Tag Archives: Mars

Mars Reconnaissance Orbiter image of Curiosity

Curiosity as seen from orbit

The Mars Reconnaissance Orbiter (MRO) science team today released an image taken on May 31, 2019 by the orbiter’s HiRISE high resolution camera of Curiosity when it was nestled against the cliff at the bottom of Vera Rubin Ridge.

The image above is that enhanced color image, reduced and annotated to post here. I have added the track of Curiosity’s route down from Vera Rubin Ridge leading up to the point where this picture was snapped.

In the image, Curiosity appears as a bluish speck. Vera Rubin Ridge cuts across the scene north of the rover, while a dark patch of sand lies to the northeast.

Look carefully at the inset image, and you can make out what it is likely Curiosity’s “head,” technically known as the remote sensing mast. A bright spot appears in the upper-left corner of the rover. At the time this image was acquired, the rover was facing 65 degrees counterclockwise from north, which would put the mast in about the right location to produce this bright spot.

Mirror-like reflections off smooth surfaces show up as especially bright spots in HiRISE images. For the camera to see these reflections on the rover, the Sun and MRO need to be in just the right locations. This enhanced-color image of Curiosity shows three or four distinct bright spots that are likely such reflections.

From this location Curiosity first continued along the cliff’s base to study that dark patch of sand to the northeast, then it turned almost due south in order to get back to its nominal route into Gediz Valles canyon, as shown in my May 30, 2019 rover update.


Wheel update on Curiosity

Periodically, the Curiosity science team stops from its research to reassess the condition of the rover’s wheels. To do this they use the rover’s color camera, dubbed the Mast Camera (Mastcam), taking close-up pictures of the wheels to compare those with earlier photographs see if there has been any additional damage and deterioration over time.

Yesterday Mastcam took a new series of images of the rover’s wheels. Below are two pictures, the left taken on August 27, 2017, the right taken on July 7, 2019. I have annotated the images to help indicate where they match.
» Read more


ExoMars 2020 parachutes damaged during test

Bad news: The parachutes for the European/Russian ExoMars 2020 mission were damaged during a parachute test.

A May 28 test of the parachute system used a high-altitude balloon above the Swedish Space Corporation’s Esrange test site in northern Sweden. The test was intended to demonstrate the end-to-end performance of the entire system, including both the pilot and main chutes as well as the mortars used to extract the pilot chutes.

ESA said that the first main parachute suffered several radial tears in its fabric, all occurring before reaching its maximum load. The second main parachute also suffered a single tear, also before peak loading.

The other parts of the parachute system worked as expected, and ESA said “a good level of the expected aerodynamic drag was nevertheless achieved” despite the damage sustained by the parachutes. However, the agency acknowledged that the problem needs to be understood and corrected prior to the mission’s launch in one year.

They can easily get the parachutes repaired before the July 2020 launch. The problem is figuring out what caused the damage and fixing that in the time left. They already had planned two more parachute tests, but these cannot happen prior to all the fixes, and then they have to work.

Considering that they will only assemble the spacecraft at the end of this year, I am increasingly thinking that ExoMars 2020 will not launch in 2020. And if it does, I will not be surprised if it turns out to be a failure.


The Martian seabed?

Cones and strange blobs
Click for full image.

Cool image time! Above is an image taken by the high resolution camera of Mars Reconnaissance Orbiter (MRO) in November 2018 of an area in the vast relatively featureless northern lowlands of Mars. I have rotated, cropped, and reduced it to post here.

I have also indicated two sections, indicated by the white boxes, that I have cropped out of the full resolution image to highlight some interesting features. Both images can be seen in full resolution below.

While the northern lowlands seem featureless from a distance, with few craters, a closer look always reveals many things that are both baffling and fascinating. In this case the region is called Galaxias Colles, a region of mesas and knobby hills. This particular image was dubbed “Cones in Galaxias Colles,” and was clearly taken to get a better look at these strange blobby features.
» Read more


Where are the caves on Mars?

Overview map of pits near Arsia Mons

Each month I go through the monthly download of new images from the high resolution camera on Mars Reconnaissance Orbiter (MRO). And each month since November I have found a bunch of newly discovered pits photographed in the region around the volcano Arsia Mons (see: November 12, 2018, January 30, 2019, February 22, 2019, April 2, 2019, and May 7, 2019). The map on the right has been updated to include all those previous pits, indicated by the black boxes, with the new pits from June shown by the numbered white boxes.

To the right are the first three pits in the June archive, with the link to each image site found here (#1), here (#2), and here (#3).

Pits 1 through 3
For full images: Number 1, Number 2, Number 3.

