Russia delays launch of next unmanned lunar probe

According to a story in Russia’s state-run press, Roscosmos has decided to delay the launch of its Luna-25 lander from October 2021 to May 2022.

The story gave no reason for the delay.

Luna-25 would be the first Russian lunar probe since the 1970s, and is supposed to be that country’s first probe in a partnership with China to establish a manned lunar base by the 2030s.

Want to bet the Russian contribute to this project will be repeatedly delayed, and will also likely be disappointing? That has been the track record of Roscosmos for the past two decades (like all 21st century government projects). This first delay signals many more to come.

I am not saying Russia will fail to launch anything. What I am saying is that everyone should reserve a large store of skepticism about any promises Russia’s makes.

Intuitive Machines awards SpaceX another lunar lander launch contract

Intuitive Machines Nova-C lunar lander
Artist’s impression of Intuitive Machines lunar lander,
on the Moon

Capitalism in space: Intuitive Machines announced yesterday that it has awarded SpaceX’s Falcon 9 rocket the launch contract for its third unmanned lunar lander, making SpaceX its carrier for all three.

The key quote however from the article is this:

Intuitive Machines’ first two lander missions are carrying out task orders for NASA awarded under its Commercial Lunar Payload Services (CLPS) program. However, IM-3 is not linked to any CLPS missions. Marshall said that the mission “has an open manifest for commercial and civil customers.”

In other words, this third launch is being planned as an entirely private lunar robotic mission. Intuitive Machines is essentially announcing that it will launch the lander and has room for purchase for anyone who wants to send a payload to the Moon. This opportunity is perfect for the many universities that have programs teaching students how to build science payloads and satellites. For relatively little, a school can offer its students the chance to fly something to the lunar surface. Not only will it teach them how to build cutting edge engineering, it will allow those students to do cutting edge exploration.

This is the whole concept behind the recommendations I put forth in my 2016 policy paper, Capitalism in Space. If the government will simply buy what it needs from the private sector, and let that sector build and own what it builds, that sector will construct things so that their products can be sold to others, and thus expand the market.

Since around 2018 NASA and the federal government has apparently embraced those recommendations, and we are about to see that policy bear fruit in unmanned lunar exploration. Below is a list of all planned robotic lander missions to the Moon, all scheduled for the next four years:
» Read more

China gives vague hints about its manned lunar lander

According to this Space News article today, China has recently allowed some tantalizing hints become public about its plans to build a manned lunar lander.

The brief news report from Xiamen University School of Aeronautics and Astronautics July 1 (Chinese) names individuals leading projects pertinent to China’s human lunar landing plans and notably refers to the landing project as a “national strategy”.

…The report names Yang Lei as “chief commander of the crewed lunar landing vehicle system” at the China Academy of Space Technology (CAST), a subordinate to the state-owned space and defense contractor China Aerospace Science and Technology Corp. (CASC). Yang was accompanied for the visit to Xiamen University by the project’s deputy chief commander and another involved in CAST’s new-generation crew spacecraft developed for deep space journeys. Other CASC subsidiaries are working on a new human-rated launch vehicle.

No details of the lander were provided during the meeting, in which current progress and future plans for human moon landings were presented. A number of slides were published but were intentionally blurred out.

Such secrecy is not unusual for China. It is one of the reasons it opposes the Artemis Accords, which require a transparancy in plans that China does not wish to give.

The secrecy however suggests that while they have now named the individuals in charge of the project, they have not yet settled on their design for that lander, and are exploring options. Based on long term schedule for lunar exploration that China and Russia have jointly announced, the first manned landings are planned sometime after ’26.

To meet that schedule they need to get moving on building that lander, now. This story suggests they are now gearing up to do that.

Apollo: When Americans last did some real exploring

The journey of Apollo 15 on the Moon
Click for full image.

Today is the fiftieth anniversary of the landing of Apollo 15 on the Moon. To commemorate that event the science team for Lunar Reconnaissance Orbiter (LRO) today published some orbital images that capture the astronauts’ travels while on the Moon. The picture to the right, reduced to post here, outlines in oblique view their various excusions to the edge of Hadley Rille and the foot of a mountain dubbed Hadley Delta. As they note,

While Apollo 15 was the fourth mission to land a crew successfully on the lunar surface, it still pioneered many new technologies and had many firsts.

