Swirling galactic-sized streams surrounding a pair of supermassive black holes

Swirling galactic arms surrounding two supermassive black holes

Time for another galactic cool image! The picture to the right, reduced and sharpened to post here, was released today by the Gemini South ground-based telescope in Chile. It shows the streams of gas and stars that swirl around a pair of supermassive black holes at the center of this galaxy, located only 90 million light years away.

The image reveals vast swirling bands of interstellar dust and gas resembling freshly-spun cotton candy as they wrap around the merging cores of the progenitor galaxies. From the aftermath has emerged a scattered mix of active starburst regions and sedentary dust lanes encircling the system.

What is most noteworthy about NGC 7727 is undoubtedly its twin galactic nuclei, each of which houses a supermassive black hole, as confirmed by astronomers using the European Southern Observatory’s Very Large Telescope (VLT). Astronomers now surmise the galaxy originated as a pair of spiral galaxies that became embroiled in a celestial dance about one billion years ago. Stars and nebulae spilled out and were pulled back together at the mercy of the black holes’ gravitational tug-of-war until the irregular tangled knots we see here were created.

The black holes themselves are 154 and 6.3 million solar masses respectively, and are presently about 1,600 light years apart. Scientists calculate that they will merge in about 250 million years. Each once formed the center of its own galaxy. Now both galaxies have merged, creating this three-dimensional whirlpool of arms.

Scientists claim discovery of most distant supermassive black hole yet

The overwhelming uncertainty of some science: Using data from the infrared Webb Space Telescope, scientists are now claiming they have discovered most distant supermassive black hole yet, sitting at the center of an active galaxy only about a half billion years after the Big Bang. From the press release:

The galaxy, CEERS 1019, existed just over 570 million years after the big bang, and its black hole is less massive than any other yet identified in the early universe. Not only that, they’ve easily “shaken out” two more black holes that are also on the smaller side, and existed 1 and 1.1 billion years after the big bang. Webb also identified eleven galaxies that existed when the universe was 470 to 675 million years old. The evidence was provided by Webb’s Cosmic Evolution Early Release Science (CEERS) Survey, led by Steven Finkelstein of the University of Texas at Austin. The program combines Webb’s highly detailed near- and mid-infrared images and data known as spectra, all of which were used to make these discoveries.

CEERS 1019 is not only notable for how long ago it existed, but also how relatively little its black hole weighs. This black hole clocks in at about 9 million solar masses, far less than other black holes that also existed in the early universe and were detected by other telescopes. Those behemoths typically contain more than 1 billion times the mass of the Sun – and they are easier to detect because they are much brighter. (They are actively “eating” matter, which lights up as it swirls toward the black hole.) The black hole within CEERS 1019 is more similar to the black hole at the center of our Milky Way galaxy, which is 4.6 million times the mass of the Sun. This black hole is also not as bright as the more massive behemoths previously detected. Though smaller, this black hole existed so much earlier that it is still difficult to explain how it formed so soon after the universe began.

I have great doubts about this research, especially because the press release makes no effort to explain how the black holes were identified. Black holes emit no light, and were only first confirmed by watching the orbits of stars or objects near them over long periods of time. More distant supermassive black holes in the center of galaxies were later guessed at by what appears to be the relationship between the size of a galaxy’s nucleus and the presence of a black hole. Astronomers also assume that a very active and energetic galaxy (such as a quasar) is a sign a supermassive black hole exists at the center.

These primitive galaxies have only been observed at most a handful of times. They are so distant that they only are at most a few pixels wide. Spectra from these objects can tell us roughly how far away they are, and thus how close to the Big Bang they are thought to be, but it is impossible to say with any certainty that there is a black hole there.

I am made even more skeptical by this press release claim: “Webb’s data are practically overflowing with precise information that makes these confirmations so easy to pull out of the data.” Such language makes me suspicious that there is an underlying effort to justify Webb’s expense with this release by overstating its capabilities.

The press release provides links to the research. Take a look. I’d be glad if someone could clearly show me why I’m wrong to be so doubtful.

Using pulsars scientists detect background signal of the universe’s gravitational waves

The uncertainty of science: Using the variations in the precise radio pulses sent out by many pulsars over a fifteen year year astronomers think they have detected the background signal produced by many gravitational waves over time throughout the universe.