All three are what the scientists doing this research call Atypical Pit Craters:

These Atypical Pit Craters (APCs) generally have sharp and distinct rims, vertical or overhanging walls that extend down to their floors, surface diameters of ~50–350 m, and high depth to diameter (d/D) ratios that are usually greater than 0.3 (which is an upper range value for impacts and bowl-shaped pit craters) and can exceed values of 1.8. Observations by the Mars Odyssey Thermal Emission Imaging System (THEMIS) show that APC floor temperatures are warmer at night and fluctuate with much lower diurnal amplitudes than nearby surfaces or adjacent bowl-shaped pit craters.

The fourth pit, shown in the reduced and cropped image below, might actually be the most interesting of the June lot.
» Read more


Insight engineers get first look at hole

InSight Mole hole
Click for full image.

The Insight engineering team has successfully lifted the mole structure allowing them to see the hole the mole was pounding into the Martian ground in their effort to diagnose why the mole has been unable to drill more than a foot or so down.

The image to the right shows the mole, the white tubelike structure, inside the hole. As noted by Instrument Lead Tilman Spohn,

I along with others from the team were a bit shocked when we saw how large the pit actually is. Its diameter is about two times the diameter of the mole. The bottom of the pit is difficult to see (we expect better images once the lift is complete) but it seems that it is about 2-2.5 mole diameters deep. A mole diameter is 27mm. So the mole must have compacted the regolith quite a bit. In addition to its own volume it must have displaced about half of its buried volume.

There seems to be a little rim surrounding the pit but most of the displacement likely was compaction. We cannot see the inclination of the wall very well but it at least seems to me that the mole was “precessing” (like a spinning top) and carved a conical hole. This is consistent with the recordings of our tiltmeter STATIL during the hammering in March. We will have to wait for better images to confirm or disprove that. In any case, the apparent compaction seems to be compatible with a large porosity, relatively low density.

What they do next is unknown. From what I understand, they do not have the option of lifting the mole out and trying a different location. Moreover, the images and data suggest it wouldn’t matter anyway. The mole is apparently not designed to drill a shaft in this kind of ground.


Chaos on Mars

Aurorae Chaos in Margaritifer Terra
Click for full image.

The Mars Express science team today released a digital perspective view of the chaos terrain located in the outlet region for the vast drainages, which include Marineris Valles, coming down from the Tharsis Bulge volcanic region that holds Mars’ largest volcanos.

The view, reduced to post here on the right, was created from a image taken by Mars Express on October 31, 2018. This chaos terrain is south of the various examples of chaos terrain previously highlighted here on Behind the Black (May 14, 2018, June 26, 2018, March 11, 2019, March 14, 2019). As they note,

The division between the chaotic terrain and plains can also be seen clearly in these images. The left (south) side of the image is notably smoother and more featureless than the jumbled right (north) side, and the two regions are split by a prominent line carving diagonally across the frame. The transition area around this scarp is especially broken and fractured; this is thought to be caused as the martian crust stretched and moved.

The ancient chaotic terrain we see on Mars holds information about how water once permeated and interacted with the planetary surface, including how it was transported, stored, and released.

Chaotic terrain is thought to have formed as chunks of the martian surface collapsed in dramatic events triggered by the heating of material containing ice or water-bearing minerals – possibly due to climatic or volcanic heat sources, or an impact from an asteroid or comet. This released large amounts of water, causing the terrain above to subside. The water then drained away quickly, leaving behind the messy, broken patterns seen in regions such as Aurorae Chaos, which is thought to have formed some 3.5 billion years ago.

Mars Express images don’t quite have the resolution of the high resolution images from Mars Reconnaissance Orbiter, but they cover a wider area, so that the spacecraft has now photographed almost the entire Martian surface since its arrival in Mars orbit in December 2003.


The expanding range for Martian ice scarps

Another ice scarp
Click for full image.

The discovery in January 2018 of a number of Martian cliff faces, or scarps as the scientists dubbed them, with a visible and apparently very accessible underground layer of ice, had significant ramifications.

First, it proved that, in at least one area south of Hellas Basin and one spot in the northern hemisphere, an underground ice table existed on Mars at latitudes as far south as 55 degrees. Scientists had theorized that this ice table, comparable to the water table on Earth, existed, but here was visible proof.

Second, the discovery showed places where water could be accessed relatively easily by future colonists. There are plenty of indications from orbiter images and lander/rover data that water is present in many places on Mars, but here the water appeared almost pure and could be obtained without major digging or processing. Whether that ice table extends even farther south, making it even more accessible, remains as yet a scientific question.

In the next few months the scientists involved in this research located more ice scarps in areas beyond the range of those initial discoveries. Since then however even more scarps have been found, including the scarp in the image above and to the right, cropped, reduced, and annotated to post here.

This particular scarp is located inside a crater. The uncaptioned release from the high resolution camera on Mars Reconnaissance Orbiter (MRO), described it as a “Scarp in mantling material.” According to Colin Dundas of the U.S. Geological Survey’s Astrogeology Science Center in Arizona,
» Read more


Another odd crater on Mars

Odd shaped crater
Click for full image.