Some of the technologies developed for Apollo 15 included new suits, which were more flexible and had longer life support capabilities, as well as the Lunar Roving Vehicle (LRV), a rover capable of speeds up to 15 km / hour. With these advancements, astronauts Commander David (Dave) Scott and Lunar Module Pilot James (Jim) Irwin were able to travel more than eight times the distance traveled during the previous mission, for a total of over 25 km.

All told, astronauts Dave Scott and Jim Irwin spent more than 18 hours exploring the lunar surface on three scouting trips, covering 15.5 miles. During all those excursions their only protection from the harsh lunar environment was that thin spacesuit. In addition, if their rover broke down a walk back to the lunar module would become a race against suffocation.

And even then, they still had to get that lunar module off the ground, rendezvous and dock with the Apollo 15 command module, and then get that module back to Earth safely.
» Read more

Apollo 11 lunar ascent stage might still be in orbit around the Moon

New data about the Moon’s interior and gravitational field suggest that the Apollo 11 lunar ascent stage, the part of the LM that carried the astronauts back from the Moon, might still be in orbit around the Moon, rather than have crashed into its surface as long assumed.

Using the GRAIL gravity model and the General Mission Analysis Tool (GMAT) simulator, Meador expected to find the LM’s orbit destabilizing very quickly. What he found – and was verified by a third party using different methods – was that the Ascent Stage had a feedback mechanism that caused the orbit to stabilize itself over a period of every 24 days. When he ran the simulation forward, the orbit remained stable until the present day.

The upshot of this is that the Ascent Stage may still be in orbit now and could be observed when it is in the right position in relation to the Earth and the Sun. However, Meador emphasizes that the LM was never intended to be very robust. Designed to operate for only about 10 days, it was also filled with batteries and fuel tanks, which could have exploded years ago, either destroying the craft or sending it off on a new trajectory.

If the stage is in lunar orbit, than it probably is one the most valuable and quickly reachable artifacts from one of space’s most historic missions. While the Apollo artifacts left on the Moon should be left where they are, this piece could be recaptured and returned to Earth for both study and exhibition.

In fact, if it is still in orbit it should be recovered, to preserve it.

This data also suggests that other Apollo ascent stages as well as other past lunar orbiters might also still be in lunar orbit, and should be located.

NASA funds hopper to jump into shadowed lunar craters and find ice

Capitalism in space: NASA has awarded a $41.6 million contract to Arizona State University and the private company Intuitive Machines to build a tiny hopper that will be used to explore the permanently shadowed craters near the Moon’s south pole, looking for water ice.

Micro-Nova can carry a 1-kilogram payload more than 2.5 kilometers to access lunar craters and enable high-resolution surveying of the lunar surface under the flight path. Intuitive Machines’ Micro-Nova, a lunar hopper that will explore permanently shaded regions of the moon.

…“Intuitive Machines’ Micro-Nova is our first-ever chance to explore from within a lunar permanently shaded region (PSR),” said the mission science lead Mark Robinson, of ASU’s School of Earth and Space Exploration. “We will be able to take very high resolution color images near the hopper and black and white images of about half the PSR. What will we see, that is the question!”

This tiny hopper, only 30 inches square, will be built by ASU and launched on Intuitive Machines’ first Moon lander, Nova-C, presently scheduled for launch in December 2022.

Israeli nonprofit that built Beresheet-1 raises $70 million for Beresheet-2

SpaceIL, the Israeli nonprofit company that built the Beresheet-1 lunar lander/rover that crashed just before landing in 2019 has now raised $70 million of the $100 million it needs to build Beresheet-2.

SpaceIL said the new pledges means that it has raised almost all of the $100 million it estimates is needed for the mission to meet its 2024 launch target. SpaceIL said the funding would come from South African-Israeli billionaire Morris Kahn, who bankrolled much of the first mission, French-Israeli billionaire Patrick Drahi and South African philanthropist Martin Moshal, co-founder of venture capital firm Entree Capital.

A number of the engineers who helped build the first Beresheet have since moved on, forming their own company as well as getting hired by the American startup rocket company Firefly. Still, there is no reason Beresheet-2 cannot be built and flown, especially if SpaceIL focuses on rebuilding it rather than redesigning something new. They came very close to a success, and probably only need some tweaking to make the next attempt succeed.

China targets 2024 for next lunar sample return mission

The new colonial movement: China’s next robotic lunar sample return mission, called Chang’e-6 and targeted for a 2024 launch, will also attempt to bring back the first samples from the far side of the Moon.

