Razor butte on Mars

Razor butte on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on November 18, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The science team labeled this image “Inverted Channel and Possible Lake Deposits.” The sharp razor-like butte, which I estimate is about 200 to 400 feet high, is an example of the several inverted channels in the full image. The serrated-edged flat plateau at the top of this picture, one of several in the full image, is an example of those possible lake deposits.

Why do the scientists think a lake might have once been here? Located at 8 degrees north latitude in the dry equatorial regions of Mars, there is almost certainly no near surface ice here now.

As always, the overview map provides the context, and a possible explanation.
» Read more

NASA switches lunar landing site for Astrobotic’s Peregrine lander

Peregrine landing site

NASA today announced that it has changed the planned landing site on the Moon for Astrobotic’s Peregrine lunar lander, presently scheduled for launch at the end of March on the first flight of ULA’s new Vulcan rocket.

The original landing site for Astrobotic’s flight within Lacus Mortis, which is in the northeast quadrant of the lunar nearside of the Moon, was chosen by Astrobotic to suit its lander performance and safety, as well as Astrobotic’s preferences. However, as NASA’s Artemis activities mature, it became evident the agency could increase the scientific value of the NASA payloads if they were delivered to a different location. The science and technology payloads planned for this delivery to the Moon presented NASA scientists with a valuable opportunity, prompting the relocation of the landing site to a mare – an ancient hardened lava flow – outside of the Gruithuisen Domes, a geologic enigma along the mare/highlands boundary on the northeast border of Oceanus Procellarum, or Ocean of Storms, the largest dark spot on the Moon.

The white dot on the map to the right shows this location. The original location was to the west of Atlas Crater in the northeast quadrant of the Moon’s near side, where Ispace’s Hakuto-R lunar lander plans to touch down in April.

This decision by NASA was apparently prompted by the decision to send Intuitive Machines Nova-C lander to Vallis Schröteri in Oceanus Procellarum, which is the rill that flows west out of the crater Aristarchus. Gruithuisen Domes had been a potential landing site for Nova-C, and NASA probably did not want to lose an opportunity to go there.

Curiosity spots foot-wide meteorite on Mars

Meteorite on Mars?
Click for original image.

Curiosity appears to have identified a foot-wide rock on the surface of Mars that is likely a meteorite.

While the JPL press release at this link is certain this is a meteorite, the Curiosity science team is properly more circumspect:

The rock we are parked in front of is one of several very dark-colored blocks in this area which seem to have come from elsewhere, and we are calling “foreign stones.” Our investigations will help determine if this is a block from elsewhere on Mars that just has been weathered in an interesting way or if it is a meteorite.

The image to the right surely does look like a meteorite. If so, this would be one of the largest found so far on Mars by any rover.

Dramatic layers in Valles Marineris

Dramatic layers in Valles Marineris
Click for original image.

Cool image time! The picture to the right, rotated, cropped, and sharpened to post here, was taken on December 28, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows one tiny section of the interior slope of the giant Martian canyon Valles Marineris.

The while layers are not made of frost or ice, because they are light tan, as per the color image. Thus, the alternating layers of dark and light indicate different layering events. The dark layers are probably major lava flood events with a lot of dark ash intermixed, while the tan layers were flood lava events with little dark ash.

The dark lines that cut across these layers are ripple dunes formed from dust that has accumulated inside Valles Marineris.
» Read more

Buried silo on Mars?

A buried silo on Mars?
Click for original image.

Cool image time! The picture to the right, rotated and cropped to post here, was taken on December 31, 2022 by the high resolution camera on Mars Reconnaissance Orbiter.

The headline is pure silliness, and should not be taken seriously. However, the geological feature is intriguing nonetheless. Its almost perfect circular shape suggests a partly buried or eroded crater, except that its consistent thickness, almost like a wall, does not match what the rims of any crater should look like. Crater rims are made up of ejected material pushed out during impact, and thus always include some chaotic features.

My guess is that this circular feature is volcanic in nature. Maybe this was once a caldera, and the circle indicates a final vent from which lava extruded and then solidified.