Cool image time! In a sense, to announce that scientists have found an oddly shaped crater on Mars is to state the obvious. In the years since the first Martian fly-by by Mariner 4 in 1965, scientists have been discovering numerous odd-shaped craters on Mars, every single of which has challenged our assumptions about the planet’s geology. I myself have posted a half dozen such posts since January (January 7, January 10, January 14, March 26, March 27, June 12).

Yet, it is always worth looking when another one crops up, because of the fact that they challenge our assumptions about Martian geology. They are also always cool to look at! On the right, cropped and reduced to post here, is an image taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) on April 19, 2019 of what the scientists have dubbed an “Odd Shaped Crater in Arabia Terra.”

Overview map

Arabia Terra is one of the largest regions of the transition zone between the northern lowlands and the southern highlands. This crater is located, as shown by the red cross in the overview map to the right, near its northern edge, in an area where the descent into the northern lowlands is somewhat abrupt and broken up by large craters and chaos terrain.

The crater itself holds numerous geological mysteries. Its shape suggests two impacts of different sizes overlapping each other, but without any remnant of the inner rim of the second impact. Where did that remnant go? Or maybe this wasn’t caused by two impacts, but by one impact that reshaped the surface in this odd and inexplicable way.

Then there is the three teardrop-shaped patterns in the crater’s floor. They look like the brushstrokes of a giant-sized painter. Were they caused by the wind? And if so, why in this pattern?

Planetary geologists could probably come up with a dozen more questions. The number tells us how little we know about Mars.


Elementary students to compete to name 2020 Mars rover

NASA has initiated a project to have the nation’s K-12 elementary school children compete to name the 2020 Mars rover.

NASA has selected two partner organizations to run a nationwide contest giving K-12 students in U.S. schools a chance to make history by naming the Mars 2020 rover. An application to become contest judge also is now available online.

Battelle Education, of Columbus, Ohio, and Future Engineers, of Burbank, California, will collaborate with NASA on the Mars 2020 “Name the Rover” contest, which will be open to students in the fall of 2019. The student contest is part of NASA’s efforts to engage the public in its missions to the Moon and Mars.

They are also looking for people to judge the contest.


Exploring with Mars Reconnaissance Orbiter

Terrain sample
Click for full image.

In my never-ending rummaging through the images released each month from the high resolution camera on Mars Reconnaissance Orbiter (MRO), I have sometimes been puzzled by the titles they choose for some photographs. For example, many pictures each month are simply titled “Terrain Sample.” The image to the right, cropped and reduced to post here, is one example, and its content adds to the mystery.

The photograph itself shows a generally featureless surface. Other than the scattering of small craters, there are only very slight topographical changes, the most obvious of which is the meandering ridge to the east of the largest crater.

I wondered why this picture was taken, and why it was given such a nondescript name. To find out, I emailed Veronica Bray at the University of Arizona. She had requested this image as part of her job as a targeting specialist for MRO. Her answer:
» Read more


Spike in methane detection in Gale Crater

The uncertainty of science: In the past week Curiosity has suddenly discovered a spike, the largest ever, in the amount of methane in the local atmosphere.

The amount detected was still quite tiny, 21 parts per billion by volume.

Curiosity doesn’t have instruments that can definitively say what the source of the methane is, or even if it’s coming from a local source within Gale Crater or elsewhere on the planet.

“With our current measurements, we have no way of telling if the methane source is biology or geology, or even ancient or modern,” said SAM Principal Investigator Paul Mahaffy of NASA’s Goddard Spaceflight Center in Greenbelt, Maryland.

While there is going to be a lot of speculation in the press and among scientists who should know better, this detection remains a major mystery. We as yet have no idea what caused it. Nor is it likely to have been caused by biology, though that does remain a possibility.

What is most puzzling is that the terrain that Curiosity is presently traveling across, the clay unit at the foot of Mount Sharp, shows no likely source.

This past weekend the scientists focused the rover’s instruments on this topic, in the hope this could help narrow the problem.


Strange Martian gullies

Gullies on Mars
Click for full image.

Cool image time! The image to the right, cropped and reduced to post here, was taken in 2010 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Uncaptioned, the image page is simply entitled “Older Gullies and Channels in Slopes of Softened Large Crater.”

I stumbled upon it today while researching another image taken this year of the “valley networks” in the floor of that same crater. Those networks were intriguing, but the gullies on the right were much more fascinating, because they appear to be some form of erosion drainage coming down both sides of a high ridge near the northern rim of this large apparently unnamed crater in the southern cratered highlands of Mars, to the west of Hellas Basin.

On Earth my immediate explanation for this erosion would be a major monsoon-like storm, such as we get here in the southwest and call “gully-washers.” When a lot of water is quickly dumped onto a hill where there is not of vegetation to help bind the soil together, the water will quickly carve out gullies that looks almost exactly like these.