Hu Hao, chief engineer of the China Lunar Exploration and Space Engineering Center, announced in a statement released on China’s national space day in April this year that the Chang’e 6 probe, consisting of an orbiter, lander, lunar ascent vehicle and reentry capsule, will target the South Pole-Aitken (SPA) basin.The SPA basin is a colossal, ancient impact crater roughly 1,550 miles (2,500 kilometers) in diameter that covers almost a quarter of the moon’s far side. The impact basin, considered to be the oldest on the moon, holds vital clues about the history of the moon and the solar system, according to a new report.

The precise spot for landing has not been revealed. Since the basin is so large and covers the Moon’s south pole, the mission could land in that region where ice is thought to possibly exist in the permanently shadowed floors of some craters. Whether they would attempt a landing in one of those craters is presently unknown, though unlikely because of the technical challenge.

China and Russia outline long term plans for building joint lunar base

China/Russian Lunar base roadmap

The governments of China and Russia yesterday announced their long term roadmap for building a joint manned lunar base on the Moon, what they have labeled the International Lunar Research Station (ILRS).

The graphic to the right, rearranged by me from the PowerPoint slides released by the two governments, shows the overall plan.

The first phase, starting now and running through ’25, will involve six already planned unmanned missions by both countries, three each. Of the three Chinese unmanned missions, Chang’e-4, Chang’e-6, and Chang’e-7, the first is already operating on the Moon, as it includes the Yutu-2 rover. Based on China’s recent track record, it would be reasonable to expect the other two Chang’e missions to fly as planned.

Of the three Russian missions, Luna 25 is scheduled to launch later this year, making it the first all-Russian-built planetary mission in years and the first back to the Moon since the 1970s. The other two Russian probes are supposedly under development, but based on Russia’s recent track record in the past two decades for promised space projects, we have no guarantee they will fly as scheduled, or even fly at all.

The second phase, running from ’26 to ’35, will begin construction, though the details are vague.

The third phase, when China & Russia say they will begin full operations in ’36, is even more vague, merely stating the objective of human “lunar research and exploration”.

The pace matches well with the typically slow pace of these kind of government programs. It not only matches with the pace that China has shown in its entire manned program, with manned missions sometimes separated by years, it also matches the sluggish long term roadmap that NASA has put forth for its own Artemis program on the Moon. It also fits with Russia’s recent pattern, which is to repeatedly announce big projects and goals, with little actual execution to follow.

At first glance the plan suggests that we are in a new space race between the United States and its national partners in the capitalist west and the authoritarian governments of China and Russia. That may be so, but I think the real race will be between the government programs in China, Russia, and the U.S. and the efforts by private commercial companies aiming to make profits in space. And if you ask me to bet on who will get more accomplished faster for less money, I will hands down put my money on those private companies. The more profit they make, the faster they will push to move forward, and will quickly leave these sedate government programs in the dust.

Canada to build a Moon rover for NASA

Canada has signed an agreement with NASA to build an unmanned lunar rover to launch in 2026.

Like NASA,the Canadian government isn’t going to build the rover but will select private companies to design and build for it.

To get the ball rolling on the project, which will explore a lunar polar region, the CSA will soon select two Canadian companies to develop concepts for the rover and its instruments, agency officials added.

Other Canadian gear will reach the moon in the coming years as well, if all goes according to plan. For example, three commercial technologies funded by the CSA’s Lunar Exploration Accelerator Program are scheduled to get a lunar-surface test in 2022 — an artificial intelligence flight computer from Mission Control Space Services; lightweight panoramic cameras built by Canadensys; and a new planetary navigation system developed by NGC Aerospace Ltd.

All three will travel on the first moon mission of the HAKUTO-R lander, which is built by Tokyo-based company ispace, it was announced on Wednesday.

No word on who will launch this new rover, but then it is probably too early for such a decision.

Lockheed Martin and General Motors partner to design manned lunar rover

Capitalism in space: Lockheed Martin and General Motors announced yesterday that they are partnering to design a manned lunar rover, intended for sale to NASA’s Artemis program as well as any other manned lunar missions anyone else should decide to fly.

Lockheed and GM don’t have a NASA contract to build the LTV [Lunar Terrain Vehicle]; the agency hasn’t awarded any such deals yet. But the companies are positioning themselves to be in the driver’s seat when such decisions are made — and when other customers may come along as well.