At least, that’s my story.

The feature is located in the southwest quadrant of Hellas Basin, the basement of Mars, at 49 degrees south latitude. While this also suggests that ice might help explain this, we must also remember that much of the geology in that basin remains unexplained. Thus, there is no reason not to add one more feature to the list.

A Martian hill of pillows

Curiosity's future path, taken January 31, 2023
Click for original image.

The cool image above was taken on January 31, 2023 by the left navigation camera on the Mars rover Curiosity. The red dotted line indicates roughly the planned route forward for the rover, though as Curiosity gets closer to that hill the terrain is looking increasingly difficult. The white box in the panorama below, taken two weeks earlier when the rover was about five hundred feet away, indicates the area covered by this picture. Since then Curiosity has traveled about 200 feet closer.

I post this picture specifically because of the small hill to the right of that path. Probably no more than fifty feet high, its entire surface appears cloaked by a pile of large, pillow-like pavement stones, almost as if the ground below had been washed away so that the massive top layer fell downward over time. Later, wind erosion over eons smoothed the rough edges of those massive blocks, giving them their cushion-like shapes.

This is strange geology. You might see such strange geology on Earth, but rarely. On Mars however strange geology appears increasingly common.

Moreover, to get a 3D sense of this terrain, load into your browser (on separate tabs) the full images of this hill, taken by Curiosity’s right and left navigation cameras (here and here). If you switch back and forth quickly between those tabs, you will see the slight shift in position between the two cameras, and be able to perceive this hill in three dimensions.

Panorama taken January 17, 2023 by Curiosity

Ingenuity successfully completes 41st flight

Overview map
Click for interactive map.

On January 27, 2023, the Mars helicopter Ingenuity successfully completed its 41st flight, flying about 600 feet total in an out-and-back flight that took 109 seconds, slightly longer in length and time than originally planned.

You can watch a very short animation from a handful of the pictures taken during the flight at the first link above. The green dot on the overview map to the right marks Ingenuity’s position before and after the flight, the blue dot Perseverance’s present location. The green line indicates the flight’s approximate path, designed to scout the route that Perseverance intends to follow, as indicated by the red dotted line. The actual flight path has not yet been published. I will add it to this map when the Ingenuity science team provides it.

Expect the next flight to duplicate this one, except it will likely not return but land somewhere out ahead.

That ain’t snow on Mars

That ain't snow on Mars
Click for original image.

Today’s cool image proves once again that you must never too quickly jump to any conclusions when you first look at a picture from space. The photo to the right, cropped, reduced, and sharpened to post here, was taken on November 24, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

At first glance it appears that those ridges are topped with patches of snow or frost. Not. What appears white in this black and white photo is immediately revealed to be light-colored dust in the color image.

According the label assigned to this image by the science team, these ridges represent layers, likely tilted steeply so that when exposed they form the layered cliff edges where that light dust has now gathered.

The overview map below provides further evidence that the white patches are dust, not snow.
» Read more

Perseverance completes placement of first ten samples for later pick up

Overview map
Click for interactive map.

On January 29, 2023 the Perseverance science team completed the placement of the first ten core samples on the floor of Jezero Crater.

On the overview map to the right, the green outline indicates the location of this sample depot. The blue dot marks Perseverance’s present location, while the green dot marks Ingenuity. The red dotted line shows the planned route up onto the delta, which is Perseverance’s next goal.

The titanium tubes were deposited on the surface in an intricate zigzag pattern, with each sample about 15 to 50 feet (5 to 15 meters) apart from one another to ensure they could be safely recovered. Adding time to the depot-creation process, the team needed to precisely map the location of each 7-inch-long (18.6-centimeter-long) tube and glove (adapter) combination so that the samples could be found even if covered with dust. The depot is on flat ground near the base of the raised, fan-shaped ancient river delta that formed long ago when a river flowed into a lake there.

This mapping will be used by a future Mars helicopter to precisely land by each sample, grab it, and then take it to the ascent vehicle for return to Earth.

