SpaceX successfully launches seven satellites, including two NASA science satellites

Capitalism in space: SpaceX today successfully launched seven satellites, including two NASA science satellites and five Iridium communications satellites.

They did not attempt to recover the first stage, and though they tried to recover the rocket’s fairing it missed the ship and landed in the Pacific.

Intriguingly, all of these satellites were originally going to launch on a Russian/Ukrainian rocket.

Tuesday’s launch came about as a result of Russia’s Dnepr rocket becoming unavailable, in part due to the ongoing political situation in Ukraine. Grace Follow-On had been booked to fly aboard Dnepr, while Iridium had contracted for launches of the Russian vehicle to carry pairs of its spacecraft into orbit for testing, and later replenishment of its constellation. Early last year, Iridium and the GFZ – who are responsible for arranging GRACE’s ride to orbit – agreed to share a launch on SpaceX’s more powerful Falcon 9 rocket, splitting the costs while allowing the GRACE mission to continue and Iridium to get further satellites into orbit.

In other words, SpaceX has taken this business directly away from Russia.

The leaders in the 2018 launch standings:

15 China
10 SpaceX
5 Russia
5 ULA

In the national rankings, the U.S. is now in the lead with 16 total launches (including Orbital ATK’s Antares launch on Monday).

Block 5 Falcon 9 first stage returns to port

SpaceX’s first Block 5 first stage for its Falcon 9 rocket, designed to fly a minimum of ten times, has returned to port after its first flight last week.

This is the most interesting detail revealed:

While not visible, the most significant improvements are likely to be found at the base of the first stage’s octaweb – now assembled with bolts instead of welds – in the form of a dramatically improved heat shield around its nine Merlin 1D engines (also upgraded, of course). One of the Falcon recovery technicians showed some exceptional interest in the shield and Merlins, likely documenting their condition in extreme detail to inform engineering reviews of the pathfinder rocket after its first flight test.

The pictures show those bolts quite clearly.

SpaceX successfully launches in Block 5 Falcon 9

Capitalism in space: SpaceX today successfully placed in orbit Bangladesh’s first communications satellite, successfully using its upgraded Block 5 version of the Falcon 9 rocket, its first stage designed to be reused a minimum of ten times.

They successfully recovered the first stage, and will now take it apart to confirm this new version worked as planned. If so, it will be put back together and returned to service.

The leaders in the 2018 launch standings:

14 China
9 SpaceX
5 Russia
5 ULA

The U.S. and China are once again tied at 14 for the nation lead. SpaceX’s launch rate is presently double what it achieved last year, when it launched the most rockets of any private company ever.

A new net for Mr. Steven

Photos of the ship, Mr. Steven, that SpaceX wants to use to recover its rocket fairings show that the company has installed a new net for catching those fairings.

The article theorizes that this heftier net has actually been installed for eventually catching the Falcon 9’s upper stage.

[T]he newly-installed net is by all appearances magnitudes larger, heavier, and stronger than the minimal mesh specimen it is clearly replacing. Given the fact that SpaceX thus far has self-admittedly failed to catch a gliding fairing half in the net, it seems unlikely that such a drastic upgrade would be necessitated by any field-testing that occurred since Mr. Steven’s debut late last year. Rather, a significantly more capable net seems to more readily fit alongside CEO Elon Musk’s tweet reveal three weeks prior that SpaceX would attempt to close the final major loop of Falcon reusability by recovering the orbital upper stage (S2). Estimated to weigh approximately 4000 kilograms empty, the upper stage is a minimum of four times heavier than Falcon 9’s payload fairing halves, Mr Steven’s current meal of choice.

Judging from the new net’s beefy rigging, broader bars, and general appearance, one could safely argue that it looks at least several times stronger than the mesh net before it. One could also argue that the absolutely massive metal arms installed on Mr. Steven are far larger than what might be required to catch the extremely low mass-to-area ratio payload fairings, with structural heft and bulky netting more reminiscent of safety nets present on naval vessels that are designed to catch aircraft and helicopters weighing five metric tons or more.

This is an interesting theory, but I have my doubts. At the same time, I would not dismiss Musk’s willingness to try daring engineering approaches.

SpaceX sets May 10 for next launch, the first for Falcon 9’s final design

Capitalism in space: After analyzing the data from Friday’s static fire dress rehearsal, SpaceX has now scheduled the launch of Bangabandhu-1, Bangladesh’s first communications satellite, for May 10.