Obviously the first customer for this moon buggy would be NASA for Artemis. Nor is this the only manned rover being planned. Toyota and Japan’s space agency JAXA are also partnering to build one.

The decision by NASA to use Starship as its lunar lander however has made such a project much more viable. Unlike the lunar landers proposed by Blue Origin and Dynectics, Starship has the payload capacity to carry such things to the Moon, right off the bat. Thus it makes sense now to start designing them and offering them for sale. We should not be surprised if other car manufacturers start proposing their own manned rovers.

Moreover, Starship’s potential also means these rovers could be purchased by others for work on the Moon. If anyone besides NASA decides to hire SpaceX and Starship for their own lunar missions, the Lockheed Martin/GM LTV can also be sold to them. So can the Toyota rover. So could one built by Ford or Mazarati.

Isn’t freedom and capitalism wonderful? Instead of a half century of the nothing that international cooperation and government control brought us in space, private enterprise is suddenly in a burst opening the entire solar system to the world. And don’t expect the pace to slow.

Yutu-2 data suggests Moon’s far side is “bombarded more frequently” than the near side

The uncertainty of science: According to a new paper, based on ground-penetrating radar data obtained by China’s Yutu-2 rover on the far side of the Moon, scientists now think that the Moon’s more heavily cratered far side is that way because it actually gets bombarded more frequently than the near side.

From the paper’s abstract:

The Lunar Penetrating Radar (LPR) onboard Yutu-2 can transmit electromagnetic pulses to detect the lunar subsurface structure and properties of the regolith. The relative permittivity, loss tangent and TiO2+FeO content of lunar regolith materials at landing site are constrained with LPR data in this paper. The results indicate that the farside may be bombarded more frequently, leading to different regolith accumulation rates on the lunar nearside vs. farside. [emphasis mine]

The data was accumulated during the rover’s first five months on the surface, during those five lunar days. It found that the regolith at the landing site was about 39 feet thick, much thicker than found at the landing site for Yutu-1 on the Moon’s near side. The difference was partly expected because of the nature of the different locations, but combined with other factors the scientists concluded that a higher bombardment rate on the far side would also help explain the difference.

To put it mildly, this conclusion is uncertain. We only have one data point on the far side, and only a few more on the near side. At the same time, the conclusion is somewhat an example of science discovering the obvious. The very first images of the Moon’s far side, taken The Soviet Union’s Luna 3 lunar probe in 1959, showed the surface much more heavily cratered than the near side, with far less areas of smooth mare. Numerous mapping missions since have confirmed that impression.

And it is also intuitive to come to this conclusion. The near side always faces the Earth, which likely acts to intercept many of the type of meteorite hits that reach the Moon’s far side.

This conclusion however is still intuitive, and an honest scientist will not trust it. That this result from Yutu-2 appears to confirms it is therefore nice.

ESA proposes constellation of lunar communications and navigation satellites

The European Space Agency is proposing in this decade to build a constellation of communications and GPS-type satellites, dubbed Moonlight, to orbit the Moon.

ESA is asking two industrial consortia in Europe to define what an integrated sat-nav and telecoms system at the Moon would look like.

It’ll include a constellation of at least three, but probably more, positioning-and-relay satellites to give global coverage, and will likely include some surface beacons, too, to augment the accuracy of the navigation signals.

“The target we have at the moment is that the constellation would be able to allow for an accuracy of 100m and probably better. We think we are able to get to 30m in the first instance,” explained Paul Verhoef, the director of ESA’s navigation department.

The two consortiums are the UK’s Surrey Satellite and Italy’s Telespazio.

It also appears the ESA is proposing making this system available to all lunar exploration missions, whether they be part of the U.S.’s Artemis program or China’s lunar plans. If so, it is commercially smart, as they will have plenty of customers to buy their services.

SpaceX grabbing 90% of the launch contracts to the Moon

Capitalism in space: The announcement yesterday by Firefly that it has awarded SpaceX the launch contract for its Blue Ghost lunar lander mission (scheduled for launch in ’23) is significant because it continues a remarkable pattern of dominance by SpaceX of the lunar launch market.

Right now, of the seven scheduled robot missions to the Moon, SpaceX will launch all but one. The full list, in no particular order:

In addition, SpaceX launched Israel’s Beresheet lander in 2019 on a Falcon 9.

Furthermore, SpaceX has won the contract from NASA for the agency’s first manned lunar lander, using Starship. It has also won the contract to launch the initial components of NASA’s Lunar Gateway space station on a Falcon Heavy.