Curiosity looking back

Panorama by Curiosity, looking back
Click for full image.

Overview map
Click for interactive map.

Curiosity is now about halfway across the flat marker band terrain it faced last week, and as part of its routine, used its right navigation camera on January 28, 2023 to create a 360 degree panorama mosaic of the Mount Sharp foothills that now surround it. The panorama above, cropped, reduced, and sharpened to post here, focuses on the part of that mosaic looking behind Curiosity.

You can see the rover’s recent tracks as it crossed this part of the marker band. In the far distance can be seen in the haze the rim of Gale Crater, approximately 20 to 40 miles away. The yellow lines in the overview map to the right show the approximate area covered by this section of the panorama. It is possible the peak of Navarro Mountain is peeking up in the center of this panorama, but more likely it is no longer visible, blocked by the smaller but closer hills.

As Curiosity is now inside the foothills of Mount Sharp, the floor of Gale Crater is no longer easily seen. The rover needs to be at a high lookout point, something that will likely not occur in its travels for many months if not years to come.

The Curiosity pictures I am featuring this morning are cool, and they are also the only real news in the space field at this moment. As is usual on Monday, it takes few hours for the news at the beginning of the week to make itself known.

Glaciers or taffy on Mars?

Glaciers of taffy on Mars?
Click for full image.

Cool image time! The photo to the right, rotated, cropped, reduced, and sharpened to post here, was taken on November 28, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It was released on January 4, 2023 as a captioned image, with this caption by Alfred McEwen of the Lunar & Planetary Laboratory in Arizona:

The floor of the Hellas impact basin, the lowest elevation on Mars, remains poorly explored because haze often blocks it from view. However, we recently got a clear image, revealing the strange banded terrain. These bands may be layers or flow bands or both.

At first glance, these bands reminded me of the many glaciers found on Mars. McEwen however is being properly vague about the nature of these features, for a number of reasons illustrated by the overview map below.
» Read more

A Martian bear!

A Martian bear!
Click for original image. Full image here.

Silly image time! Today the science team for the high resolution camera on Mars Reconnaissance Orbiter posted the photo to the right, which I have cropped, reduced, and annotated to post here. It was taken on December 12, 2022, and was rotated so that north is to the right in order to make its resemblance to a bear’s face obvious. As noted in the caption by Alfred McEwen of the Lunar & Planetary Laboratory in Arizona:

There’s a hill with a V-shaped collapse structure (the nose), two craters (the eyes), and a circular fracture pattern (the head). The circular fracture pattern might be due to the settling of a deposit over a buried impact crater. Maybe the nose is a volcanic or mud vent and the deposit could be lava or mud flows?

Maybe just grin and bear it.

If you have red-green glasses you can see a 3D anaglyph of this image here. The feature itself is located in the southern cratered highlands of Mars at 41 degrees south latitude, so the presence of near surface ice that would cause a mud volcano is definitely possible.

Lucy team adds 10th asteroid to the spacecraft’s tour

Lucy's route through the solar system
Lucy’s route through the solar system

The Lucy science team has now added a tenth asteroid to the spacecraft’s tour of the solar system, planning its route so that it will pass within 280 miles on November 1, 2023.

The Lucy mission is already breaking records by planning to visit nine asteroids during its 12-year tour of the Jupiter Trojan asteroids, which orbit the Sun at the same distance as Jupiter. Originally, Lucy was not scheduled to get a close-up view of any asteroids until 2025, when it will fly by the main belt asteroid (52246) Donaldjohanson. However, the Lucy team identified a small, as-yet unnamed asteroid in the inner main belt, designated (152830) 1999 VD57, as a potential new and useful target for the Lucy spacecraft.

The asteroid is about 2,300 feet wide. The primary goal of this visit however will be engineering, testing Lucy’s new method of tracking an object as the spacecraft flies past. On the map to the right the dots along Lucy’s path indicate the asteroids to be visited.

A dry lakebed on Mars?

Evidence of a past lake in a crater on Mars
Click for original image.

