47 as well as some further background, go here. It is one of the most studied HH objects, which is why it was given priority in Webb’s early observation schedule.

Swirling layers in the basement of Mars

Swirling layers in the basement of Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on March 31, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

In labeling this picture the science team focused on the many layers visible in these swirls, all suggesting a series of cyclical events, each laying down a new layer over many eons.

What caused the swirls? Looking at the lower right quadrant it appears that they were glacial, with the flow to the northwest but with each glacial layer smaller and not reaching as far.

This theory falls apart however at the curved depression, which instead suggests the swirl was traveling along a meandering canyon, going from the lower left to the upper right. If so, the curved depression is even more baffling. If ice it could have sublimated away, but its sharp edges suggest this isn’t ice but maybe a lava flow.
» Read more

NASA awards 11 small development contracts to a variety of companies

Capitalism in space: NASA today announced that it has awarded small contracts to eleven different companies, ranging from big established companies like ULA and Lockheed Martin to small startups like Varda and Zeno, for developing a range of new technologies, from power production on the Moon to making building materials from lunar soil.

Five of the technologies will help humanity explore the Moon. For astronauts to spend extended periods of time on the lunar surface, they will need habitats, power, transportation, and other infrastructure. Two of the selected projects will use the Moon’s own surface material to create such infrastructure – a practice called in-situ resource utilization, or ISRU. Redwire will develop technologies that would allow use of lunar regolith to build infrastructure like roads, foundations for habitats, and landing pads.

Blue Origin’s technology could also make use of local resources by extracting elements from lunar regolith to produce solar cells and wire that could then be used to power work on the Moon.

Astrobotic’s selected proposal will advance technology to distribute power on the Moon’s surface, planned to be tested on a future lunar mission. The company’s CubeRover would unreel more than half a mile (one kilometer) of high-voltage power line that could be used to transfer power from a production system to a habitat or work area on the Moon.

The contracts range in price from $1.6 to $34.7 million, with Blue Origin getting that largest award.

Rocket Lab delays its private mission to Venus two years to ’25

In order to focus at this time on its commercial customers, Rocket Lab has decided to reschedule its private mission to Venus, delaying its two years to the next launch window in 2025.

The mission appeared to still be on in May, before Rocket Lab quietly put it on the back-burner last month. Spokesperson Morgan Bailey said it had decided to delay the mission so it could concentrate on its commercial launches. “The decision was a business one and we look forward to delivering the Venus mission in 2025,” she said.

It also appears that the mission could be pushed back further if customer demand requires it.

No, that is not a sunspot on Mars!

No, that is not a sunspot on Mars!
Click for original image.

Cool image time! The picture to the right, cropped to post here, was taken on April 20, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). While at first glance this Martian terrain vaguely resembles the granular surface of the Sun, with the largest depression having its own faint resemblance to a sunspot, the resemblance exists only in our feverish imagination.

The depression might have been formed by an impact, though it is also possible it is a caldera, not of lava but of ice processes. The granular surface is likely resulting from the sublimation of ice, creating random holes and ridges as underground material changes from ice to gas and escapes at weak points on the surface.

My guess that we are looking at ice processes is based on the location, not far from where the first manned spacecraft will likely land.
» Read more

Strings of Martian cones

Strings of Martian cones

Cool image time! The picture to the right, cropped and reduced to post here, was taken on May 25, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The scientists describe these cones as “longitudinally aligned cones,” but this is puzzling since the alignment runs from the northwest to the south east, not north-south along the longitude.

No matter. The alignment is in itself the mystery, especially because the full image shows many more strings of cones in this area, all running from the northwest to the southeast. The strings also are all curved in the same way, sagging to the southwest as if expressing a wave flowing in that direction.

What could create these strings of cones? The overview map below gives us a hint.
» Read more

Chandrayaan-3 completes fourth engine burn in Earth orbit

Chandrayaan-3's mission profile

According to India’s space agency ISRO, engineers have successfully completed the fourth of about six engine burns designed to raise Chandrayaan-3’s Earth orbit in preparation for sending it on its path to the Moon.

As shown in the graphic to the right, these adjustments are relatively small, but each increases the speed of the spacecraft at its orbit’s closest point to the Earth. That extra velocity thus reduces the amount of fuel needed for that trans-lunar-injection burn.

If all the maneuvers continue to go as planned, the landing attempt will occur around August 23, 2023.