Astrophysicists using large radio telescopes to observe a collection of cosmic clocks in our Galaxy have found evidence for gravitational waves that oscillate with periods of years to decades, according to a set of papers published today in The Astrophysical Journal Letters. The gravitational-wave signal was observed in 15 years of data acquired by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) Physics Frontiers Center (PFC), a collaboration of more than 190 scientists from the US and Canada who use pulsars to search for gravitational waves. International collaborations using telescopes in Europe, India, Australia and China have independently reported similar results.

Imagine that each wave is a single wave on the ocean. This detection is the rough equivalent of looking at the ocean’s overall surface and measuring the general roughness of all the waves.

The press is making a big deal about this discovery. It is good science, and will over time provide valuable insights into evolution and merger of black holes, but it is not that big a deal, especially because this research carries with it many assumptions and uncertainties that good scientists recognize. They thus remain somewhat skeptical about the data. Mainstream journalists however consider gravitational waves cool, and so they hype any press release about them, sometimes to the point of absurdity.

Astronomers discover more than 800 new supermassive black holes

Using archival data from both the orbiting Chandra X-Ray telescope and the ground-based Sloan Digital Sky Survey telescope (SDSS), astronomers have discovered more than 800 new supermassive black holes hidden in the center of galaxies.

By systematically combing through the deep Chandra Source Catalog and comparing to SDSS optical data, the researchers identified 817 XBONG candidates, more than ten times the number known before Chandra was in operation. Chandra’s sharp images, matching the quality of those from SDSS, and the large amount of data in the Chandra Source Catalog made it possible to detect this many XBONG candidates. Further study revealed that about half of these XBONGs represent a population of previously hidden black holes.

The key to this discovery is the use of telescopes observing in different wavelengths, X-rays with Chandra and optical with SDSS. Combined the data showed evidence of the hidden supermassive black holes.

Astronomers: A supermassive black hole rotates far slower than expected

Quasar as seen across multiple wavelengths
Click for full image.

The uncertainty of science: Using Chandra astronomers have measured the rotation of a supermassive black hole in a distant quasar about 3.4 billion light years away and found that it spins at about half the speed of other less massive black holes.

Because a spinning black hole drags space around with it and allows matter to orbit closer to it than is possible for a non-spinning one, the X-ray data can show how fast the black hole is spinning. The spectrum — that is, the amount of energy as a function wavelength — of H1821+643 indicates that the black hole is rotating at a modest rate compared to other, less massive ones that spin close to the speed of light. This is the most accurate spin measurement for such a massive black hole.

The black hole, thought to weigh between 3 to 30 billion times more than the Sun and is the heaviest such object measured in this way, rotates at about half the speed of light. Why that rotation is less than other smaller black holes remains a question not yet answered, though astronomers suspect it is related to its formation history.

The image above is a composite showing this quasar across multiply wavelengths. X-rays are shown in blue, radio in red, and optical in white.

First radio image of event horizon of Milky Way’s central black hole

Sagittarius A*
Click for full image.

Using an array of eight radio telescopes worldwide, dubbed the Event Horizon Telescope because its purpose is to study black holes, scientists have obtained the first radio image of the event horizon of Sagittarius A* (pronounced “A-star”), the supermassive black hole at the center of the Milky Way.

The image to the right, reduced to post here, is that photo.

The image is a long-anticipated look at the massive object that sits at the very centre of our galaxy. Scientists had previously seen stars orbiting around something invisible, compact, and very massive at the centre of the Milky Way. This strongly suggested that this object — known as Sagittarius A* (Sgr A*, pronounced “sadge-ay-star”) — is a black hole, and today’s image provides the first direct visual evidence of it.

Although we cannot see the black hole itself, because it is completely dark, glowing gas around it reveals a telltale signature: a dark central region (called a “shadow”) surrounded by a bright ring-like structure. The new view captures light bent by the powerful gravity of the black hole, which is four million times more massive than our Sun.

This is the second supermassive black hole that the Event Horizon array has imaged. In 2019 it captured the central black hole of the galaxy M87, 55 million light years away. Like that first image, much of what we see here is created by computer, since the data from the eight radio telescopes needs to be massaged to create something as smooth and as complete as this.

First exoplanet detected in another galaxy?

The uncertainty of science: Using the Chandra X-ray Observatory, astronomers think they may have detected the first exoplanet ever found in another galaxy, the Whirlpool Galaxy, 28 million light years away.

This new result is based on transits, events in which the passage of a planet in front of a star blocks some of the star’s light and produces a characteristic dip. Astronomers using both ground-based and space-based telescopes — like those on NASA’s Kepler and TESS missions — have searched for dips in optical light, electromagnetic radiation humans can see, enabling the discovery of thousands of planets.