Today’s cool image illustrates in some ways the uncertainty of science. The photo to the right, rotated, cropped, reduced, and sharpened to post here, was taken on December 1, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The science team intriguingly labeled it “Small Candidate Lake Deposit Downstream of Alluvial Fan.” I am not sure what they consider that lake deposit in the full image, so I have focused on the area of stucco-like ground, which resembles bedrock that has been corroded by some water process.

This area is just to the east of the central peaks of an unnamed 25-mile-wide crater in the southern cratered highlands. Many of the craters in this region are believed by scientists to have once harbored lakes formed by run-off from the glaciers that once existed on the craters’ inner rim. In this case it appears this stucco area is the head of an alluvial fan, coming down from the crater’s central peaks. You can see its beginning in this MRO high resolution image of the central peaks, taken in November 2016. As defined geologically,

An aluvial fan is an accumulation of sediments that fans outwards from a concentrated source of sediments, such as a narrow canyon emerging from an escarpment. They are characteristic of mountainous terrain in arid to semiarid climates, but are also found in more humid environments subject to intense rainfall and in areas of modern glaciation.

In this case the terrain is now arid, but shows evidence it once was icy wet.
» Read more

Curiosity’s drill fails for the fourth time to drill into the marker band layer on Mt Sharp

The fourth attempt yesterday to use Curiosity’s drill to drill into the marker band layer on Mount Sharp once again was unable to drill down deep enough to obtain a sample.

Despite giving it the “old college try,” Curiosity’s attempt to drill into the Marker Band at the “Encanto” site did not reach sampling depth. Because other rocks around the rover look similar to “Encanto” and are likely also too hard to drill, the Science Team decided to convert the plan to a “Touch and Go.”

Although the Science Team is disappointed to leave this Marker Band location without a sample, Curiosity will use MAHLI, APXS, and ChemCam LIBS to analyze the chemistry and texture of the shallow “Encanto” drill hole and tailings, targeting the intriguing light-toned material exposed in the wall of the drill hole. We may see another location in the Marker Band worth sampling in the near future, but even if we don’t, there will certainly be many more exciting drilling opportunities to look forward to as Curiosity continues her climb up Mt. Sharp!

This drilling difficulty is not a surprise. The marker band is a very distinct flat layer that is seen at about the same elevation on all sides of Mount Sharp. It flatness suggests it is resistant to erosion, which also suggests its material will be hard. The inability of Curiosity’s drill to penetrate it only confirms this.

It also makes getting a drill sample to test even more intriguing. I suspect that the science team is going to try a few more times as it travels forward across the band, as indicated by the red dotted line in the panorama below.
Panorama as of January 17, 2023
Click for full image.

New evidence suggests the Earth’s inner core no longer rotates faster than the planet’s outer layers

The uncertainty of science: The same scientists who in the late 1990s thought they had detected evidence that the Earth’s inner core rotates faster than the planet’s mantle now say that this faster rotation ceased sometime around 2009.

In 1996, Song and another researcher reported studying earthquakes that originated in the same region over three decades, and whose energy was detected by the same monitoring station thousands of kilometres away. Since the 1960s, the scientists said, the travel time of seismic waves emanating from those earthquakes had changed, indicating that the inner core rotates faster than the planet’s mantle, the layer just beyond the outer core.

…Now, Yang and Song say that the inner core has halted its spin relative to the mantle. They studied earthquakes mostly from between 1995 and 2021, and found that the inner core’s super-rotation had stopped around 2009. They observed the change at various points around the globe, which the researchers say confirms it is a true planet-wide phenomenon related to core rotation, and not just a local change on the inner core’s surface.

It is important to note that there has not been a consensus on this data, that some scientists even doubt the super-rotation ever existed. The data itself is sparse enough and includes enough gaps to allow for this disagreement, which also means this new conclusion is also uncertain.

Martian crater with mound of ice? mud? hardened sand?

Crater with mound
Click for full image.