On Mars, who knows? It certainly wasn’t a monsoon thunderstorm that did this. And being in the Martian southern highlands it is unlikely it was from an ocean of any kind. Were there lakes here? Past research has found places where lakes might have existed on Mars, but these places are far north in the transitional zone into the northern lowlands.

Nor are these gullies the only interesting features in this one image.
» Read more


Mass wasting on Mars

Mass wasting in Martian crater
Click to see full image.

Cool image time! Mass wasting is a term that geologists use to describe a specific kind of avalanche, where the material moves down slope suddenly in a single mass.

The image on the right, taken from the image archive of the high resolution camera on Mars Reconnaissance Orbiter (MRO) and cropped and reduced in resolution to post here, shows a dramatic example of this kind of avalanche. You can see two separate avalanches, each of which moved a significant blob of material down slope into the center of the crater floor.

Studying such events is important. Scientists know that Mars has an underground ice table at high latitudes. What they don’t know is how far south that ice table extends. This crater is located at 5 degrees north latitude, almost at the equator, so if this avalanche exposed any ice in newly exposed cliff wall that would be a significant discovery.

Based on the color image, there does not appear to be any obvious ice layers, as seen in higher latitude scarps in the southern hemisphere. This doesn’t prove they aren’t there, merely that this image was unable to see them. Maybe the resolution is not good enough. Maybe the ice is too well mixed in with the dust and dirt and it therefore isn’t visible. Maybe the ice table is deeper underground than the deepest part of this crater.

Or it could be that at the Martian equator the underground ice is mostly gone. For future colonists, knowing this fact will influence where they put those first colonies. Near the equator has some advantages, but if there is little easily accessible water those advantages mostly vanish.

At the moment we simply do not know, though much of the imagery now being taken from orbit are attempts to answer this question.

One final detail about the image. Note the slope streaks coming down the crater’s slopes. These remain their own Martian mystery.


Wind and/or water erosion on the Martian northern lowlands

A mesa in the northern Martian lowlands
Click for full image.

Cool image time! The picture on the right, cropped and reduced in resolution to show here, was taken by the high resolution camera on Mars Reconnaissance Orbiter on April 21, 2019, and shows the erosion process produced by either wind or water as it flowed from the east to the west past one small mesa.

It is almost certain that the erosion here was caused by wind, but as we don’t know when this happened, it could also be very old, and have occurred when this terrain was at the bottom of the theorized intermittent ocean that some believe once existed on these northern lowlands. The location itself, near the resurgences for Marineris Valles and the other drainages coming down from the giant volcanoes, might add weight to a water cause, except that the erosional flow went from east to west, and the resurgences were coming from the opposite direction, the west and the south.

The terrain has that same muddy wet look also seen in the more damp high latitudes near the poles. Here, at 43 degrees latitude, it is presently unknown however how much water remains below the surface.

When the craters to the right were created, however, it sure does appear that the ground was damp. Similarly, the material flow to the west of the mesa looks more like the kind of mud flow one would see underwater.

I must emphasize again that I am merely playing at being a geologist. No one should take my guesses here very seriously.

At the same time, I can’t help being endlessly fascinated by the mysterious nature of the Martian terrain.


The damp southern latitudes of Mars

Impact craters on the southern permafrost of Mars
Click for the full image.

Cool image time! The image on the right, cropped to post here, was part of the monthly image release from the high resolution camera on Mars Reconnaissance Orbiter (MRO). The release came with no caption, and was merely titled Aonia Terra, indicating that it was part of the vast cratered region ranging from 30 to 81 degrees latitude south of Valles Marineris.

These craters are at the high latitude of 73 degrees, so they are relatively close to the south pole. Based on what I have recently learned about the Martian poles, the higher the latitude the more water you will find saturated in the ground. In many ways one could refer to this ground as a kind of permafrost.

The lander Phoenix landed at about 68 degrees north latitude, slighter farther from the north pole, and was able to find water by merely scraping off a few inches of ground.

Thus, we should not be surprised by the muddy look of these craters. Their bolides landed on ground that was likely saturated with water, and went splat when they hit.

The scientific puzzle is why one crater seems to sit above the general surface, as if the ground resisted the impact, while the other seems to be mostly sunken, as if the ground was so soft that when the bolide hit, it sunk as if it landed on quicksand, leaving only a vague trace of an impact crater.

Don’t ask me for an explanation. I only work here.


Ghost dunes on Mars

A ghost dune
Click for full image.

Cool image time! The Mars Reconnaissance (MRO) science team today released a captioned image of several ghost dunes on Mars. The image on the right is cropped and reduced to highlight one of those ghosts, which the scientists explain as follows.