There are other lunar missions in the works (by Russia, China, and others), but these are all the launches awarded as commercial contracts to private rocket companies in recent years. Thus, of these ten lunar missions, SpaceX has launched or is launching nine. That’s a 90% market share!
» Read more

Launch of Intuitive Machine’s first lunar lander delayed

Capitalism in space: The first mission of Intuitive Machine’s lunar lander has now been delayed from late this year to early next year.

Intuitive Machines spokesman Josh Marshall said April 26 that the slip was caused by its launch provider. “SpaceX informed Intuitive Machines that due to unique mission requirements the earliest available flight opportunity is in the first quarter of 2022,” he told SpaceNews.

Marshall referred questions about the “unique mission requirements” that caused the delay to SpaceX. That company did not respond to questions from SpaceNews on the topic.

Though it is entirely possible that SpaceX needed to delay the launch, we should be skeptical of this reason. More likely Intuitive has had issues that caused a delay, and is using SpaceX as a cover.

There is a race to become the first privately-built commercial lunar lander. Astrobotics Peregrine lander is still scheduled to launch by the end of the year. We shall see.

Apollo 11 astronaut Michael Collins has passed away at 90

R.I.P. Michael Collins, the astronaut on Apollo 11 who stayed in lunar orbit while Neil Armstrong and Buzz Aldrin walked on the Moon, passed away today at the age of 90.

Collins was one of the most friendly and personable astronauts I ever met. He was always available and willing to answer questions, sometimes even willing to go an extra mile to provide you more than you asked for.

In many ways his later work as head of the Air & Space Museum was more important than his time as an astronaut. He helped make that museum and the history it documents one of the most popular in the world.

As long as humanity exists, on Earth and in space, Michael Collins will never be forgotten.

China and Russia sign agreement to build moon base

The new colonial movement: Yesterday China and Russia announced that they have signed an agreement to jointly work together to build a base on the Moon.

The link above is from the Chinese state-run press, stating:

In a joint statement issued at the conference, the CNSA and Roscosmos said the moon station will be open to all interested countries, international organizations and partners in terms of planning, design, research, development, implementation and operation at all stages and levels of the project.

The Russian state-run press made a similar announcement.

The new Cold War in space is beginning to shape up. On one side will be free enterprise, led by the United States and the many private companies working independently to make their own profits in space, and on the other side will be the former communist nations whose cultures require all such efforts be controlled from the top by the government.

And like the Cold War of the 20th century, the big question will be the actions of third parties, like Europe, India, Japan, the UAE, and other new space-faring nations. Will they join with the U.S., or join China and Russia to gang up on private enterprise? Right now I will not be surprised if all these countries eventually join the Chinese/Russian effort. Worse, I have great doubts about the U.S. government’s commitment to the capitalist path it is presently taking. If enough pressure was applied by these authoritarian regimes we should not be surprised if our generally authoritarian present government decides to join them as well, using their combined power to squelch freedom and private enterprise in space.

The battle is drawn, but the forces for liberty and freedom are sadly outnumbered.

SpaceX wins competition to build Artemis manned lunar lander, using Starship

Starship prototype #8 on first flight test
Starship prototype #8 on its first flight test,
December 2020

Capitalism in space: NASA has just announced that it has chosen SpaceX to build the Artemis manned lunar lander, using Starship.

The award, a $2.9 billion fixed price contract, also requires SpaceX to complete an unmanned demo lunar landing with Starship that also returns to Earth, before it lands NASA astronauts on the Moon. The contract also still retains the goal to get this to happen by 2024, though NASA official emphasized that they will only launch when ready.

After these flights the agency says it will open bidding again to the entire industry, which means that others are now being challenged to come up with something that can beat SpaceX in the future.

Nonetheless, the contract award was a surprise, as NASA originally intended to pick two teams to provide redundancy and encourage competition. Instead, the agency completely bypassed lunar landers proposed by Dynetics and a team led by Blue Origin that included Lockheed Martin and Draper.

Even more significantly, though NASA explained in the telecon that they still plan to use SLS and Orion to bring astronauts to Gateway, who will then be picked up by Starship for the landing, this decision is a major rejection of the Space Launch System (SLS), since Starship will not use it to get to the Moon, while the other two landers required it.