South Korean researchers turn simulated lunar soil into building blocks

Using simulated lunar soil, South Korean researchers have developed the engineering that turns that soil into building blocks shaped as needed.

The researchers first produce simulated moon soil by grinding black volcanic rock from Cheorwon County bordering the North. They then use a microwave to turn the sand-like simulant into solidified blocks. Lee said the team has developed a technique to make blocks by heating the soil in a mold to more than 1,000 degrees Celsius in two to three hours and cooling them. In space, the process could be powered by nuclear energy.

The article at the link also provides a nice summary of the status of South Korea’s entire space effort.

Unknown Mars

MRO context camera mosaic
Click for interactive global mosaic.

Cool image time! The picture to the right was created from a global mosaic of all the context camera images taken by Mars Reconnaissance Orbiter (MRO) since it entered Mars orbit in 2006. It shows an unnamed 17-mile-wide-depression located only about seven miles south of the southern rim of Valles Marineris.

I highlight this particular depression because, despite seventeen years in orbit, MRO’s high resolution camera has at this time still not taken any pictures inside or around it. This is a place on Mars that remains unstudied in detail, in any way, even though its depth is comparable to the Grand Canyon and its features strongly suggest its is a collapse feature, created when the roof over an underground void gave way. If so, it suggests an origin for Valles Marineris that conflicts with present theories.
» Read more

Hubble image shows several dozen boulders flung from Dimorphos

Boulders drifting from Dimorphos
Click for original image.

Using the Hubble Space Telescope, astronomers have photographed several dozen boulders that were flung off of the asteroid Dimorphos following the impact by the space probe DART. The picture to the right, reduced and brightened to more clearly show those boulders, was taken on December 19, 2022, four months after DART’s impact.

These are among the faintest objects Hubble has ever photographed inside the Solar System. The ejected boulders range in size from 1 meter to 6.7 meters across, based on Hubble photometry. They are drifting away from the asteroid at around a kilometre per hour.

The blue streak is the dust tail that has streamed off of Dimorphos since the impact, pushed away from the sun by the solar wind.

Ancient lava vent high on a Martian volcano

Ancient lava vent high on a Martian volcano
Click for original image.

Today’s cool image illustrates the once violent and active volcanic past of Mars, now long dormant. The picture to the right, cropped, reduced, and sharpened to post here, was taken on May 11, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label as a “vent and channel” located high on the northeast flanks of the giant volcano Arsia Mons.

The rim around the vent suggests that lava had once bubbled up out of the vent and hardened around it, as most of the lava flowed downhill along the channel. And though this vent appears to be the source of this channel, it is not. The channel continues to the southwest uphill until it reaches the edge of Arsia Mons’ caldera, a region where there are many such vents, many much larger and deeper than this one.
» Read more

Glacial evidence in the dry equatorial regions of Mars?

Is this evidence of glacial ice in the Martian dry equatorial regions?
Click for original image.

Cool image time! The picture to the right, rotated, cropped, rotated, and sharpened to post here, was taken on June 3, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the eastern half of a six-mile-wide unnamed crater with a depth of about 1,500 to 2,000 feet from rim to floor.

What makes this picture significant is the patchy material in the center of that crater floor, some of which looks almost like very old peeling paint. It also resembles the kind of glacial features routinely seen in many craters poleward of 30 degrees latitude on Mars.

Is this another example of such glacial features? If so, its location is what makes it significant.
» Read more

Flat-topped Martian mesa

Flat-topped mesa on Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, and reduced to post here, was taken on April 18, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows only one of many flat-topped mesas in a chaos terrain region dubbed Oxia Chaos.

The mesa top is about 540 feet above the floor of the canyon to the north, which in turn is about 840 feet below the flat terrain north of it. That flat terrain to the north is not part of the chaos terrain, however, but the northern rim of the plateau that surrounds the chaos. Moreover, this particular piece of rim is separating from the plateau, as shown near the top of this January 16, 2008 context camera image from MRO. At some point in the future it will break off and fall into that canyon and on top of this mesa.
» Read more

Chandrayaan-3 completes second orbital maneuver

Chandrayaan-3's mission profile

According to India’s space agency ISRO, its lunar lander/rover Chandrayaan-3 today completed second orbital maneuver, raising the spacecraft’s orbit around the Earth from 41,762 by 173 kilometers to 41,603 x 226 kilometers.