Long ago, there were large crescent-shaped (barchan) dunes that moved across this area, and at some point, there was an eruption. The lava flowed out over the plain and around the dunes, but not over them. The lava solidified, but these dunes still stuck up like islands. However, they were still just dunes, and the wind continued to blow. Eventually, the sand piles that were the dunes migrated away, leaving these “footprints” in the lava plain.

The location of these ghost dunes is inside the southeast edge of Hellas Basin, what I call the bottom of Mars.


Land of stucco and lava-filled cracks

Stucco and filled cracks on Mars
Click for full image.

Cool image time! The picture on the right, cropped and reduced to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter in December 2018 and released earlier this year. It shows a filled fault/fissure in a region dubbed Cereberus Palus, located south of the giant volcano Elysium Mons and to the west of Olympus Mons. This region is also biggest and most extensive sections of the transition zone between Mars’s southern highlands and the northern lowlands. This area however is so far from the lowlands its geology is more likely influenced more by the volcanism that created Elysium Mons to the north.

Overview map

The overview map to the right illustrates this geography, with the black square indicating the location of this image.

The image itself strengthens my uneducated conclusion. This region of Cereberus Palus is filled with many faults, cracks caused as the terrain was stretched by the rising volcano. In some cases, as shown here, the cracks became filled with lava from below, as indicated by the lighter color of the material in those filled cracks..

What struck me most about this image was the terrain on the picture’s right. Looks exactly like the stucco on the outside of my house. It is as if a plasterer came by before the lava solidified and ran his putty knife over the surface to create the multiple small ridges.

It is worthwhile checking out the full resolution image. The details are especially intriguing.


The Martian North Pole

The Martian North Pole

Since the very beginning of telescopic astronomy, the Martian poles have fascinated. Their changing sizes as the seasons progressed suggested to the early astronomers that Mars might be similar to Earth. Since the advent of the space age we have learned that no, Mars is not similar to Earth, and that its poles only resemble Earth’s in a very superficial way.

Yet, understanding the geology and seasonal evolution of the Martian poles is critical to understanding the planet itself.

This post will focus on the Martian north pole. The map on the right of the north polar regions is based on many satellite images supplemented by a lot of research by planetary scientists. The black circle in the middle is an area with relatively poor image coverage. The green areas are regions of higher elevation where the bulk of the permanent ice cap is located, surrounded by the blue northern lowlands that cover much of Mars’s northern hemisphere and are thought to have once harbored an intermittent ocean.

Olympia Undae dune field
Click for full image.

The reddish regions encircling the permanent ice cap are large seas of sand dunes, with Olympia Undae the largest and most sand-dune-packed. The image on the right, posted initially here on March 25, 2016, was taken by Mars Odyssey and shows the endlessness of this dune sea. Olympia Undae, spanning 120 degrees of longitude, is about 700 miles long, making it bigger than the Grand Canyon. As I noted in that post, “Just imagine trying to travel though this area. It is the epitome of a trackless waste. And without some form of GPS system getting lost forever would be incredibly easy.”

The polar cap itself, surrounded by those sand seas, is 600 miles across and a little less than 7,000 feet deep. It is made up of many seasonal layers, like the icecaps on Earth, with the bulk a mixture of water ice and cemented dust and sand. The very top layers, dubbed the residual icecap, is about three to six feet thick made up of frozen water having a volume about half of Greenland’s icecap. While this water could evaporate away, data suggests it is, like the icecaps on Earth, in a steady state, neither gaining or losing volume with each Martian year.

Above the residual icecap of water is the seasonal icecap made up of carbon dioxide. Unlike the other layers, this seasonal cap of dry ice, also less than six feet thick, comes and goes with the seasons. During the Martian summer it is gone, the carbon dioxide having sublimated away into the atmosphere. As the weather chills however that carbon dioxide begins to freeze again, falling as CO2 snow on the surface at the poles to create a thin cap of dry ice extending down to about 60 degrees latitude and covering practically everything seen in the first map above.

These facts suggest that future Martian colonists will have an interest in this region. While harsher than the rest of the planet, the conditions at the poles are not so much different that it will be impossible to work here. And here they will find a ready supply of carbon dioxide to help their plants grow, as well as a ready supply of water, all easily mined and near the surface.

In order to understand how this dry ice cap comes and goes, scientists have been using the high resolution camera of Mars Reconnaissance Orbiter (MRO) to repeatedly monitor some of the same locations in these sand seas to track the seasonal changes. In my routine review of the new images downloaded from MRO in May, I came across more than a dozen such images, all of which had been requested by Dr. Candice Hansen of the Planetary Science Institute in Tucson, Arizona, and taken just as the Martian winter was ending and spring was beginning. As she explained to me, “The images I’m requesting now follow-up on many of our earlier study sites so that we can study interannual variability. We’re also looking at more places to get a sense of what is similar/different depending on where you are.”