Cool image time! The photo to the right, cropped to post here, was taken on October 31, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a small 4,000-foot-wide crater that is practically filled with a smooth, almost perfectly spherical mound, with the rest of the crater interior filled with sand dunes and what appears to be glacial debris.

Is that mound also glacial debris, covered with a layer of dirt and dust to protect it? If so, one wonders how the ice ended up in this shape. There are other craters with similar mounds in this region, all suggesting glacial debris but with the same question. Craters with lots of near surface ice in this region more often have a squishy blobby look.

Is the mound instead possibly mud, expressing the existence of a mud/ice volcano? If so, it shows no central pit or caldera, which is typical of such things.

Is it hardened sand? Martian dust that gets blown into craters generally gets trapped there, building up over time. If so, however, why does it have a smooth almost perfectly rounded shape? The ripple sand dunes surrounding it are more like what you would expect.

The small craters on the mound also tell us that it is hardened and old, no matter what it is made of.
» Read more

The youngest flood lava on Mars, flowing past a crater

Crater with lava flow
Click for full image.

Cool image time! The photo to the right, rotated, cropped, reduced to post here, was taken on December 3, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The title given to this image by the MRO science team is “Upstream Edge of Crater in Athabasca Valles.” The crater itself is a pedestal crater, uplifted from the surrounding terrain because it was more resistant to erosion.

The material to the east of the crater’s rim definitely appears to have flow characteristics, but is it wet mud, glacial ice, or lava?

To figure this out we need as always some context. The latitude, 8 degrees north, immediately eliminates mud or glacial material. This location is in the dry equatorial regions of Mars, where no near surface ice has yet been found. Thus, the flow features are likely hardened lava.

What direction however was the flow? Was it flowing to the north, widening as it moved past the pedestal crater? Or was it to the south, narrowing as it pushed past that crater? To answer this question we need to widen our view.
» Read more

Ingenuity completes 40th flight

Overview map
Click for interactive map.

As predicted by the Ingenuity engineering team on January 17, 2023, the Mars helicopter yesterday completed its 40th flight, flying approximately 92 seconds and 584 feet to the northwest to place it at the head of the hollow that Perseverance will travel to climb up onto the delta that flowed into Jezero Crater sometime in the past.

The green dot on the overview map to the right shows the helicopter’s position, post flight. The blue dot shows Perseverance’s present position. The red dotted line indicates the rover’s future route.

At the moment, only eleven images have been returned from the flight, and these only show the first 20 seconds of flight. The flight however has been added to the helicopter’s flight log, which shows that Ingenuity actually flew about 23 feet farther and 7 seconds longer than expected. This extra distance was likely because the helicopter needed to find a good landing site, using its upgraded software that allows it to fly over rougher terrain.

Machete Mesa on Mars

Machete Mesa on Mars
Click for full image.

Cool image time! The picture to the right, cropped to post here, was taken on November 30, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a variety of ridges in a region of Mars called Arabia Terra, which is also the largest transition zone between the Martian southern cratered highlands and the northern lowland plains.

While this picture illustrates some nice geological facts about Mars (see below), I post it simply because of the dramatic sharpness of the ridge on top of the mesa, which I guess is several hundred feet high, but only a few feet across, at most, at its peak. A hike along this ridgeline would be a truly thrilling experience, one that the future human settlers on Mars will almost certainly find irresistible. Put this location on your planned tourist maps of Mars. It will likely be an oft-visited site.
» Read more

Curiosity climbs onto the Marker Band

Panorama as of January 17, 2023
Click for full image.

Overview map
Click for interactive map.

Curiosity’s exploration of the foothills of Mount Sharp continues. The panorama above, cropped, reduced, and annotated to post here, was taken on January 17, 2023 by the rover’s right navigation camera. It looks forward across the flat marker band terrain that the rover has been studying for the past few weeks.

From orbit, this marker band appears very smooth and flat, and is found in many places on the flanks of Mount Sharp, always at about the same elevation. The arrows in the overview map to the right mark several places near Curiosity where the band is evident. The blue dot marks Curiosity’s present location, the red dotted line its planned route, and the yellow lines indicate the approximate area covered by the panorama above. The distance across the marker band to the uphill slope is about 500 feet.

