Tag Archives: exoplanets

Astronomers identify giant exoplanets that might harbor habitable moons

Worlds without end: In reviewing the known exoplanets astronomers have identified more than a hundred giant exoplanets located in the habitable zone that might harbor habitable moons.

The researchers identified 121 giant planets that have orbits within the habitable zones of their stars. At more than three times the radii of the Earth, these gaseous planets are less common than terrestrial planets, but each is expected to host several large moons.

Scientists have speculated that exomoons might provide a favorable environment for life, perhaps even better than Earth. That’s because they receive energy not only from their star, but also from radiation reflected from their planet. Until now, no exomoons have been confirmed.

Using this new database scientists will optimize future instruments on both the ground and in space to look for and study the moons circling these exoplanets.


TESS completes lunar flyby, takes first test image

The Transiting Exoplanet Survey Satellite (TESS) yesterday successfully completed its slingshot flyby of the Moon to place it in its final operational orbit.

The spacecraft also used one of its four cameras to successfully take a 2-second test exposure, proving that the camera and pointing system both work. The first science image is expected in June.


Hubble detects helium in exoplanet atmosphere

Using the Hubble Space Telescope astronomers have for the first time detected helium in the atmosphere of an exoplanet.

The team made the detection by analysing the infrared spectrum of the atmosphere of WASP-107b [1]. Previous detections of extended exoplanet atmospheres have been made by studying the spectrum at ultraviolet and optical wavelengths; this detection therefore demonstrates that exoplanet atmospheres can also be studied at longer wavelengths.

…WASP-107b is one of the lowest density planets known: While the planet is about the same size as Jupiter, it has only 12% of Jupiter’s mass. The exoplanet is about 200 light-years from Earth and takes less than six days to orbit its host star.

The amount of helium detected in the atmosphere of WASP-107b is so large that its upper atmosphere must extend tens of thousands of kilometres out into space. This also makes it the first time that an extended atmosphere has been discovered at infrared wavelengths. Since its atmosphere is so extended, the planet is losing a significant amount of its atmospheric gases into space — between ~0.1-4% of its atmosphere’s total mass every billion years

The important aspect of this detection is the use of infrared, which gives astronomers another tool to study exoplanets.


SpaceX successfully launches NASA new exoplanet telescope

Capitalism in space: SpaceX today successfully placed NASA’s new explanet space telescope, TESS, into orbit.

The first stage, which was making its first flight, successfully landed on the drone ship in the Atlantic. They hope to reuse this booster on a future Dragon launch.

Update: TESS’s solar arrays have successfully deployed.

The leaders in the 2018 launch standings:

11 China
8 SpaceX
3 Japan
3 Russia
3 Europe
3 India

The U.S. is now ahead of China, 12 to 11, in the national list.


The search for exoplanets at Alpha Centauri

The search for new exoplanets orbiting the three stars of the Alpha Centauri star system is intensifying, despite significant viewing challenges and solar activity that precludes life around one star.

The system’s two sunlike stars, Alpha Centauri A and B, orbit each other closely while Proxima Centauri, a tempestuous red dwarf, hangs onto the system tenuously in a much more distant orbit. In 2016, astronomers discovered an Earth-mass planet around Proxima Centauri, but the planet, blasted by radiation and fierce stellar winds, seems unlikely to be habitable. Astrobiologists think the other two stars are more likely to host temperate, Earth-like planets.

Maksym Lisogorskyi, an astronomer at the University of Hertfordshire in Hatfield, U.K., tried to find them with an instrument on the European Southern Observatory’s (ESO’s) 3.6-meter telescope in Chile. He and his colleagues looked for Doppler shifts in the spectral lines of the stars’ light that would be caused if a planet tugged them back and forth. But Lisogorskyi told the meeting that the stars’ surfaces are turbulent, and prone to flares that also jiggle the spectral lines, masking the subtle signals from any Earth-size planets. “The lines do all kinds of things,” he says. Although Alpha Centauri has been a primary target for the planet-finding instrument since it was inaugurated in 2005, it has seen nothing so far.