Below are two of these recent images, showing one example of the springtime changes that can be seen on these dunes.
» Read more


Update on effort to resume drilling of heat probe on InSight

Link here. It appears InSight’s camera cannot see the hammer drill, called “the mole,” that pushes the heat probe down, and to get a look and assess the problem they are going to use InSight’s robot arm to remove the equipment in the way.

The lifting sequence will begin in late June, with the arm grasping the support structure (InSight conducted some test movements recently). Over the course of a week, the arm will lift the structure in three steps, taking images and returning them so that engineers can make sure the mole isn’t being pulled out of the ground while the structure is moved. If removed from the soil, the mole can’t go back in.

They also have a theory as to what has stopped the drilling.

Team members now believe the most likely cause is an unexpected lack of friction in the soil around InSight – something very different from soil seen on other parts of Mars. The mole is designed so that loose soil flows around it, adding friction that works against its recoil, allowing it to dig. Without enough friction, it will bounce in place.

They can’t see it, as designed? It depends on the soil for friction? I am very puzzled at these design decisions.


Crater? Pit? Volcano?

Crater? Pit? Volcano?
Click for full image.

Cool image time! The photograph on the right, cropped to post here, was taken by the high resolution camera of Mars Reconnaissance Orbiter (MRO) on April 16, 2019 of the slope of a mountain inside a region dubbed Eridania that is part of the planet’s southern highlands.

The photograph, released as part of the June image release from MRO, came with no caption. Furthermore, the image title, “Eridania Mons,” provided no additional information, which is why I clicked on it. The vagueness of the title made me curious.

The full image shows a generally featureless plain. Near the image’s bottom however was the geological feature shown in the cropped section to the right. At first glance one thinks it is a crater. This first impression can’t be the entire story, because the feature is raised above the surrounding terrain, and in that sense is more like a small volcano with a caldera. The irregular pit inside the caldera kind of confirms this conclusion.

I would not bet much money on this conclusion. The overall terrain of the Eridania quadrangle is filled with craters, large and small. There does not seem to be any obvious evidence of past volcanic activity, and if there had been it has not expressed itself in large volcanoes.

However, other images of this mountain show many circular features that at first glance appear to be craters like the featured image. They appear slightly raised above the surrounding terrain, though not in as pronounced a manner.

They all could be small volcanoes. Or maybe they are impacts that hit a dense surface which prevented them from drilling too deep down, and instead caused the crater to be raised above the surrounding terrain.

‘Tis a puzzle. The irregular pit in this particular feature adds to the mystery. It does not look like the kind of pits one sees in calderas. Instead, its rough edge suggests wind erosion.


Europe inaugurates ExoMars control center

The Europe Space Agency yesterday inaugurated the control center where it will control and download data from the ExoMars rover, Rosalind Franklin, scheduled to launch to Mars in the summer of 2020.

The control center also includes a dirt filled enclosure where they can simulate Martian conditions with a rover model.

The article outlined the project’s upcoming schedule:

Over the summer the rover will move to Toulouse, France, where it will be tested in Mars-like conditions. At the end of the year Rosalind Franklin will travel to Cannes to meet the landing and carrier modules for final assembly.

As I noted yesterday in my most recent rover update, this assembly, only six months before launch, gives them very little margin. If there are any problems during assembly, they will likely miss the 2020 launch window.

I also wonder if this will allow them any time to do acoustical and environmental testing, as was just completed on NASA’s 2020 rover, to make sure ExoMars can survive launch, landing, and the journey to Mars. If they forego those tests, they might discover after launch that they were launching a paperweight, not an expensive planetary probe.


Trace Gas Orbiter shifts orbit to prepare for ExoMars rover arrival

Europe’s Trace Gas Orbiter, in orbit around Mars, is about to make the final shifts to its orbit to place it in the right position to relay communications from the ExoMars 2020 rover, Rosalind Franklin, when it land on Mars in 2020.


Rover update: May 30, 2019

Summary: Curiosity confirms clay in the clay unit. Yutu-2 begins its sixth day on the far side of the Moon. Three other rovers move towards completion and launch.

For the updates in 2018 go here. For a full list of updates before February 8, 2018, go here.

Clouds over Gale Crater
Clouds over Gale Crater


For the overall context of Curiosity’s travels, see my March 2016 post, Pinpointing Curiosity’s location in Gale Crater.

Curiosity’s journey up the slopes of Mount Sharp in Gale Crater goes on! On the right is one of a number taken by the rover in the past week, showing water clouds drifting over Gale Crater.

These are likely water-ice clouds about 19 miles (31 kilometers) above the surface. They are also “noctilucent” clouds, meaning they are so high that they are still illuminated by the Sun, even when it’s night at Mars’ surface. Scientists can watch when light leaves the clouds and use this information to infer their altitude.

While these clouds teach us something about Martian weather, the big rover news this week was that the data obtained from the two drill holes taken in April show that the clay formation that Curiosity is presently traversing is definitely made of clay, and in fact the clay there has the highest concentration yet found by the rover.