Di Stefano and colleagues have instead searched for dips in the brightness of X-rays received from X-ray bright binaries. These luminous systems typically contain a neutron star or black hole pulling in gas from a closely orbiting companion star. The material near the neutron star or black hole becomes superheated and glows in X-rays.

Because the region producing bright X-rays is small, a planet passing in front of it could block most or all of the X-rays, making the transit easier to spot because the X-rays can completely disappear. This could allow exoplanets to be detected at much greater distances than current optical light transit studies, which must be able to detect tiny decreases in light because the planet only blocks a tiny fraction of the star.

The team used this method to detect the exoplanet candidate in a binary system called M51-ULS-1, located in M51. This binary system contains a black hole or neutron star orbiting a companion star with a mass about 20 times that of the Sun. The X-ray transit they found using Chandra data lasted about three hours, during which the X-ray emission decreased to zero. Based on this and other information, the researchers estimate the exoplanet candidate in M51-ULS-1 would be roughly the size of Saturn, and orbit the neutron star or black hole at about twice the distance of Saturn from the Sun.

While this is a tantalizing study, more data would be needed to verify the interpretation as an extragalactic exoplanet. One challenge is that the planet candidate’s large orbit means it would not cross in front of its binary partner again for about 70 years, thwarting any attempts for a confirming observation for decades. [emphasis mine]

As the press release says, this data is tantalizing, but it is really insufficient to prove that an exoplanet has been found. What is known is that for some reason the X-ray emissions from the X-ray binary system disappeared for about three hours. An exoplanet could be one explanation. So could many other things.

Astronomers detect a white dwarf that is both the smallest and most massive ever found

Using an array of telescopes on the ground and in space, astronomers have discovered a white dwarf star that is both the smallest ever found while also being the most massive.

White dwarfs are the collapsed remnants of stars that were once about eight times the mass of our Sun or lighter. Our Sun, for example, after it first puffs up into a red giant in about 5 billion years, will ultimately slough off its outer layers and shrink down into a compact white dwarf. About 97 percent of all stars become white dwarfs.

While our Sun is alone in space without a stellar partner, many stars orbit around each other in pairs. The stars grow old together, and if they are both less than eight solar-masses, they will both evolve into white dwarfs.

The new discovery provides an example of what can happen after this phase. The pair of white dwarfs, which spiral around each other, lose energy in the form of gravitational waves and ultimately merge. If the dead stars are massive enough, they explode in what is called a type Ia supernova. But if they are below a certain mass threshold, they combine together into a new white dwarf that is heavier than either progenitor star. This process of merging boosts the magnetic field of that star and speeds up its rotation compared to that of the progenitors.

Astronomers say that the newfound tiny white dwarf, named ZTF J1901+1458, took the latter route of evolution; its progenitors merged and produced a white dwarf 1.35 times the mass of our Sun. The white dwarf has an extreme magnetic field almost 1 billion times stronger than our Sun’s and whips around on its axis at a frenzied pace of one revolution every seven minutes (the zippiest white dwarf known, called EPIC 228939929, rotates every 5.3 minutes).

Based on their present understanding of stellar evolution, single white dwarfs do not form from stars with more than 1.3 solar masses. Stars with greater masses instead become neutron stars, or black holes. To get a white dwarf of 1.35 masses thus requires a merger of two white dwarfs, but it also means that the resulting dwarf could be unstable and could collapse into a neutron star at some point. The data also suggests that this merger process might be how a large number of neutron stars actually form.

The dwarf is also the smallest ever found, with a diameter of 2,670 miles, because the larger masses squeezes it into a tighter space.

Gravitational wave detectors see two different black holes as they swallowed a neutron star

Astronomers using three different gravitational wave detectors have seen the gravity ripples caused when two different black holes swallowed a nearby neutron star.

The two gravitational-wave events, dubbed GW200105 and GW200115, rippled through detectors only 10 days apart, on January 5, 2020, and January 15, 2020, respectively.

Each merger involved a fairly small black hole (less than 10 Suns in heft) paired with an object between 1½ and 2 solar masses — right in the expected range for neutron stars. Observers caught no glow from the collisions, but given that both crashes happened roughly 900 million light-years away, spotting a flash was improbable, even if one happened — and it likely didn’t: The black holes are large enough that they would have gobbled the neutron stars whole instead of ripping them into bite-size pieces.