Also hampering observations are the current positions of the two stars. As viewed from Earth, they are very close together, making them harder to study individually, Lily Zhao of Yale University told the meeting. More precise observations should become possible as their 80-year orbit carries them farther apart. In the meantime, Zhao and her colleagues have succeeded in ruling out the presence of giant planets around either star, based on a decade’s worth of data from three instruments on different telescopes. “There are no Jupiters in the system, but there may be plenty of Earth-sized planets still to discover,” she said.

I am skeptical of the conclusions of the astrobiologists who think there may be habitable Earth-like planets in orbit around the close binary. Binary formation makes planetary formation difficult, and even if they are there the stars’ orbits would make stable orbits unlikely. Nonetheless, the research is good, as the techniques learned will be applicable elsewhere.


Kepler to run out of fuel in the coming months

After nine years of success, the Kepler space telescope is running out of fuel, which will force an end to the mission sometime in the next several months.

The Kepler team is planning to collect as much science data as possible in its remaining time and beam it back to Earth before the loss of the fuel-powered thrusters means that we can’t aim the spacecraft for data transfer. We even have plans to take some final calibration data with the last bit of fuel, if the opportunity presents itself.

Without a gas gauge, we have been monitoring the spacecraft for warning signs of low fuel— such as a drop in the fuel tank’s pressure and changes in the performance of the thrusters. But in the end, we only have an estimate – not precise knowledge. Taking these measurements helps us decide how long we can comfortably keep collecting scientific data.

They are doing a dance here. If they run out of fuel while collecting data, that data will be lost. If they stop collecting data too soon, however, to transmit it to Earth, they will not maximize the data obtained.

Meanwhile, the next exoplanet hunter, TESS, is scheduled for launch on April 16 on a Falcon 9 rocket.


More info on Trappist-1 solar system

Astronomers, using ground-based and orbiting telescopes, have obtained more information about the seven Earth-sized exoplanets that orbit the star Trappist-1 forty light years away.

First, a European effort has found that the planets probably all have loads of water.

A new study has found that the seven planets orbiting the nearby ultra-cool dwarf star TRAPPIST-1 are all made mostly of rock, and some could potentially hold more water than Earth. The planets’ densities, now known much more precisely than before, suggest that some of them could have up to 5 percent of their mass in the form of water — about 250 times more than Earth’s oceans. The hotter planets closest to their parent star are likely to have dense steamy atmospheres and the more distant ones probably have icy surfaces. In terms of size, density and the amount of radiation it receives from its star, the fourth planet out is the most similar to Earth. It seems to be the rockiest planet of the seven, and has the potential to host liquid water.

Data from the Hubble Space Telescope has meanwhile found that three of the seven planets do not have hydrogen in their atmospheres, which at first seems to contradict the European data.

The Hubble observations took advantage of the fact that the planets cross in front of their star every few days. Using the Wide Field Camera 3, astronomers made spectroscopic observations in infrared light, looking for the signature of hydrogen that would filter through a puffy, extended atmosphere, if it were present. “The planets are close enough to their host star, and they have very short orbital periods, which means there are lots of opportunities to make observations,” Lewis said.

Although Hubble did not find evidence of hydrogen, the researchers suspect the planetary atmospheres could have contained this lightweight gaseous element when they first formed. The planets may have formed farther away from their parent star in a colder region of the gaseous protostellar disk that once encircled the infant star.

The Hubble results are actually not very significant. They show only that they did not detect hydrogen in the atmospheres of these three exoplanets, which does not mean it isn’t there. Moreover, this Hubble press release appears to have been issued as much to sell the James Webb Space Telescope and to say that Hubble is looking at Trappist-1 also!

I should add that all of these results are very uncertain. We are looking at something that is very small and is also very far away. Any data obtained is certainly not a precise measurement of what is actually there, only a mere hint.


New exoplanet makes eight in rival solar system

comparing solar systems

Worlds without end: Astronomers using Kepler data mined by computers have discovered an eighth planet in another solar system, making that system somewhat comparable to our own.