The graphic to the right shows the entire mission profile of Chandayaan-3. It still has three more orbital adjustments to make in Earth orbit before it does its trans-lunar-injection burn to send it to the Moon. Once it arrives in lunar orbit it will then have to make six orbital adjustments to lower its orbit before making the descent to the surface.

The lunar landing itself is presently scheduled for August 23, 2023.

Another look at the vastness of Valles Marineris on Mars

The vast Valles Marineris
Click for interactive map.

This week I have returned several times to the giant Valles Marineris canyon on Mars in an attempt to capture its incomprehensible and glorious scale. Without question this canyon is going to become one of the prime tourist spots when humans begin living and working throughout the solar system. Fortunately, its vast size will mean that it will take many many centuries before it even becomes close to crowded there.

Today I try a different approach, using the global mosaic created by scientists at Caltech from the context camera images taken by Mar Reconnaissance Orbiter (MRO). That mosaic processes the images to allow one to see the surface from an oblique angle. The picture to the right covers one small part of the eastern end of Valles Marineris (the white rectangle in the inset), but though small the scale once again is gigantic.

The three white dots are our reference points, one on the north rim, one on the south, and one in the middle on the peak of that central mountain chain. Beginning from the south, the distance from the rim to the middle mountain peak is 43 miles, with the elevation dropping almost 13,000 feet to the floor of the south canyon, than rising almost 10,000 feet to the middle peak. The northern canyon is smaller. From the peak to the north rim is 27 miles, dropping about 9,300 feet and then rising about 8,500 feet to the north rim.

From rim to rim the distance is about 70 miles. Since the middle mountain chain about 18 miles wide, it fills only about 25% of the entire canyon.

In every case, the Grand Canyon would be merely be a small side canyon here. The depths are twice as deep, and the distances are many times larger. In width alone at this point Valles Marineris is seven times wider than the widest part of the Grand Canyon, and this is by far not Valles Marineris’s widest point.
» Read more

India successfully launches Chandrayaan-3


Click for interactive map.

India today successfully launched its Chandrayaan-3 lunar lander/rover probe toward the Moon, carried aloft by its LV-M3 rocket (a variation of its GSLV) from its coastal spaceport in Sriharikota.

Chandrayaan-3 carries the Vikram lander, which will bring the Pragyan rover to the surface. Pragyan will spend about two weeks operating on the lunar surface. The location is indicated by the red dot on the map to the right, in the high southern latitudes. The white cross marks the lunar south pole. Russia’s Luna-25 is scheduled to launch sometime in mid-August.

It will take time to get Chandrayaan-3 into the right lunar orbit for landing, which is presently scheduled for August 13, 2023.

For India this was its fifth successful launch for the year, the most since 2019, before it panicked over COVID. The leaders in the 2023 launch race:

46 SpaceX
26 China
9 Russia
5 Rocket Lab
5 India

American private enterprise still leads China in successful launches 52 to 26, and the entire world combined 52 to 45, while SpaceX by itself still leads the rest of the world (excluding other American companies) 46 to 45.

A Martian gully formed by disappearing glacial ice?

Puzzling Martian gully
Click for original image.

Cool image time! The picture to the right, cropped and reduced to post here, was taken on April 30, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the rim of a seventeen-mile wide crater, and was the scientists label a “gully without apron,” meaning that though something has caused material to disappear within that gully, beginning high on the rim wall, there does not appear to be any piled up apron or debris at the gully’s base.

The blue colors imply the possibility of frost within the gully, while the orange suggests dust or coarse surface material.

The cracks emanating away at right angles from the gully’s base suggest glacial ice, which makes sense based on the location.
» Read more

More sightseeing in Valles Marineris on Mars

More sightseeing on a mesa in Valles Marineris
Click for original image.

The opportunity to see more mind-blowing examples of spectacular views on Mars compels me to post another great view of a mesatop within Valles Marineris, the biggest known canyon in the solar system. The picture to the right, rotated, cropped, and reduced to post here, was taken on May 14, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows an 800-foot-high mesa with two points at its end, the cliff wall below highlighted by numerous layers, many alternating between light and dark material.

The erosion features on the top of the mesa suggests some flow down its middle and into the gap between its two end points. This is the dry equatorial region of Mars, so no near surface water is presently found. In the far past maybe ice, or theorized catastrophic floods of water, caused this erosion.
» Read more

Amidst the mountains on Mount Sharp on Mars

Panorama from Curiosity, July 12, 2023
Click for higher resolution. Original images can be found here, here, and here.