This clay-enriched region, located on the side of lower Mount Sharp, stood out to NASA orbiters before Curiosity landed in 2012. Clay often forms in water, which is essential for life; Curiosity is exploring Mount Sharp to see if it had the conditions to support life billions of years ago. The rover’s mineralogy instrument, called CheMin (Chemistry and Mineralogy), provided the first analyses of rock samples drilled in the clay-bearing unit. CheMin also found very little hematite, an iron oxide mineral that was abundant just to the north, on Vera Rubin Ridge. [emphasis mine]

That two geological units adjacent to each other are so different is significant for geologists, because the difference points to two very different geological histories. The formation process for both the clay unit and Vera Rubin Ridge must have occurred at different times under very different conditions. Figuring out how that happened will be difficult, but once done it will tell us much about both Gale Crater and Mars itself.

With the success of their clay unit drilling campaign, the Curiosity science team has had the rover begin its trek back from the base of the cliff below Vera Rubin Ridge to its planned travel route up the mountain.

An updated description of that route was released by the Curiosity science team last week, while I was in Wales. Below is their image showing that route, with additional annotations by me and reduced to post here.
» Read more


The mysterious slope streaks of Mars

Massive flow on Mars
A typical Martian slope streak.

The uncertainty of science: In the past decade or so scientists have documented in detail a number of features on the Martian surface that evolve or change over time. From the constantly changing poles to the tracks of dust devils to landslides to the appearance of seasonal frost, we have learned that Mars is far from a dead world. Things are happening there, and while they are not happening as quickly or with as much energy as found on Earth, geological changes are still occurring with regular frequency, and in ways that we do not yet understand.

Of the known changing features on Mars, two are especially puzzling. These are the two types of changing streaks on the slopes of Martian cliffs, dubbed recurring slope lineae (referred as RSLs by scientists) and slope streaks.

Lineae are seasonal, first appearing during the Martian summer to grow hundreds of feet long, and then to fade away with the arrival of winter. Their seasonal nature and appearance with the coming of warm temperatures suggests that water plays a part in their initiation, either from a seep of briny water downhill or an avalanche of dust begun by. Or a combination of both. The data however does not entirely fit these theories, and in fact is downright contradictory. Some studies (such as this one and this one) say that the seasonal lineae are caused by water. Other studies (such as this one and this one) say little or no water is involved in their seasonal formation.

The answer remains elusive, and might only be answered, if at all, when Curiosity takes a close look at two lineae in the coming years.

Slope streaks however are the focus of this post, as they are even more puzzling, and appear to possibly represent a phenomenon entirely unique to Mars. I became especially motivated to write about these mysterious ever newly appearing features when, in reviewing the May image release from the high resolution camera on Mars Reconnaissance Orbiter (MRO), I found four different uncaptioned images of slope streaks, all titled “Slope Stream Monitoring.” From this title it was clear that the MRO team was re-imaging each location to see if any change had occurred since an earlier image was taken. A quick look in the MRO archive found identical photographs for all four slope streak locations, taken from 2008 to 2012, and in all four cases, new streaks had appeared while older streaks had faded. You can see a side-by-side comparison of all four images below the fold.
» Read more


The floor of Marineris Valles

Close-up of the floor of Marineris Valles

Larger view
Click for the full image.

To the right is small section cropped out of an image, taken by the high resolution camera of Mars Reconnaissance Orbiter (MRO) on March 30, 2019, of one very tiny area of the floor of the 2,500 mile long Marineris Valles, the biggest known canyon in the solar system.

Below this on the right is a larger section of the full image, with the white box showing the part covered by the top photograph. The general flow direction is to the east.

The photograph, uncaptioned, is titled “Terminus of Pitted Materials Emanating from Oudemans Crater.” Oudemans Crater is about 55 miles across and is located near the head of Marineris Valles to the east of the giant volcanic region dubbed the Tharsis Bulge. The meteorite that caused this crater is estimated to have been a little less than 3 miles in diameter. It is believed by some scientists that the impact heated up subsurface carbon dioxide permafrost which then explosively flooded down the Valles Marineris into the Northern Plains of Mars, pushing a lot of pulverized debris in front of it..

Instead of liquid water, what is stored underground on Mars is liquid CO2 and when a collapse occurs, this boils almost instantly and explosively to CO2 vapour, blasting the rock and regolith to dust, except for the most resistant fragments such as igneous rocks. The rest of the regolith is composed of dust and gravel, weakly cemented by water ice. On Mars, water is not a fluid, but behaves as a mineral in most situations. Grains of ice would be tumbled along in the cryogenic flows, and transported as passive solids just like quartz grains are transported as sand by rivers on Earth.

This theory, if correct, would eliminate the need for liquid water on the surface, and would explain many of the planet’s geological surface features.