Note the time between the detection, in early 2020, and its announcement now, in mid-2021. The data is very complex and filled with a lot of noise, requiring many months of analysis to determine if a detection was made. For example, in a third case one detector was thought to have seen another such merger but scientists remain unsure. It might simply be noise in the system. I point this out to emphasize that thought they are much more confident in these new detections, there remains some uncertainty.

Scientists confirm another 44 black hole mergers detected by gravitational waves

Scientists have now confirmed that since the first detection of a gravitational wave five years ago they have detected another 44 black hole mergers in the same manner.

A global network of scientists has completed the first major analysis of gravitational wave data, providing exciting insights into some of the most exotic objects in the Universe. “We are announcing the discovery of 44 confirmed black hole mergers, which is a more than a four-fold increase in the number of previously known gravitational-wave signals,” says Shanika Galaudage from Australia’s Monash University, who was part of the research team.

…Their results are described in a trio of papers on the pre-print server arXiv. The first paper describes 39 new detections from the first half of the observing run, primarily of binary black hole systems. This brings the total number of gravitational wave events detected to 47, of which 44 are confidently double black holes, two are confidently double neutron stars, and one is still uncertain.

They think they are detecting more black hole mergers because they are heavier and thus emit bigger and more easily detected waves. They are also finding that the black hole mergers fall into two classes, two holes spinning in the same direction and two holes spinning in opposite or randomly different directions. The former formed together as a binary star system. The latter formed independently and somehow ended up linked up and merging.

Astronomers watch star’s destruction as supermassive black hole eats it

Astronomers, using a number of ground-based and orbiting telescopes, successfully observed a star’s destruction as it was ripped apart and eaten by a supermassive black hole at the center of a galaxy 215 million light years away.

The team carried out observations of AT2019qiz, located in a spiral galaxy in the constellation of Eridanus, over a 6-month period as the flare grew in luminosity and then faded away. “Several sky surveys discovered emission from the new tidal disruption event very quickly after the star was ripped apart,” says Wevers. “We immediately pointed a suite of ground-based and space telescopes in that direction to see how the light was produced.”

Multiple observations of the event were taken over the following months with facilities that included X-shooter and EFOSC2, powerful instruments on ESO’s VLT and ESO’s NTT, which are situated in Chile. The prompt and extensive observations in ultraviolet, optical, X-ray and radio light revealed, for the first time, a direct connection between the material flowing out from the star and the bright flare emitted as it is devoured by the black hole. “The observations showed that the star had roughly the same mass as our own Sun, and that it lost about half of that to the monster black hole, which is over a million times more massive,” says Nicholl, who is also a visiting researcher at the University of Edinburgh.

Astronomers have seen similar events previously, but never so close and never so early in the event.

Biggest black hole merger yet detected by gravitational waves

The uncertainty of science: In May 2020 scientists using the LIGO and VIGO gravitational waves telescopes detected evidence of a merger from two giant black holes, one of which was of a size that according to all theories had been considered “impossible.”

The short gravitational wave signal, GW190521, captured by the LIGO and Virgo gravitational wave observatories in the United States and Europe on 21 May last year, came from two highly spinning, mammoth black holes weighing in at a massive 85 times and 66 times the mass of the Sun, respectively.

But that is not the only reason this system is very special. The larger of the two black holes is considered `impossible’. Astronomers predict that stars between 65 – 130 times the mass of the Sun undergo a process called pair instability, resulting in the star being blown apart, leaving nothing behind.

With a mass of 85 solar masses, the larger black hole falls squarely in that forbidden range, referred to as the upper black hole mass gap, and should be `impossible’.

The explanation the scientists propose is that this black hole initially formed with a mass smaller than 65 solar masses, and then sucked in matter, including a possible additional black hole merger, that raised its weight to 85 solar masses.

Chandra captures black hole outburst over eight months

Four-frame movie of black hole outburst

Astronomers using the Chandra X-ray space telescope have documented the motion of two blobs moving away from a stellar-mass black hole over a period of eight months, producing a four-frame movie from their images and estimating the speed of those blobs to be 80% that of the speed of light.

The gif animation to the right shows that short movie.

The black hole and its companion star make up a system called MAXI J1820+070, located in our Galaxy about 10,000 light years from Earth. The black hole in MAXI J1820+070 has a mass about eight times that of the Sun, identifying it as a so-called stellar-mass black hole, formed by the destruction of a massive star. (This is in contrast to supermassive black holes that contain millions or billions of times the Sun’s mass.)