In fact, this decision practically makes SLS unnecessary in the Artemis program, as NASA has also awarded SpaceX the contract for supplying cargo to the Lunar Gateway station as well as launching its first two modules, using Dragon capsules and Falcon Heavy. SLS is still slated to launch Orion to Gateway, but Starship can replace Orion as well, since Starship is being designed to carry people from Earth to the Moon. This makes SLS and Orion essentially unneeded, easily abandoned once Starship starts flying.

NASA’s decision also means the Biden administration is willing to use its clout to push for Starship over SLS in Congress, which has favored SLS for years because of the pork it brings to their states and congressional districts. They apparently think that Congress is now ready to risk the end of SLS if it comes with a new program that actually accomplishes something. These developments firmly confirm my sense from February that the political winds are bending away from SLS.

This decision is also a major blow to Blue Origin and the older big space companies that Jeff Bezos’ company partnered with. Their dependence on the very costly and cumbersome SLS rocket meant that their ability to launch on a schedule and cost desired by NASA was severely limited. NASA looked at the numbers, and decided the time was right to go with a more radical system. As was noted by one NASA official during the press teleconference, “NASA is now more open to innovation.”

Based on the details announced during the announcement, NASA was especially drawn to Starship’s payload capability to bring a large payload to the Moon, at the same time it brings humans there as well. It also appears SpaceX’s recent track record of success also added weight to their bid.

SpaceX’s Falcon Heavy wins launch contract for VIPER lunar rover

Capitalism in space: Astrobotic, the company building the lander to place NASA’s VIPER lunar rover on the Moon, has picked SpaceX’s Falcon Heavy as the rocket to launch the package.

This mission is part of a fleet of landers being sent to the Moon in the next two years, as part of NASA’s Commercial Lunar Payload Services (CLPS) program to hire private companies to do this rather than NASA.

Intuitive Machines, which won CLPS task orders for two lander missions, will launch each on Falcon 9 vehicles late this year and in 2022. Masten Space Systems selected SpaceX to provide launch services for its XL-1 lander mission, which won a CLPS award for a late 2022 mission.

Astrobotic will launch its first CLPS mission, a smaller lunar lander called Peregrine, on the inaugural launch of United Launch Alliance’s Vulcan Centaur currently scheduled for late this year. Firefly Aerospace, which won the most recent CLPS award in January, has not selected a launch provider yet for its Blue Ghost lander, but noted the lander is too large to launch on the company’s own Alpha rocket.

That’s five American lunar missions, all built and owned by private companies. Nor will these be the only unmanned lunar missions, when you include the UAE rover targeted for a ’22 launch, along with additional planned Indian, Chinese, and Russian missions. Almost all are aimed at the Moon’s south polar regions.

It is going to get both crowded and busy on the Moon in the next few years.

UAE hires Japanese company as partner for its ’22 lunar rover mission

Capitalism in space: The United Arab Emirates (UAE) has chosen the private Japanese company Ispace to provide the lander bringing its Rashid rover to the Moon in 2022.

ispace’s 240 kg lander is 2.3 meters tall and 2.6 meters wide. It will be launched by SpaceX, Elon Musk’s rocket company, on a Falcon 9 rocket. Once the iSpace lander is placed in the Earth’s orbit, it will travel to the moon on its own, land and unload the rover.

The lander will use solar panels for power, which will also allow the rover to communicate with Earth. It will also carry a solid-state battery made by NGK Spark Plug, which intends to examine its battery’s lunar performance.

This UAE project is similar but a step up from its Al-Amal Mars orbiter. In that case UAE used its money to have the orbiter mostly built by U.S. universities as they taught UAE’s students how to do it. In this case, UAE engineers appear to be building the rover itself, with the purchased help of others to provide the lander..

Chang’e-4 and Yutu-2 reactivated for 29th lunar day

Chinese engineers have reactivated their Chang’e-4 lander and Yutu-2 rover, beginning their 29th lunar day on the far side of the Moon.

As is usual from the state-run Chinese press, the article provides little other detail, other than stating that Yutu-2 ” will continue to move northwest toward the basalt distribution area located about 1.2 km away from the rover.” That’s about 3,900 feet. Based on Yutu-2 pace of moving about 100 feet per lunar day, it will be more than three years before it reaches that goal.

South Korea’s leader announces his nation’s goals in space

The new colonial movement: Moon Jae-in, South Korea’s president since 2017, on March 25th gave his first speech focused on his nation’s goals in space, outlining plans to encourage private enterprise as well as achieving an unmanned mission to the Moon by 2030.