Overview map
Click for interactive map.

The panorama above, created from three images, was taken by Curiosity on July 12, 2023 using its right navigation camera. It looks south in the direction that the science team eventually plans to send the rover, as indicated by the red dotted line on both the panorama and the overview map to the right. The yellow lines on the overview map indicate approximately the area covered by the panorama. Kukenan’s peak rises about 500 feet above the rover, and I guarantee there will be many planetary geologists that are going to study the pictures of its many layers for many years.

At present however Curiosity is heading west, away from that planned route, to visit the small craters about 500 feet away. For almost all of the rover’s decade-long journey in Gale Crater, it has seen relatively few craters, and since it left the floor of the crater and began its climb up the flanks of Mount Sharp three years ago, it has seen none.

Inspecting the floors and surrounding ejecta of these small craters will give the scientists a look at materials that are presently below the surface. While it is likely that material will be of geological layers Curiosity has already traveled over lower down the mountain, it is also possible there will be surprises. The scientists decided they couldn’t pass up this opportunity to find out.

Why have there been so few craters in Gale Crater? Though Mars is hardly as active as Earth, its geological history is almost as dynamic. The surface of Gale has been reshaped by the processes that created Mount Sharp, processes that destroyed craters from early in Mars’ history. The craters the rover is about to see are almost certainly relatively young.

The Earth and Moon, as seen by Mars Express in Mars orbit

The Earth and Moon, as seen from Mars
Click to see four image movie.

The science team for Europe’s Mars Express orbiter recently turned the spacecraft’s camera upward to capture a sequence of four images of the Earth with the Moon circling around it.

The images were taken at 14:08, 03:10 and 19:49 UTC on 15, 21, 27 May 2023 respectively, and at 15:00 UTC on 2 June 2023. This covers a bit more than half of the Moon’s monthly motion around the Earth. The distance between Earth and Mars varied from 279 186 624 km to 301 016 265 km during this time. The image resolution is about 2570 km per pixel.

To the right is the June 2nd image, cropped and enhanced to post there. The Earth is the larger spot to the left. The picture gives a sense of what the Earth-Moon double planet system looks like from Mars. Unlike all other planets, where the size difference between planet and moon is great, the Earth/Moon system is comprised of a Moon quite large in comparison to its central planet.

A Martian crater with a very weird rim

A Martian crater with a very weird rim
Click for original image.

In looking through new images from Mars Reconnaissance Orbiter (MRO), I sometimes stumble some very strange things, with today’s cool image an example. The picture to the right, rotated, cropped, and reduced to post here, was taken on May 7, 2023 by MRO’s high resolution camera, and shows the western half of a two-mile-wide crater with a very weird rim, almost as if a person had decided he wanted to reshape it with a filigree pattern.

Though only two-miles wide, this crater actually has been named Johnstown. I suspect this is because of its strange rim, prompting a research effort and the need to provide it a name. Why the rim has this repeating pattern of gaps, however, is beyond my pay grade to explain, and I have been unable to track down any research papers about it. The nearby surrounding surface suggests vaguely the possibility that this is a caldera, not an impact crater, but even so why would the rim of the caldera have these regular breaks?
» Read more

Zhurong found Mars drier than expected and less eroded than the Moon

According to a new paper, Chinese scientists using data from their Zhurong Mars rover have found little or no evidence of water in the immediate underground, while also finding the surface less eroded than the surface on the Moon.

A layer of regolith covers the surface of Mars, which is the result of geologic processes that occurred over millions to billions of years. Compared to the observations from satellites, the Zhurong rover of China’s first Mars mission (Tianwen-1) had a closer look at the properties of the regolith layer in the explored region within southern Utopia Planitia. There is evidence that the exposed materials might be related to aqueous activities. Local landforms on the surface suggest the possible presence of buried volatiles, like water ice. The radar instrument (RoPeR) on board the rover can expose subsurface structures and the dielectric properties of the regolith layer at high-resolution, to assess their composition. The loss tangent results suggest that water ice is not the main component of the local martian regolith at some depth. The scattering distribution of radar profile along the traveling path and heterogeneous subsurface features show more diverse surface processes and weaker space weathering effects on Mars than those on the airless Moon.