The companion star orbiting the black hole has about half the mass of the Sun. The black hole’s strong gravity pulls material away from the companion star into an X-ray emitting disk surrounding the black hole.

While some of the hot gas in the disk will cross the “event horizon” (the point of no return) and fall into the black hole, some of it is instead blasted away from the black hole in a pair of short beams of material, or jets. These jets are pointed in opposite directions, launched from outside the event horizon along magnetic field lines. The new footage of this black hole’s behavior is based on four observations obtained with Chandra in November 2018 and February, May, and June of 2019, and reported in a paper led by Mathilde Espinasse of the Université de Paris.

Hubble has produced similar movies of the activity around the Crab Nebula. Sadly, we don’t have enough space telescopes like these in orbit to monitor such objects more frequently and thus photograph their behavior more completely. If we did we’d be able to get a much better understanding of their ongoing activity. We would also be able to produce more movies such as this, with much higher resolution and more continuous coverage.

The closest black hole: 1,000 light years away?

The uncertainty of science: Astronomers now think they have detected evidence of a stellar-mass black hole only a thousand light years away and orbiting a star system that is visible to the naked eye.

Thomas Rivinius, an astronomer with the European Southern Observatory (ESO), and his colleagues studied the unusual star system HR 6819 in this way using a 2.2-meter telescope in Chile, operated by ESO and the Max Planck Society. They thought it was a binary system, but there was an extra wobble in the periodic light shifts of one of the stars that indicated something else was asserting its presence. It turned out to be a triple system, with one star in a fast 40-day orbit with an unseen companion and another star on a more distant, slow-moving trajectory, they write today in Astronomy & Astrophysics. The invisible companion’s mass was large enough—four times the mass of the Sun—that, if it was a star, “we would have seen it,” Rivinius says.

Though there are a lot of uncertainties, this discovery is reasonable, and expected. In the coming years astronomers will surely find more such stellar-mass black holes, with some even closer to Earth.

Astronomers more precisely estimate the diameter of neutron stars

Using several different techniques, astronomers now estimate that the typical neutron star will have a diameter of 11 kilometers, or about 7 miles.

What is significant about this new estimate is that if that neutron star happens to be orbiting a black hole and get pulled into it, it will be swallowed whole instead of being ripped apart.

Their results, which appeared in Nature Astronomy today, are more stringent by a factor of two than previous limits and show that a typical neutron star has a radius close to 11 kilometers. They also find that neutron stars merging with black holes are in most cases likely to be swallowed whole, unless the black hole is small and/or rapidly rotating. This means that while such mergers might be observable as gravitational-wave sources, they would be invisible in the electromagnetic spectrum.

In other words, such cataclysmic events would be largely invisible to observers.

Scientists reject discovery of biggest known black hole

The uncertainty of science: In three new papers published this week astronomers have found that the announced discovery in early December of the biggest super-massive black hole ever found, 70 times the mass of the Sun, does not hold up.

In a recent study (a peer-reviewed study published Nov. 27), a team of scientists reported the discovery of the binary system LB-1, which contains a star and, according to the findings, a black hole companion 70 times the mass of our sun. This was major news, a stellar-mass black holes (black holes formed by the gravitational collapse of a star) are typically less than half that massive. But while the study, led by Jifeng Liu, of the National Astronomical Observatory of China (NAOC) of the Chinese Academy of Sciences, was exciting, it was also wrong.

Three new papers came out this week that reexamined the findings from Liu’s study, and these studies say that LB-1’s black hole isn’t actually all that massive.

The new papers find that a closer look at the data finds that it wasn’t doing what the initial researchers thought.

Astronomers find record-setting heaviest supermassive black hole

Astronomers have discovered the most massive black hole yet discovered, having a mass 40 billion times the mass of our Sun.

The new data obtained at the USM Wendelstein observatory of the Ludwig-Maximilians-University and with the MUSE instrument at the VLT [Very Large Telescope in Chile] allowed the team to perform a mass estimate based directly on the stellar motions around the core of the galaxy. With a mass of 40 billion solar masses, this is the most massive black hole known today in the local universe. “This is several times larger than expected from indirect measurements, such as the stellar mass or the velocity dispersion of the galaxy,” remarks Roberto Saglia, senior scientist MPE and lecturer at the LMU.

The light profile of the galaxy shows a centre with an extremely low and very diffuse surface brightness, much fainter than in other elliptical galaxies. “The light profile in the inner core is also very flat,” explains USM doctoral student Kianusch Mehrgan, who performed the data analysis. “This means that most of the stars in the centre must have been expelled due to interactions in previous mergers.”