The newly discovered Kepler-90i — a sizzling hot, rocky planet orbiting its star once every 14.4 days — was found using computers that “learned” to find planets in data from NASA’s Kepler space telescope. Kepler finds distant planets beyond the solar system, or exoplanets, by detecting the minuscule change in brightness when a planet transits (crosses in front of) a star.

Vanderburg, a NASA Sagan fellow at UT Austin, and Shallue, a Google machine learning researcher, teamed up to train a computer to learn how to identify signs of an exoplanet in the light readings from distant stars recorded by Kepler. Similar to the way neurons connect in the human brain, this “neural network” sifted through the Kepler data to identify the weak transit signals from a previously missed eighth planet orbiting Kepler-90, a sun-like star 2,545 light-years from Earth in the constellation Draco. “For the first time since our solar system planets were discovered thousands of years ago, we know for sure that our solar system is not the sole record holder for the most planets,” Vanderburg said.

The image to the right compares the planet sizes between this solar system and ours. It does not show that, for this distant star, all eight planets have orbits closer to the star than the Earth, and would therefore be very unlikely to harbor life.

One more thing: This story is very cool, but it also is another one of those NASA press releases that the agency PR department overhyped beforehand, even allowing some reporters to think that it might involve the discovery of life beyond Earth. Not surprisingly, several news sources and radio shows asked me to talk about it. To their disappointment I said I’d rather wait, since NASA has overhyped more than a few stories like this in recent years. Once again, my instincts were right. This story has nothing to do with alien life, and though interesting, is actually not that big a deal.


Astronomers find habitable Earth-mass planet 11 light years away

Worlds without end: Astronomers have found an Earth-mass planet 11 light years away, orbiting a quiet red dwarf star in the habitable zone.

Unlike Proxima Centauri, which periodically has large flares which make its Earth-sized planet less hospitable to life, this red dwarf, Ross 128, is more stable.

Many red dwarf stars, including Proxima Centauri, are subject to flares that occasionally bathe their orbiting planets in deadly ultraviolet and X-ray radiation. However, it seems that Ross 128 is a much quieter star, and so its planets may be the closest known comfortable abode for possible life.

Although it is currently 11 light-years from Earth, Ross 128 is moving towards us and is expected to become our nearest stellar neighbour in just 79 000 years — a blink of the eye in cosmic terms. Ross 128 b will by then take the crown from Proxima b and become the closest exoplanet to Earth!


Astronomers find Kuiper Belt-like ring around Proxima Centauri

Worlds without end: Astronomers have found a dusty ring 1 to 4 astronomical units from the nearest star, Proxima Centauri.

Because Proxima Centauri is a smaller, dimmer star, its system is more compact. Proxima b [the star’s known exoplanet] circles the star at 0.05 astronomical units (a.u., the average distance between Earth and the Sun) — for reference, Mercury orbits the Sun at 0.39 a.u. The dusty ring lies well beyond that, extending from 1 to 4 a.u.

The Proxima ring is similar in some ways to the Kuiper Belt, a cold, dusty belt in the far reaches of our solar system (beyond 40 a.u.) that contains a fraction of Earth’s mass. While the Kuiper belt is well known for larger members such as Pluto and Eris, it also contains fine grains, ground down through collisions over billions of years. The dust ALMA observed around Proxima Centauri is composed of similar small grains. The average temperature and total mass of the Proxima ring is also about the same as our Kuiper Belt.

Because the ring here much closer to the star than our Kuiper Belt, the material is much more densely packed. Moreover, the presence of both a ring and an exoplanet suggests more planets might remain undiscovered there, increasing the chances that this star could have a solar system very worthwhile exploring.


New exoplanet defies accepted theories of planet formation

The uncertainty of science: A newly discovered exoplanet, the size of Jupiter and orbiting a star half the size of the Sun, should not exist based on all the presently favored theories of planet formation.

New research, led by Dr Daniel Bayliss and Professor Peter Wheatley from the University of Warwick’s Astronomy and Astrophysics Group, has identified the unusual planet NGTS-1b – the largest planet compared to the size of its companion star ever discovered in the universe.

NGTS-1b is a gas giant six hundred light years away, the size of Jupiter, and orbits a small star with a radius and mass half that of our sun.