Since Zhurong landed in the equatorial regions, its data about the lack of water simply confirmed other data from orbit and from other rovers/landers. Though there are features even here that suggest the presence of water, that water made those features a long time ago, and is now gone.

The data suggesting the regolith is less eroded than the Moon, however, is a surprise, and counter-intuitive.

The inconceivable scale of Mars’ canyons

Overview map

Today’s cool image takes us to one of Mars’ biggest canyon systems that while linked to Valles Marineris, the biggest Martian canyon of them all, is considered a separate canyon system because it is made up of a labyrinth of criss-crossing canyons instead of a single major canyon line.

In fact, its name is Noctis Labyrinthus, as shown on the overview map to the right. In many ways its complex pattern is reminiscent of the chaos terrain seen mostly in Mars’ mid-latitudes, but there are major differences. The rectangle marks the area we shall zoom into below to show these differences as well as to feebly illustrate the grand scale of these canyons.

First, the formation of these canyons is closely linked to the volcanic events that formed the three giant volcanoes to the west. They are also strongly linked (in ways not yet fully understood) with the suspected catastrophic floods that drained from Noctis, through Valles Marineris, and out into the northern lowland plains to the east, eons ago when this dry equatorial region could have been wet.
» Read more

Puzzling crater on alien Mars

Puzzling crater on alien Mars
Click for original image.

Today’s cool image once again illustrates that the things that orbiters photograph on the Martian surface are not always what they seem at first glance. The picture to the right, cropped, reduced, and sharpened to post here, was taken on March 23, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label as “layering” in this small mile-wide crater.

That layering, seen on both the interior and exterior slopes of its circular rim, is what makes this crater puzzling. It suggests this crater was not formed by an impact, but by volcanism. The layers suggest repeated eruptive events. That the crater sits above the surround plain by about 100 feet strengthens this conclusion.

And yet, a look at the overview map below suggests this conclusion is premature.
» Read more

Swirls draining into a Martian crater

Swirls draining into a Martian crater
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, sharpened, and annotated to post here, was taken on April 8, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The picture shows a terrain of swirls and terraced mesas. Because the shadows are deceptive, I have annotated the picture to show the actual drainage pattern of those swirls, suggesting that whatever material forms these swirls is not only draining about 200-250 feet down into the low point at the picture’s center, the swirls are also draining toward the small 1,000-foot-wide crater in the upper left. That crater however appears to lie on top of the swirls, which means it came after them.

What are the swirls made of?
» Read more

Alien Mars

Alien Mars
Click for original image.

Today’s cool image illustrates again the alien geology of Mars, often disguised as geological features that at first glance seem familiar. The picture to the right, cropped and reduced to post here, was taken on April 9, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Its most distinct feature, the mile-wide double crater in the center bottom, at first appears typical of such craters found on the Moon and elsewhere, suggesting that the bolide that caused it broke in two as it cut through the Martian atmosphere.

This double crater however is not like lunar double craters, in that the shape of both craters is deformed, and the deformation is not quite the same in each. Moreover, the crater does not appear to have an upraised rim or to have thrown out any obvious ejecta. Instead, the two objects hit what looks like soft ground, such as when you drop a pebble into snow.

There’s more.
» Read more

Curiosity’s most damaged wheel appears to be surviving the rough terrain on Mount Sharp

Curiosity's middle left wheel, from November 2022 to July 2023
For original images go here and here.

In today’s download of images from Curiosity was a set of pictures taken by its Mars Hand Lens Imager (MAHLI) of the rover’s wheels, as part of the science team’s routine inspection procedures after every 500 meters of travel.

The picture to the right shows what I think is the rover’s left middle wheel, its most heavily damaged, comparing what that wheel looks like now versus what it looked like in November 2022. At that time five of the wheel’s zig-zag grouser treads were broken, three of which are visible in both pictures. The numbers indicate identical wheel treads.

As you can see, after more than seven months of travel across some of the roughest and rockiest ground so far seen on Mars, no more grousers have broken in the new picture. The plus (“+”) signs indicate places where I think some additional metal between the grousers appears to have broken away, but even here the additional damage appears minimal.

Based on past wheel inspections, I expect more images will be taken in the next day or so. We shall see if those pictures indicate any further damage elsewhere. Based on this new picture, however, it appears that the care the science team takes in picking Curiosity’s route, as well as its software (designed to avoid the worst terrain), is continuing to preserve the wheels from further significant damage.

1 17 18 19 20 21 29