The significance of this launch is that it will be the first of what SpaceX calls the Block 5 version of this Falcon 9 first stage, a final design intended for many reuses and quick turnaround.

The star of the show is the new, unflown first stage core 1046, which is the first “Block 5” Falcon 9 first stage. Block 5 is the final major upgrade to the Falcon 9, the culmination of over 10 years of development and evolution of SpaceX’s workhorse rocket.

Block 5 has numerous advantages over past versions of the Falcon 9, notably including higher thrust engines, improved and more resilient recovery hardware, and the ability to be reflown within 48 hours of landing after a previous mission. Block 5 was also designed to meet – and in some cases exceed – NASA’s strict Commercial Crew Program requirements, which SpaceX must follow in order to be able to fly NASA astronauts, expected to begin in early 2019.

Block 5 cores are also expected to be reused 10 times before undergoing any major refurbishment, and SpaceX hopes to fly each booster up to 100 times before it is retired.

NASA has demanded that SpaceX fly at least seven different launches with the Block 5 stages before it will permit its astronauts on board (unlike SLS, where NASA has even considered flying astronauts on board with no previous test flights). Thus, getting this rocket flying is crucial to getting Americans back in space, on an American-made rocket.

SpaceX successfully launches NASA new exoplanet telescope

Capitalism in space: SpaceX today successfully placed NASA’s new explanet space telescope, TESS, into orbit.

The first stage, which was making its first flight, successfully landed on the drone ship in the Atlantic. They hope to reuse this booster on a future Dragon launch.

Update: TESS’s solar arrays have successfully deployed.

The leaders in the 2018 launch standings:

11 China
8 SpaceX
4 ULA
3 Japan
3 Russia
3 Europe
3 India

The U.S. is now ahead of China, 12 to 11, in the national list.

Elon Musk hints at using a “giant party balloon” to recover Falcon 9 upper stages

In several tweets yesterday, Elon Musk said that SpaceX is considering using “a giant party balloon” to recover Falcon 9 upper stages.

No timetable was mentioned. It seems that Musk and SpaceX is still looking at ways to reuse the Falcon 9 upper stage. Whether this proposal ever makes it to hardware however is a different question. Musk and his engineers have floated many concepts over the years, not all of which have flown.

The balloon idea has some merit, as it has been successfully used to land landers and rovers on the Moon and Mars.

New information on SpaceX’s rocket fairing recovery effort

Link here. In requesting permission to recover Dragon capsules in the Gulf of Mexico, SpaceX submitted a great deal of information to the FAA about its effort to recover and reuse the fairings of its Falcon 9 rocket. Doug Messier of Parabolic Arc has done a nice job of excerpting that information at the link.

For example, SpaceX is not only trying to recover the fairings, it is trying to recover the new fairing drogue chutes that it uses to slow the fairings down and then ejects before splashdown.

To me, however, one tidbit that stood out like a beacon and actually tells us more about SpaceX’s future anticipated launch rate was this quote:

From 2019-2024, SpaceX anticipates the frequency of launches involving fairing recovery to increase. In 2018, SpaceX anticipates approximately two recovery attempts, and from 2019-2024, SpaceX anticipates approximately three recovery attempts per month. Thus, for all seven years, SpaceX anticipates up to 480 drogue parachutes and 480 parafoils would land in the ocean.

This is further confirmation of SpaceX’s public prediction that it will soon be launching about 30 to 40 times per year. These numbers also equal the best yearly rates the entire United States launch industry ever achieved, and suggest that the entire launch industry in the next decade will be experiencing a significant boom, since aggressive competition usually causes an increase in business for all competitors.

Two investigations blame Northrop Grumman for Zuma failure

Two independent investigations have now placed the blame for the failure of the classified Zuma satellite to reach orbit on Northrop Grumman, not SpaceX.

Two independent investigations, made up of federal and industry officials, pointed to Northrop’s payload adapter as the cause of the satellite’s loss, the report said, citing people familiar with the probes. The payload adapter is a key part of deploying a satellite in orbit, connecting the satellite to the upper stage of a rocket.

…The investigations tentatively concluded that onboard sensors did not immediately communicate to ground systems that the satellite did not separate from the rocket, according to the Journal. Unbeknownst to officials at the time, the planned return of the rocket’s upper stage — a method of disposal to avoid adding space debris around the Earth — brought the satellite back down with it. By the time the satellite separated from the rocket it was too late, putting Zuma too low in orbit to save, according to the report.