Now that Curiosity is on the marker band, it no longer looks smooth. Instead, it is a flat plain of many uneven paving stones interspersed with dust. While not as rough as the Greenheugh Pediment, which Curiosity had to retreat from because it was too hard on the rover’s wheels, the marker band is hardly the smooth soft terrain implied by the orbital images.

These paving stones have also proven difficult to drill into, with Curiosity’s drill already failing twice previously because the rock was too hard. That hardness should not be a surprise, however, as this layer’s flatness in many places shows its resistance to erosion.

As it crosses this wide section of the marker band the science team will obviously be looking for more candidate drill sites. Sooner or later one should work.

The sea of dunes surrounding the Martian north pole

The sea of dunes surrounding the Martian north pole
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on December 5, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a collection of wormlike dunes located in the giant sea of dunes that surrounds the Martian north pole ice cap.

North is to the top. The season when this picture was taken was northern winter. The Sun is barely above the horizon, only 8 degrees high, and shining from the southeast. Because it is winter it is also dust season, making the atmosphere hazy and thus making the light soft. No distinct shadows, except that the sides of the dunes facing away from the Sun are darkly shadowed.

The consistent orientation of the dunes suggests that the prevailing winds blow from the northeast to create the steep-sided alcoves. The wind however might not be the only factor to form these dunes.
» Read more

A Martian river canyon?

A Martian river canyon?
Click for full image.

Today’s cool image highlights the biggest mystery of Mars that has baffled scientists since the first good pictures of its surface were taken in the early 1970s by the Mariner 9 orbiter. The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on October 24, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows a very small segment of the 400-mile-long meandering canyon on Mars called Nigal Vallis. From the Wikipedia page:

The western half of Nirgal Vallis is a branched system, but the eastern half is a tightly sinuous, deeply entrenched valley. Nirgal Vallis ends at Uzboi Vallis. Tributaries are very short and end in steep-walled valley heads, often called “amphitheater-headed valleys.”

We can see one of those short tributaries on the image’s left edge. The overview maps below provide a wider view of this entire canyon.
» Read more

Searching for surface changes caused by the biggest recorded Martian quake

Location of May quake
The white patches mark the locations on Mars of the largest quakes detected by InSight

On May 4, 2022, the seismometer on the InSight Mars lander detected a 4.7 magnitude earthquake on Mars, the largest ever detected.

The map to the right shows the approximate location of that quake by the white patch with the green dot. (You can read the paper describing this quake here [pdf].) This is also the same approximate location of a small five-mile-wide crater known to have many slope streaks on its interior walls.

Slope streaks are a uniquely Martian geological feature whose origin remains unknown. They resemble dark avalanche streaks flowing downhill, but make no changes in the topography, and lighten with time. They also occur randomly throughout the year. Two slightly different theories for their formation suggest that the streaks are triggered by the fall of dust particles, though neither is proven or even favored.

If either of these theories are true, then the 4.7 magnitude earthquake at this location should have caused the formation of more streaks. To find out, scientists have used the high resolution camera on Mars Reconnaissance Orbiter (MRO) to compare that crater both before and after the quake to see if any new streaks has appeared. Below is a side-by-side comparison of these images.
» Read more

American camera snaps picture of shadowed floor of Shackleton crater

floor of Shackleton Crater
Click for original image.

Using ShadowCam, a NASA-funded camera designed to take high resolution images of the permanently shadowed regions on the Moon, scientists have snapped the first picture of shadowed floor of Shackleton crater.

That image, reduced to post here, is to the right. I have added some labels to clarify what we are seeing. The arrow points to a boulder track caused when the boulder rolled down the crater rim slope.

The camera will be used to image the moon’s permanently shadowed regions with a resolution of better than 6.6 feet (2 meters) per pixel

ShadowCam is one of six instruments on the South Korean lunar orbiter, Danuri, which is now in lunar orbit and beginning its science phase. This was therefore only a successful test image to make sure the camera was working as planned.