To give some perspective, the mass of the supermassive black hole in the center of the Milky Way, Sagittarius A* (pronounced A-Star), is thought to be about 4.6 million solar masses. This newly discovered supermassive black hole is almost nine thousand times heavier.

More gravitational waves detected

Using the LIGO and Virgo gravitational wave telescopes astronomers have detected two more gravitational waves.

On April 25, 2019, one of the twin LIGO instruments and the Virgo detector observed a candidate signal which – if confirmed – would be the first binary neutron star merger during the third observation run, which began on April 1. A second candidate signal was seen on April 26, which – if confirmed – could be a never-observed-before collision of a neutron star with a black hole. The latter candidate was observed by both LIGO instruments and the Virgo detector. Dozens of telescopes on the Earth and in space are searching for electromagnetic or astro-particle counterparts. No identification with an electromagnetic transient signal nor a host galaxy has been made to date for either candidate.

The resolution of LIGO and VIRGO are somewhat limited, so other telescopes have to scan a very large part of the sky to spot a counterpart. It is therefore likely that it will be years before the first counterpart event is identified. When it is however it will tell us how far away the event was and confirm what kind of event it was. Right now, they are only making educated guesses.

Astronomers take highest resolution radio image of black hole

shadow of black hole

Using a network of ground-based radio telescopes astronomers today released the highest resolution radio image of black hole ever produced.

Before giving more details, I must correct every other news report, as well as all of the press releases about this image. It is not “The first image of a black hole!” as these releases are claiming breathlessly. Radio telescope arrays have taken such images in the past, but their resolution was poor, so the result was not very imagelike. Instead, it showed contour lines in a coarse manner. Moreover, the coarseness of the resolution prevented them from seeing the black hole’s shadow itself.

This image now produced has the highest resolution ever for such a radio image, but believe me, it is still coarse. Nonetheless, it represents a giant technological leap forward. The effort required upgrades to many of these telescopes, along with significantly improved computer analysis. Now for some details:

Black holes are extraordinary cosmic objects with enormous masses but extremely compact sizes. The presence of these objects affects their environment in extreme ways, warping spacetime and super-heating any surrounding material. “If immersed in a bright region, like a disc of glowing gas, we expect a black hole to create a dark region similar to a shadow — something predicted by Einstein’s general relativity that we’ve never seen before,” explained chair of the EHT Science Council Heino Falcke of Radboud University, the Netherlands. “This shadow, caused by the gravitational bending and capture of light by the event horizon, reveals a lot about the nature of these fascinating objects and allowed us to measure the enormous mass of M87’s black hole.”

The image reveals the black hole at the center of Messier 87, a massive galaxy in the nearby Virgo galaxy cluster. This black hole resides 55 million light-years from Earth and has a mass 6.5-billion times that of the Sun.

Multiple calibration and imaging methods have revealed a ring-like structure with a dark central region — the black hole’s shadow — that persisted over multiple independent EHT observations. “Once we were sure we had imaged the shadow, we could compare our observations to extensive computer models that include the physics of warped space, superheated matter and strong magnetic fields. Many of the features of the observed image match our theoretical understanding surprisingly well,” remarks Paul T.P. Ho, EHT Board member and Director of the East Asian Observatory. “This makes us confident about the interpretation of our observations, including our estimation of the black hole’s mass.” [emphasis mine]

Note the highlighted words. To create this image they needed to combine data from numerous radio telescopes. Such work requires extensive calibration. The resulting image is manufactured, though without doubt it is manufactured from real radio data accumulated by multiple telescopes. Because those telescopes are separated by distance, however, there will always be gaps between their images, and it is in the calibration and imaging methods that the gaps are extrapolated away.

I don’t wish to imply that this image is fake. It is not. That the features persisted over multiple observations confirms that they were actually seeing the black hole’s shadow. It also confirms that these new interferometry techniques work.

However, much of the press hyperbole today is an effort to justify the many millions in tax dollars spent on this effort. The effort was absolutely worthwhile scientifically, but government bureaucracies always feel a need to oversell their work. That is partly what is happening here.

Astronomers detect matter falling into black hole at 30% of the speed of light

Using the XMM-Newton X-ray space telescope astronomers have detected matter falling into the central supermassive black hole at 30% of the speed of light in a galaxy a billion light years away.