I still have a nagging suspicion that Zuma actually did reach orbit, and this entire story that it never separated from the upper stage is all a disinformation campaign to help distract people from the satellite’s existence in orbit. At the same time, by this time I don’t put much faith in my own suspicions. These two reports appear to settle the matter.

NOAA admits it wants the power to license all camera use in space

Government power grab: At a conference today a NOAA official revealed that its lawyers have decided to liberally interpret federal law so that the agency has the power to license all camera use in space.

According to Tahara Dawkins, director of Commercial Remote Sensing Regulatory Affairs (CRSRA) office,

[p]art of the licensing review for commercial remote sensing systems involves a check of any national security implications of that system, but it’s not clear what issues an onboard camera system, whose views of the Earth are typically low resolution and often obscured by the rocket itself, might pose.

Dawkins said that no previous SpaceX launches had NOAA commercial remote sensing licenses, even though many have flown onboard cameras, including several previous Iridium missions. An April 2 launch of a Falcon 9 from Florida carrying a Dragon cargo spacecraft had no such restrictions, she said, because that was considered a government mission. While the spacecraft is performing a mission under contract to NASA, the launch itself was considered commercial and licensed by the Federal Aviation Administration’s Office of Commercial Space Transportation.

NOAA was not aware of the previous launches that featured onboard cameras. “Our office is extremely small, and there’s a lot of things out there that we miss,” she said. “The onus is on the companies to come to us and get a license when needed.” [emphasis mine]

The highlighted words prove that the big publicity of the Falcon Heavy launch, showing the Tesla with the Earth in the background, instigated this stupidity. This office doesn’t have the slightest idea what is going on. Footage from rocket launches have become routine now for almost a decade. They saw the Tesla images and decided to exert their power, despite the fact that, as the article notes,

Part of the licensing review for commercial remote sensing systems involves a check of any national security implications of that system, but it’s not clear what issues an onboard camera system, whose views of the Earth are typically low resolution and often obscured by the rocket itself, might pose.

This is government overreach at its worst. If Trump is serious about cutting back regulation, he should step it now to shut this down.

SpaceX launches Dragon to ISS

SpaceX successfully launched a reused Dragon capsule into orbit yesterday, once again using a reused first stage.

To show you how routine this has become, I myself completely forgot the launch was happening yesterday, and spent that time doing my monthly bills. Oy.

They did not attempt to recover the first stage, using it instead to do re-entry flight tests as it landed in the Atlantic Ocean. I suspect they have decided that it is not cost effective to recover used first stages, and would rather dump them in the ocean than pay the cost to recover, test, and store them.

The leaders in the 2018 launch standings:

10 China
7 SpaceX
4 Russia
3 Japan
3 ULA

China and the U.S. continue to be tied in the national standings.

SpaceX ship returns with this week’s fairing apparently intact

Despite tweets from Elon Musk suggesting it had hit the water at “high speed,” SpaceX’s recovery ship appears to have returned with one half of the fairing intact.

There are several images at the link showing the fairing on the ship. That it recovered it out of the water without damage seems surprising and unlikely. Nonetheless, that it looks intact means that the parafoil managed to slow it down enough to limit damage as it hit the water, and the company seems to be making real progress towards making these fairings reusable.

NOAA bureaucracy shuts down SpaceX telecast because stupid

Government marches on! The NOAA bureaucracy forced SpaceX to shut down its launch telecast this morning because agency bureaucrats had decided that views of Earth in the background were the equivalent of a satellite remote sensing system that the agency is required to regulate.

It was definitely an issue with NOAA, the rocket company said. Apparently NOAA recently asserted that cameras on the second stage of the Falcon 9 rocket, which SpaceX uses for engineering purposes, qualify as a remote sensing system, which are subject to NOAA’s regulation. A provisional license obtained by SpaceX for Friday’s launch of the Iridium-5 mission required it to end views once the second stage reached orbit.

This raises some questions about the real purpose behind NOAA’s action, as the regulation specifically exempts “small, hand-held cameras.” SpaceX intends to obtain a full license for such camera views, and as of now there is apparently no restriction in place for SpaceX’s next launch of a NASA cargo ship from Florida, happening as early as Monday.

One theory put forth is that some bureaucrats at NOAA might not have liked the good press that SpaceX got when it broadcast views of the Tesla in space, launched by the Falcon Heavy, and wanted to exert their petty power. This might not be true. What is true is that this interference by NOAA in SpaceX operations is beyond stupid.

But then, why should be expect anything different from our present federal government?