Though the area photographed was in shadow (otherwise it would have saturated ShadowCam’s sensitive camera), this first image appears to show no ice at the base of the crater. This simply could be that this part of the crater floor is not permanently shadowed, but gets illuminated enough to melt off any ice. Or it could be that no ice exists in these places. We need to wait and see.

A collapse on Mars

A collapse on Mars
Click for full image.

The photo to the right, cropped, reduced, and enhanced to post here, was taken on October 27, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The full photo was simply labeled as a “collapse feature”, and because it contained a few other sinks to the north beyond the top edge of this cropped picture, it is unclear if the scientists were referring to this sink in particular.

This sink is the most interesting however, because it really looks like something had sucked material out from below, causing the surface crust to fall downward, intact except for some cracks along the perimeter of the collapse.

The overview map below as always provides some context that might explain what we are seeing.
» Read more

A new hotspot map of Io, based on Juno data

Hot spot map of Io
Click for original figure.

Scientists have compiled a new map of the many volcanic hotspots on the Jupiter moon Io, based on data obtained by Juno, including 23 spots previously undetected. From the paper’s abstract:

We mapped the hot spot distribution on Io’s surface by analyzing the images acquired by the JIRAM instrument onboard the Juno spacecraft. We identified 242 hot spots, including 23 not present in other catalogs. A large number of the new hot spots identified are in the polar regions, specifically in the northern hemisphere. The comparison between our work and the most recent and updated catalog reveals that JIRAM detected 82% of the most powerful hot spots previously identified and half of the intermediate-power hot spots, thus showing that these are still active. JIRAM detected 16 out of the 34 faint hot spots previously reported.

The map above is taken from figure 2 of the paper. The data, when compared to other earlier data, confirms that many of these hot spots are long-lived, and have been erupting now for decades.

Ingenuity about to fly up onto the delta

Overview map
Click for interactive map.

The engineering team that operates the helicopter Ingenuity on Mars announced today that the next flight, #39, will go about 456 feet and travel to the northeast.

The green dot on the map to the right shows Ingenuity’s present location. The yellow lines indicate the territory within which this flight will head. If successful it will be the first time the helicopter has left the floor of Jezero Crater, and moved uphill onto the delta that flowed into that crater sometime in the far past.

The blue dot marks Perseverance’s present location. The dotted red line indicates its eventual planned route on that delta.

The engineers state that their flight goal is to “flight test new software”. This new software is supposed to allow Ingenuity to fly over rougher terrain. On the 38th flight, it proved its worth by not only flying over an area of rippled sand dunes, it landed between two.

This next flight, scheduled for sometime today, will be even more challenging, because the helicopter will have to fly upward above higher terrain.

Defrosting Martian Dunes

Defrosting Martian dunes
Click for full image.

Cool image time! The photo to the right, cropped, reduced, and sharpened to post here, was a captioned image on January 6, 2023 from the science team of the high resolution camera on Mars Reconnaissance Orbiter (MRO). From the caption by Alfred McEwen of the Lunar & Planetary Laboratory in Arizona:

In the late winter when first illuminated, the carbon dioxide frost at high latitudes will begin to sublimate. Over sand dunes, the defrosting spots and mass wasting on steep slopes produce striking patterns. This scene is especially artistic given the shapes of the dunes as well as the defrosting patterns.

» Read more

The dry and dusty equatorial regions of Mars

The dry cratered highlands of Mars
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on October 2, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a cluster of craters filled with ripple dunes.

The color strip tells us something [pdf] about the surface materials here. The reddish-orange in the craters is thought to be dust. The greenish terrain above the craters is likely coarse rock or bedrock, covered with a veneer of dust.

There is no ice here, just dust that over time has become trapped in the craters and cannot escape. And though there is also dust on the surrounding terrain, there is not that much. The craters themselves are likely very ancient, based on their shape and the eroded condition of their rims.

» Read more

1 18 19 20 21 22 59