His speech listed three main programs. First, they are developing their own home-built rocket, dubbed the KSLV-2, which they hope to launch on its first orbital test flight by October of this year.

Second, he touted a project to send a probe to the asteroid Apophis in 2029. I described this probe in my November 2020 report on a science conference focused entirely on Apophis. If all goes well, they hope to have the probe fly in formation with the asteroid as it makes its close approach that year.

Third, he committed his nation to landing an unmanned lander on the Moon by the end of this decade. (Sound familiar?)

While much of this was the typical photo-op stuff that politicians love, designed mostly to enhance their public image, Moon did make it clear their goals are also to foster a new private aerospace industry that would compete in the emerging new space market.

Moon underscored the role of the private sector in enhancing Korea’s space development capabilities. To that end, he said, the government will step up efforts to build an “innovative industrial ecosystem that nurtures global space companies such as SpaceX.”

Another issue he put forth was strengthening international competitiveness of made-in-Korea satellite systems, in the lead-up to the introduction of 6G wireless networks, self-driving vehicles, and other products and services enabled or enhanced by satellites.

All-in-all, it is actually surprising that up to now South Korea has not made its presence felt in space. This announcement suggests they now intend to change that.

Yutu-2 & Chang’e-4 complete 28th lunar day on Moon

The new colonial movement: China’s lunar rover Yutu-2 and its lander Chang’e-4 have successfully completed their 28th lunar day on the far side of the Moon, and have been placed in hibernation for the long lunar night.

According to this article from China’s state-run press, Yutu-2 has now traveled 683 meters (2,241 feet) since its landing. In the past two lunar days the rover has traveled about 180 feet, continuing its journey to the northwest away from Chang’e-5. Their pace continues to be about 80 to 100 feet per lunar day.

Glynn Lunney, R.I.P

NASA flight director Glynn Lunney has passed away at the age of 84.

He not only was one of the flight directors in Houston that helped get astronauts to the Moon in 1969, he was also instrumental in getting the crew of Apollo 13 back home when their service module failed in 1970.

Lunney and his team were just about to come on console for the evening shift on April 13, 1970, when the Apollo 13 crew radioed, “Houston, we’ve had a problem.”

“For me, I felt that the Black Team shift immediately after the explosion and for the next 14 hours was the best piece of operations work I ever did or could hope to do,” Lunney said in his oral history. “It posed a continuous demand for the best decisions often without hard data and mostly on the basis of judgment, in the face of the most severe in-flight emergency faced thus far in manned spaceflight.”

“We built a quarter-million mile space highway, paved by one decision, one choice, and one innovation at a time — repeated constantly over almost four days to bring the crew safely home. This space highway guided the crippled ship back to planet Earth, where people from all continents were bonded in support of these three explorers-in-peril,” he said. “It was an inspiring and emotional feeling, reminding us once again of our common humanity. I have always been so very proud to have been part of this Apollo 13 team, delivering our best when it was really needed.”

He had been part of NASA when it was young (as he was) and honest and dedicated to accomplishing its goals fast and efficiently and — most significantly — with courage. May he rest in peace.

China and Russia sign partnership agreement for lunar exploration

The new colonial movement: China and Russia today signed an agreement outlining a partnership to jointly build a base and orbiting station on and around the Moon.

The International Lunar Research Station (ILRS) is described as a comprehensive scientific experiment base built on the lunar surface or on the lunar orbit that can carry out multi-disciplinary and multi-objective scientific research activities including exploration and utilization, lunar-based observation, basic scientific experiment and technical verification, and long-term autonomous operation. Statements from Roscosmos and CNSA underline that the project will be “open to all interested countries and international partners.”

Though not explicitly stated it is understood that the ILRS would be constructed at the lunar south pole.

Russia is slowly breaking off its partnership with the U.S. because the U.S. is insisting it sign the Artemis Accords, which require all signatories to honor property rights in space. Neither Russian nor China wish to do that, instead reserving those rights wholly to their own governments, their citizens be damned.

Thus, we have a deal for Russia and China to work together. China actually doesn’t need Russia, as it has clearly shown in the past five years that its space capabilities are quite sufficient and well funded. Russia however needs China, as its capabilities have been declining in recent years due to corruption within its aerospace industry as well as a shortage of funds caused by a poor economy and the drop in oil prices.

Working together however could help speed what they achieve while simultaneously fueling the growing international competition in space. In the end this will benefit everyone, as more will get done faster.