SpaceX successfully launches ten Iridium satellites into orbit

Capitalism in space: SpaceX this morning successfully placed ten Iridium satellites into orbit using its Falcon 9 rocket.

They did maneuver and landing tests with the first stage, which was making its second flight, but did not try to recover it. They did attempt to catch one half of the rocket’s fairing with their fast-moving ship and its giant net. No word yet on whether that attempt worked. Fairing recovery failed. See comments below.

The leaders in the 2018 launch standings:

9 China
6 SpaceX
4 Russia
3 Japan
3 ULA
2 Europe
2 India

The U.S. and China remain tied at nine for the lead in the national rankings.

First commercial crew flights still set for 2018 with chance of delay

NASA’s manager of the commercial crew program provided an update to the agency’s advisory board on Monday, noting that both SpaceX and Boeing are making good progress to their scheduled first flights late this year.

The bottom line however is that there is a good chance the flights will slip into 2019, though based on the update it appears to me that the flights will not slip that much beyond that.

SpaceX using up old used boosters as it shifts to final Falcon 9 design

Capitalism in space: As SpaceX prepares to introduce its final Falcon 9 design, dubbed Block 5, it also plans to use up its stock of old used boosters, with four of the six launches scheduled through the end of April using previously flown boosters.

The article’s review of SpaceX’s stock suggests that the company will only have two used boosters after these launches. It also notes that the company appears to have decided that these earlier Falcon 9 designs can only fly two or three times safely, and that it will be the Block 5 final design that they hope will finally be the booster that can fly repeatedly and reliably.

Since NASA won’t let astronauts fly on anything other than Block 5, and insists it fly at least seven times successfully before the agency will allow its astronauts on it, SpaceX has a lot at stake with this final design. If it has problems, the company will be in trouble. If not, the company will cement the dominate position it presently holds in the launch industry.

SpaceX’s August launch created largest shockwave from rocket ever measured

The August launch by SpaceX of a communications satellite created the largest rocket shockwave in the atmosphere ever measured.

In the new study, Lin and his colleagues used GPS signals to determine how the FORMOSAT-5 launch affected the upper atmosphere. They found Falcon 9’s vertical trajectory created a circular shock wave above the western United States that had never before been seen from a rocket launch. The only similarly-shaped shock wave Lin had seen was from an eruption of Russia’s Sarychev volcano in June 2009.

Not only was the shock wave circular, it was also the largest one Lin had ever seen – roughly four times the area of California. In the new study, he ran computer simulations of rocket launches and found the momentum from a vertical trajectory would tend to create a much stronger atmospheric disturbance than a curved one, which could explain why the shock wave was so large.

In addition to creating a gigantic shock wave, the launch created a hole in the ionosphere above California. Water vapor in the rocket’s exhaust reacted with the ionosphere’s charged particles to create a hole in the plasma layer that took up to two hours to recover.

The rocket’s vertical trajectory was because the overall payload was light. Heavier payload cause the trajectory to curve more as the rocket rises.

Port of Los Angeles approves SpaceX portside construction site

The Port of Los Angeles has granted SpaceX approval to begin construction of a booster construction and refurbishment facility on a large abandoned lot with direct ocean berthing access.

A request summary completed on March 6 details SpaceX’s proposal, laying out a bright future of rocket manufacturing for the abandoned 18-acre lot at Berth 240, one that might soon support “composite curing, cleaning, painting, and assembly [of commercial transportation vessels]” that “would need to be transported by water due to their size.

The article then speculates that this facility will be used to build SpaceX’s BFR. Maybe so, but my guess is that the facility is needed now for bringing reused Falcon 9 and Falcon Heavy boosters back after launch and prepping them for reuse.

While it is likely to take a fair amount of time to prepare the lot for the construction of a facility capable of manufacturing advanced composite rocket components, the wording in the Port documentation also suggests that SpaceX means to transfer its Falcon 9 recovery work to the new berth as soon as it’s available. Indeed, the comparatively massive space would give SpaceX far more room for recovery operations with the drone ship Just Read The Instructions (JRTI), and could potentially become a one-stop-shop for booster recovery and refurbishment. As of now, boosters recovered on the West Coast are transported to the Hawthorne factory for all refurbishment work, operations that themselves already require brief road stoppages to accommodate the sheer size of Falcon 9.

New Air Force launch contracts for SpaceX and ULA

Capitalism in space: The Air Force announced yesterday that it has awarded launch contracts to ULA and SpaceX worth nearly $650 million.