The overview thumbnail to the left shows the location of both Oudemans Crater and this MRO image, indicated by the very tiny blue rectangle near the thumbnail’s center..

The “pitted materials” in the image’s title refers to that flowing avalanche of pulverized ice, rock, and dust, shown in the picture by the curved terraced cliffs descending to the east. This is where this material settled as it flowed eastward, pushed by that explosive CO2 flood.

You can see another example of this eastward flow in another MRO image taken just to the west. The canyon floor is pitted, confused, and rough, but there is an obvious flow trend to the east.

In fact, much of the floor of Marineris Valles that has been photographed at high resolution is similarly rugged. It will be a challenge to explore this place, especially because we have only imaged a small percentage at high resolution. There is much there that remains unseen and unknown.


Fractured and collapsed Martian crater floor

Fractured and collapse Martian crater floor
Click for full image.

Time for some puzzling Martian geology. The image on the right, rotated, cropped, and reduced to post here, comes from the Mars Reconnaissance Orbiter (MRO) high resolution archive, and shows a strangely collapsed and fractured crater floor. In fact, like a number of other Martian craters, rather than having a central peak, the center of the crater floor, shown at the image’s center right, seems depressed.

The crater is located in a region dubbed the Cerberus Plains, in a hilly subregion called Tartarus Colles. Of the transition zone between the northern lowlands and the southern highlands these plains comprise the second largest region.

Being in the transition zone I would guess that the geology here is strongly influenced by the ebb and flow of the slowly retreating intermittent ocean that is thought to have once existed in the nearby lowlands. As water came and went, it created a variety of shoreline features scattered about, but not in a single sharp line as we would expect on Earth. Think more like tidal pools, where in some areas water gets trapped and left behind only to sublimate away at at later time.

We can see some hints of these processes in the images of the floors of two other craters that I have previously highlighted, here and here.

With this geological overview in mind, the broken plates here remind me of features I’ve seen in caves. Mud gets washed into a passage, partly filling it. Over time a gentle water flow over the surface of the mud deposits a crust of calcite flowstone on top of the mud. Should the water flow suddenly increase, it will wash out the mud below the crust. If the crust is not very strong or thick, it will crack into pieces as it falls, and thus resemble what we see here in this Martian crater.

There are cases where the crust becomes thick enough to remain standing, which produces some spectacular hanging calcite draperies that seem to defy explanation.

The collapse in the center of the crater is more puzzling, but suggests, based on comparable-looking Earth geology, that any perched water in this canyon might have actually drained out through underground drainage, accessed through the depression.

Be warned: All my explanations above are based on what exists on Earth, and Mars is very different from Earth. The lower gravity, colder temperatures, and different chemistry guarantee that the geological processes there will not be identical. We start by using what we know here, but recognize that we need to learn more about Mars to truly understand what goes on there.


The temperature on Phobos

The temperature on Phobos
Click for full image.

The Mars Odyssey science team today released false color images of the Martian Moon Phobos showing the temperature range that the spacecraft has detected, shown above in a reduced form.

The April 24, 2019 image is the first time Mars Odyssey had gotten a full moon look at the Moon. Not surprisingly, the hottest spots on the surface are at the center, at noon, with it getting cooler as one gets to the outer edges near dawn and dusk and at the poles.


The many pits of Arsia Mons

The many pits of Arsia Mons

When it comes to Mars, it appears that if you want to find a pit that might be the entrance to an underground system, the place to look is on the slopes of Arsia Mons, the southernmost volcano in the chain of three giant volcanoes between Olympus Mons to the west and the vast canyon Marineris Valles to the east.

To the right is an overview map showing the pits that have been imaged since November by the high resolution camera of Mars Reconnaissance Orbiter (MRO). The black squares show the pits that I highlighted in previous posts on November 12, 2018, February 22, 2019, and April 2, 2019. The numbered white squares are the new pits found in March photograph release from MRO.

And this is only a tiny sampling. Scientists have identified more than a hundred such pits in this region. Dubbed atypical pit craters by scientists, they “generally have sharp and distinct rims, vertical or overhanging walls that extend down to their floors, surface diameters of ~50–350 m, and high depth to diameter (d/D) ratios” that are much greater than impact craters, facts that all suggest that these are skylights into more extensive lava tubes.

Below are the images of today’s four new pits.
» Read more


Curiosity second drill hole in clay formation a success

two drill holes in clay formation
Click for full image.

The Curiosity science team has confirmed that their second drill hole in the clay formation that the rover is presently exploring was a success.

They have confirmed that enough material from the drill hole has been deposited in their chemical analysis hopper.

The image to the right, cropped and reduced to post here, shows both drill holes on the two different flat sections of bedrock near the top.

It seems that the science team wants to spend a lot of time in this location, as described in my last rover update. It is therefore unclear when they will move south to follow their long term travel plans.

1 2 3 30