Using data from XMM-Newton, Prof. Pounds and his collaborators looked at X-ray spectra (where X-rays are dispersed by wavelength) from the galaxy PG211+143. This object lies more than one billion light years away in the direction of the constellation Coma Berenices, and is a Seyfert galaxy, characterised by a very bright AGN [active galactic nucleus] resulting from the presence of the massive black hole at its nucleus.

The researchers found the spectra to be strongly red-shifted, showing the observed matter to be falling into the black hole at the enormous speed of 30 per cent of the speed of light, or around 100,000 kilometres per second. The gas has almost no rotation around the hole, and is detected extremely close to it in astronomical terms, at a distance of only 20 times the hole’s size (its event horizon, the boundary of the region where escape is no longer possible).

Astronomers have theorized for several decades that the reason Seyfert galaxies have such active nuclei is exactly because matter is falling into the central black hole. This observation appears to confirm that theory.

Astronomers find evidence for thousands of black holes near galaxy center

The uncertainty of science: Using data from the Chandra X-Ray Observatory, astronomers have found evidence suggesting that thousands of stellar-mass black holes might exist circling Sagittarius A* (pronounced A-star), the super-massive black hole at the center of the Milky Way.

Essentially, they found a dozen likely black hole candidates in what they think are X-ray binaries system. From this they extrapolate the number of potential stellar-massed black holes at the center of the galaxy. However,

While the authors strongly favor the black hole explanation, they cannot rule out the possibility that up to about half of the observed dozen sources are from a population of millisecond pulsars, i.e., very rapidly rotating neutron stars with strong magnetic fields.

In other words, this conclusion is very uncertain. Nonetheless, even if half of their candidates are not stellar-mass black holes, the results do suggest that there are a very large number of black holes circling Sagittarius A*. Using this information astronomers will be able to better refine their theories on the formation process for such super-massive black holes.

Astronomers find a dozen black holes near center of Milky Way

Astronomers have discovered a dozen smaller black holes orbiting near Sagittarius A* (pronounced “A-star”), the supermassive black hole at the center of the Milky Way.

Charles Hailey from Columbia University in New York and colleagues used archival data from Nasa’s Chandra X-ray telescope to come to their conclusions. They report the discovery of a dozen inactive and low-mass “binary systems”, in which a star orbits an unseen companion – the black hole.

The supermassive black hole at the centre of the Milky Way, known as Sagittarius A* (Sgr A*), is surrounded by a halo of gas and dust that provides the perfect breeding ground for the birth of massive stars. These stars live, die and could turn into black holes there. In addition, black holes from outside the halo are believed to fall under the influence of Sgr A* as they lose their energy, causing them to be pulled into its vicinity, where they are held captive by its force. Some of these bind – or “mate” – to passing stars, forming binary systems.

They have extrapolated their data to predict the existence of thousands more of these small black holes near the galaxy’s center.

Another LIGO black hole merger detected

Astronomers have announced another black hole merger detected by the LIGO gravitational wave observatory.

Dubbed GW170608, the latest discovery was produced by the merger of two relatively light black holes, 7 and 12 times the mass of the sun, at a distance of about a billion light-years from Earth. The merger left behind a final black hole 18 times the mass of the sun, meaning that energy equivalent to about 1 solar mass was emitted as gravitational waves during the collision.

This event, detected by the two NSF-supported LIGO detectors at 02:01:16 UTC on June 8, 2017 (or 10:01:16 pm on June 7 in US Eastern Daylight time), was actually the second binary black hole merger observed during LIGO’s second observation run since being upgraded in a program called Advanced LIGO. But its announcement was delayed due to the time required to understand two other discoveries: a LIGO-Virgo three-detector observation of gravitational waves from another binary black hole merger (GW170814) on August 14, and the first-ever detection of a binary neutron star merger (GW170817) in light and gravitational waves on August 17.

Gravitational waves from black hole collision detected

Three Earth gravitational wave observatories have detected the waves coming from the same collision of two black holes.

The collision was observed Aug. 14 at 10:30:43 a.m. Coordinated Universal Time (UTC) using the two National Science Foundation (NSF)-funded Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors located in Livingston, Louisiana, and Hanford, Washington, and the Virgo detector, funded by CNRS and INFN and located near Pisa, Italy.

The detection by the LIGO Scientific Collaboration (LSC) and the Virgo collaboration is the first confirmed gravitational wave signal recorded by the Virgo detector.

Based on the data obtained, they estimate that the two black holes 25 and 31 times the mass of the Sun and are about 1.8 billion light years away.