Colorado-based ULA was awarded a $355 million contract for its launch services to deliver two Air Force Space Command spacecraft, labeled AFSPC-8 and AFSPC-12, to orbit. The missions are expected to launch from Cape Canaveral Air Force Station by June 2020 and March 2020, respectively.

…SpaceX, meanwhile, secured a $290 million contract to launch three next-generation Global Positioning System satellites for the Air Force, known as GPS III. The first is expected to launch from the Space Coast by March 2020, either from Cape Canaveral Air Force Station’s Launch Complex 40 or Kennedy Space Center’s pad 39A.

Note the price difference between the ULA and SpaceX.launches. ULA’s cost is $177.5 million per launch, while SpaceX’s is $96.7 million per launch. While it could be that the ULA launches need to cost more because of the nature of the payloads, I don’t buy it. The company simply charges too much, partly because its rockets are expensive. The Air Force however has a strategic need to have more than one launch company, so they bite their tongues and pay the larger amount.

I should add one positive aspect about ULA’s price. The price is considerably below what they used to charge, before SpaceX entered the game. Then, their lowest launch price was never less than $200 million, and usually much more. This lower price indicates they are working at getting competitive. Though SpaceX offers the Falcon Heavy at $90 million (with reused boosters) and $150 million (all new) to commercial customers, its price for the Air Force will likely be higher because of the Air Force’s stricter requirements. This means that ULA’s per launch price of $177.5 here is getting quite close to being competitive with the Falcon Heavy.

Note that the article mentions that SpaceX has also gotten two more commercial launch contracts with DigitalGlobe, so that company’s business continues to boom.

NASA concludes design error caused June 2015 Falcon 9 launch failure

NASA’s independent investigation into the SpaceX’s June 2015 Falcon 9 launch failure has concluded, like SpaceX, that it was caused by the failure of a strut holding an internal tank, but unlike SpaceX the report cites a “design error” for that failure.

In simpler terms, the steel strut that SpaceX chose was not certified to be used in such conditions. Furthermore, SpaceX did not meet the 4:1 redundancy requirement that the manufacturer had instructed. Therefore, the IRT recommended that SpaceX applied greater care when certifying commercially sourced parts for flight.

Interestingly, the IRT also discovered another area of concern not directly related to the accident that arose during the investigation. The report found that the telemetry architecture on the upcoming “Full Thrust” version of the Falcon 9 included a new method of handling packets that increased latency, and thus vital data could have been lost in the event of a similar anomaly.

The IRT report finished by noting that all of the key findings in the report were addressed by SpaceX in time for the successful Jason-3 mission for NASA.

I suspect a political decision at NASA explains the timing of the release of this report, far later than normal. At this point the issues it raises are mostly moot, as SpaceX has upgraded the Falcon 9 and is no longer using the older version that failed on that June 2015 launch. Moreover, NASA has certified those upgraded rockets, which suggests they have reviewed the company’s methods and have decided it is now using parts that are properly certified.

However, the recent successful launch of Falcon Heavy has created a big threat to SLS. This report, released now, is certainly going to be used by SpaceX’s enemies to argue that it is dangerous to buy its heavy lift rocket. “Look, SpaceX is sloppy! It uses uncertified parts that cause its rockets to blow up!” I can see the op-eds, paid for covertly by the big space companies Boeing and Lockeheed Martin, being typed even as I write this.

SpaceX successfully launches commercial communications satellite

SpaceX tonight successfully launched a commercial communications satellite. They did not recover the first stage because the seas were too rough to send out the drone ship.

The leaders in the 2018 launch standings:

7 China
5 SpaceX
3 Japan
3 ULA
2 Russia

Though I have removed Rocket Lab as an American company, crediting it instead to New Zealand, the U.S. still has 8 successful launches total, one more than China.

SpaceX successfully launches Spanish radar satellite

Capitalism in space: SpaceX today successfully launched a Spanish radar satellite.

They also intended to try to recover the rocket’s fairing, but they did not telecast this, and there is no word yet whether they were successful. In fact, their low-key approach here suggests a shift in policy. Previously, SpaceX was eager to show off its test programs. Now, this silence suggests a desire to throttle back on that openness, possibly in order to protect their proprietary engineering.

Update: It appears that at least one fairing half landed in the water intact, though that also means they were unable to catch it. According to a Musk tweet at the link, the fairing missed the ship net by “a few hundred meters.” Musk also indicates the need for larger chutes in the future. Either way, I wonder if the fairing in the water can still be reused.