How we shall settle the disagreement over property rights and government power in space is a entirely different question, one that I address at great length in my next soon-to-be published book, entitled Conscious Choice: The origins of slavery in America and why it matters today and into the future. Stay tuned!

Yutu-2 and Chang’e-4 reactivated for 28th lunar day on Moon

The new colonial movement: Engineers have reactivated both Yutu-2 and Chang’e-4 to begin their 28th lunar day on the far side of the Moon.

The article, from China’s state-run press, provides only one real tidbit of information, that Yutu-2 has now traveled 429 meters (1,378 feet) from the landing site. They still have about a mile to go to reach their next big geological target, which should take years at the pace the rover is setting.

Both spacecraft though have been unmitigated successes. Their nominal mission had been to survive three lunar day-night cycles, about 90 Earth days. They have survived 28, or more than two years since landing in January 2019.

This success suggests that China’s Mars rover has a good chance of doing as well. Its planned mission length is also 90 days, similar to the Spirit and Opportunity rovers, both of which lasted many years.

NASA lunar rover experiences big budget overruns

NASA revealed yesterday that the budget for VIPER, a new NASA-built lunar rover, has increased from $250 million to $433.5 million.

The cost of the mission has gone up significantly. At the time NASA announced VIPER in October 2019, it projected a cost of about $250 million. As part of the confirmation review, known as Key Decision Point C, NASA set a formal cost commitment for the mission. NASA spokesperson Alison Hawkes said March 3 that the new lifecycle cost for the mission is $433.5 million.

NASA didn’t disclose the reason for the cost increase, but NASA officials said in June 2020 that they were postponing VIPER’s launch by about a year to late 2023 to change the rover’s design so it can meet the goal of operating for 100 days on the lunar surface. At the time, the agency declined to comment on VIPER’s cost.

This is very typical of modern NASA. Even though its planetary program produces some spectacular spacecraft and results, that program — like all NASA-built programs — rarely does so for the budget promised. For the planetary program, however, the overage for VIPER is startlingly high, especially in so short a time.

Be prepared for more delays and overages for this project, since that is usually what happens for NASA projects that experience such large budget increases.

Maezawa looking for volunteers for his Starship flight around Moon

Capitalism in space:
Yusaku Maezawa, the Japanese billionaire who has purchased a flight on SpaceX’s Starship to fly around the Moon, is now looking for volunteers to join him.

The Japanese entrepreneur said applicants would need to fulfill just two criteria: being ready to “push the envelope” creatively, and being willing to help other crew members do the same. In all, he said around 10 to 12 people will be on board the spaceship, which is expected to loop around the moon before returning to Earth.

The application timeline for spots on the trip calls for would-be space travellers to pre-register by 14 March, with initial screening carried out by 21 March. No deadlines are given for the next stages – an “assignment” and an online interview – but final interviews and medical checkups are currently scheduled for late May 2021, according to Maezawa’s website.

Both he and SpaceX are still aiming for a 2023 flight, though that date is likely optimistic.

To apply, go here.

Apollo 16 Lunar Rover “Grand Prix”

An evening pause: This seems especially appropriate with the arrival of another rover on Mars last week.

On their first day of three on the lunar surface, John Young and Charles Duke deployed their rover and took it for a test drive before heading out to nearby Plum Crater for two hours of sample gathering and exploration.

This footage shows Young driving with Duke filming and reporting what he sees. The goal was to gather engineering data on how the rover’s wheels functioned in the very dusty lunar soil.

This short clip nicely illustrates the ambitious achievement of the American Apollo missions that should give pause to any arrogant modern young engineer. This was before home computers and CAD-CAM. It was designed by hand and slide-rule, using inches, pounds, and feet. And it worked, and worked magnificently. Oh if we today could only do as well.

Hat tip Björn “Local Fluff” Larsson.

India officially delays both its manned mission and next lunar lander

The new colonial movement: India has now officially delayed the launch of both its manned mission Gaganyaan as well as its next lunar lander/rover Chandrayaan-3.

They hope to launch an unmanned test Gaganyaan mission before the end of this year, but the manned mission will not occur until after a second unmanned mission scheduled very tentatively in the 2022-2023 time frame.

As for Chandrayaan-3, they had initially hoped to launch it last fall, but they panic over the coronavirus that shut down their entire space industry for a years has now apparently pushed that launch back ’22, a delay of more than a year.

1 14 15 16 17 18 37