Orbital motion of a binary black hole detected for the first time

Astronomers have for the first time measured the orbital motion of two supermassive black holes that orbit each other.

Based on the initial data, the two black holes appear to orbit each other every 30,000 years. Eventually, they will spiral into each other, merge, and in the process produce ripples in the surrounding gravitational field that will be detectable by future gravitational wave detectors.

Another gravity wave detected by LIGO

The LIGO gravitational wave detector has detected its second gravitational wave, thought to come from the merger of two black holes.

The new observation came at 3:38.53 Coordinated Universal Time on 26 December 2015—late on Christmas day at LIGO’s detectors in Livingston, Louisiana, and Hanford, Washington. As in the first event, the detectors sensed an oscillating stretching of space-time, the signal, according to Einstein’s 
general theory of relativity, of massive objects in violent motion. Computer modeling indicated that its source was two black holes spiraling together about 1.4 billion light-years away. (LIGO researchers had seen a weaker signal on 12 October 2015 that may be a third black hole merger.)

Note the last sentence in the quote above. They might have had a third detection, but are uncertain enough to have not claimed it as one.

Milky Way’s central black hole is getting active

The uncertainty of science: Sagittarius A* (pronounced A-Star), the Milky Way’s supermassive central black hole, has shown signs of increased activity in recent months.

The new study reveals that Sagittarius A* (Sgr A* for short) has been producing one bright X-ray flare about every ten days. However, within the past year, there has been a ten-fold increase in the rate of bright flares from Sgr A*, at about one every day. This increase happened soon after the close approach to Sgr A* by a mysterious object called G2.

“For several years, we’ve been tracking the X-ray emission from Sgr A*. This includes also the close passage of this dusty object” said Gabriele Ponti of the Max Planck Institute for Extraterrestrial Physics in Germany. “A year or so ago, we thought it had absolutely no effect on Sgr A*, but our new data raise the possibility that that might not be the case.”

G2 was first thought to be a cloud that would be ripped apart as it passed close to Sgr A*, causing an outburst of activity. When it wasn’t ripped apart and there was no immediate increase in activity astronomers concluded that G2 was a star surrounded by dust which was generally unaffected by its close fly-by of the black hole.

The timing of this new activity now is puzzling. It comes much later than it should have if it was caused by G2, but astronomers don’t have any other explanation for it. It might be because of G2’s fly-by, or maybe the activity is just the natural variability of this poorly understand object. Either way it illustrates how little we really know about the behavior of giant black holes.

A bullseye in space

Cool image time! The science team of the Swift space telescope has released a movie compiled from X-ray images taken of the first outburst from black hole V404 Cygni in 26 years. [link fixed!]

Astronomers say the rings result from an “echo” of X-ray light. The black hole’s flares emit X-rays in all directions. Dust layers reflect some of these X-rays back to us, but the light travels a longer distance and reaches us slightly later than light traveling a more direct path. The time delay creates the light echo, forming rings that expand with time.

Detailed analysis of the expanding rings shows that they all originate from a large flare that occurred on June 26 at 1:40 p.m. EDT. There are multiple rings because there are multiple reflecting dust layers between 4,000 and 7,000 light-years away from us. Regular monitoring of the rings and how they change as the eruption continues will allow astronomers to better understand their nature.

V404 Cygni is located about 8,000 light-years away. Every couple of decades the black hole fires up in an outburst of high-energy light. Its previous eruption ended in 1989.

The animation below the fold is a smaller resolution version of the movie, showing the rings as they expand outward.
» Read more

Black hole awakes after 26 years

For the first time since 1989, the black hole in V404 Cygni, a system comprising a black hole and a star, has reawakened, suddenly emitting high energy outbursts beginning on June 15.

First signs of renewed activity in V404 Cygni were spotted by the Burst Alert Telescope on NASA’s Swift satellite, detecting a sudden burst of gamma rays, and then triggering observations with its X-ray telescope. Soon after, MAXI (Monitor of All-sky X-ray Image), part of the Japanese Experiment Module on the International Space Station, observed an X-ray flare from the same patch of the sky.

These first detections triggered a massive campaign of observations from ground-based telescopes and from space-based observatories, to monitor V404 Cygni at many different wavelengths across the electromagnetic spectrum.

The outbursts are probably occurring because the black hole is gobbling up material that has fallen into it.

While the 1989 outburst helped astronomers gain their first understand of the behavior of a black hole in a star system, this outburst will help them understand how such systems evolve and change over time.

1 2