The 2018 launch standings:

7 China
4 SpaceX
2 ULA
2 Russia
2 Japan

As a nation, the U.S. now has 7 launches total, tying China.

More details about SpaceX’s fairing recovery plans

Link here. The article has some additional excellent images, but it was this paragraph that I thought was most significant:

To oversimplify, after launch, the payload fairing separates (mechanically) from the second stage once Falcon 9 or Heavy has left behind the majority of Earth’s atmosphere. After separation, each fairing half orients itself for a gentler reentry into the atmosphere with cold nitrogen gas thrusters, likely the exact same thrusters used in part to achieve Falcon 9’s accurate and reliable landings. Due to their massive surface area and comparatively tiny weight, fairing halves effectively become exceptionally finicky and awkward sails falling through the atmosphere at insane velocities, with the goal generally being to orient each half like a boat’s hull to provide some stability. Once they are low enough, assuming they’ve survived the journey from TEN TIMES THE SPEED OF SOUND and 62 MILES above Earth’s surface to a more reasonable ~Mach 0.5 and maybe 5 miles of altitude, the fun parts begin. At this point, each fairing half deploys a GPS-connected parachute system (a parasail, to be exact) capable of directing the massive hunks of carbon fiber and aluminum to a very specific point on the surface of the ocean.

What we don’t yet know is whether SpaceX will have cameras on the fairing, and if so, whether they will make those images available to the public, during launch.

Giant net to catch Falcon 9 fairing

This link provides a series of pictures, taken from a distance, of the giant net, and the structures that hold it up, that will be used by the SpaceX barge ship to try to catch the rocket’s fairing during its next launch later this week. (See comments.)

Hat tip reader Kirk Hilliard. The pictures don’t show the barge itself, but they do give a sense of the size of the net. This suggests that SpaceX has equipped the fairing with small jets capable of guiding it to the barge, where it will be caught as it falls at high speed. It could also be that they have found that the fairing itself can act as a parachute and slow itself down as it descends, meaning that impact will not be that intense.

Regardless, I wonder if they will have any cameras on board either the fairing or the barge, and whether they will broadcast them live as it comes down. I wouldn’t be surprised if they didn’t, as it would possibly reveal proprietary information, but the images would certainly be impressive to see.

If they succeed, they will have a rocket that is almost entirely reusable, with only a single 2nd stage engine (out of 10 total) and the second stage itself not reused.

Posted from the Israeli city of Tiberius on the shore of the Sea of Galilee.

SpaceX’s Saturday launch will two test smallsats for its planned 11K internet constellation

Capitalism in space: SpaceX will include two test smallsats for its planned internet constellation of more than 11k satellites when launches a Spanish radar satellite in two days.

The FCC gave SpaceX permission for the test in November, and new documents now show that SpaceX will piggyback Microsat-2a and Microsat-2b onto its launch of a Spanish radar satellite called Paz. The mission is set to lift off from the Vandenberg Air Force Base in California on Saturday at 9:14 a.m. ET aboard a Falcon 9 rocket, according to Spaceflight Now.

Ajit Jai, chairperson of the FCC — the government entity which must ultimately approve SpaceX’s plans — endorsed the effort on Wednesday. “Satellite technology can help reach Americans who live in rural or hard-to-serve places where fiber optic cables and cell towers do not reach,” Pai told Reuters in a statement.

A lot of news sources have made a big deal about Jai’s endorsement, as if that endorsement guarantees FCC approval of SpaceX’s gigantic constellation. It doesn’t, though it certainly helps.

Air Force issues bid requests for five future launches

Capitalism in space: The Air Force has issued a new request for bids on five future satellite launches, with SpaceX and ULA to compete for each.

The Air Force on Wednesday released a final request for proposals for Evolved Expendable Launch Vehicle (EELV) launch services for two National Reconnaissance Office payloads, the fifth Space-Based Infrared System geosynchronous Earth orbit satellite, an Air Force Space Command mission dubbed AFSPC-44 and a secret surveillance mission code-named SilentBarker.

Proposals are due April 16 and contracts are expected to be awarded in late 2018.

…The existence of SilentBarker surfaced last year during a House Armed Services Committee strategic forces subcommittee hearing when Gen. John Raymond, commander of Air Force Space Command, explained that the Air Force and the NRO were developing a “space situational awareness architecture” to help improve the protection of satellites from enemy attacks. SilentBarker is the name of the program.

Why do I have the sneaking suspicion that SilentBarker and Zuma have something to do with each other?

1 26 27 28 29 30 45