Its existence challenges theories of planet formation which state that a planet of this size could not be formed by such a small star. According to these theories, small stars can readily form rocky planets but do not gather enough material together to form Jupiter-sized planets. The planet is a hot Jupiter, at least as large as the Jupiter in our solar system, but with around 20% less mass. It is very close to its star – just 3% of the distance between Earth and the Sun – and orbits the star every 2.6 days, meaning a year on NGTS-1b lasts two and a half days.

No one should be surprised by this. While the present theories of planet formation are useful and necessary, giving scientists a rough framework for studying exoplanets, they should not be taken too seriously. We simply do not yet have enough information about how stars, solar systems, and planets form.


Astronomers find 20 more exoplanet candidates in Kepler archive

Worlds without end: Astronomers reviewing the Kepler archive have found 20 more exoplanet candidates, including one that has a mass about 97 percent of the Earth with an orbit 395 days long circling a star like the Sun.

The planet would be colder than Earth, as its star is slightly cooler than the Sun, and its orbit is slightly farther away. Nonetheless, this is an amazing twin, and would certainly be a prime target when interstellar travel becomes routine.


Astronomers search for water on Trappist-1 ecoplanets

The uncertainty of science: New research suggests that the Earth-sized exoplanets circling Trappist-1 might have water, or might not.

The data suggests the inner planets likely have lost all their water, but the outer planets, some of which are in the habitable zone, could have water. The key word is “could.” They actually don’t yet have any data that says for sure whether water is there..

Posted as we drive through Kayenta in the Navaho Reservation.


Have astronomers using Kepler discovered the first exomoon?

The uncertainty of science: Using data from Kepler astronomers think they have spotted the first exomoon, orbiting a star 4,000 light years away.

They think it might be the size of Neptune, and orbits a planet about ten times more massive than Jupiter.

All this is unconfirmed, however, especially because their conclusions are based on data from only three transits. They plan to use the Hubble Space Telescope to do more observations and hopefully confirm the discovery.


Update of Kepler exoplanet catalog

Worlds without end: The Kepler science team has released an update of the space telescope’s exoplanet candidate list, adding 219 new exoplanet candidates.

NASA’s Kepler space telescope team has released a mission catalog of planet candidates that introduces 219 new planet candidates, 10 of which are near-Earth size and orbiting in their star’s habitable zone, which is the range of distance from a star where liquid water could pool on the surface of a rocky planet. This is the most comprehensive and detailed catalog release of candidate exoplanets, which are planets outside our solar system, from Kepler’s first four years of data. It’s also the final catalog from the spacecraft’s view of the patch of sky in the Cygnus constellation.

With the release of this catalog, derived from data publicly available on the NASA Exoplanet Archive, there are now 4,034 planet candidates identified by Kepler. Of which, 2,335 have been verified as exoplanets. Of roughly 50 near-Earth size habitable zone candidates detected by Kepler, more than 30 have been verified.

Additionally, results using Kepler data suggest two distinct size groupings of small planets. Both results have significant implications for the search for life. The final Kepler catalog will serve as the foundation for more study to determine the prevalence and demographics of planets in the galaxy, while the discovery of the two distinct planetary populations shows that about half the planets we know of in the galaxy either have no surface, or lie beneath a deep, crushing atmosphere – an environment unlikely to host life.


Exoplanet hotter than some stars

Astronomers have identified an Jupiter-sized exoplanet with a surface that is apparently hotter than the surfaces of some stars.

With a day-side temperature of 4,600 Kelvin (more than 7,800 degrees Fahrenheit), planet KELT-9b is hotter than most stars, and only 1,200 Kelvin (about 2,000 degrees Fahrenheit) cooler than our own sun…. For instance, it’s a gas giant 2.8 times more massive than Jupiter but only half as dense, because the extreme radiation from its host star has caused its atmosphere to puff up like a balloon. And because it is tidally locked to its star—as the Moon is to Earth—the day side of the planet is perpetually bombarded by stellar radiation, and as a result is so hot that molecules such as water, carbon dioxide, and methane can’t form there. The properties of the night side are still mysterious—molecules may be able to form there, but probably only temporarily.

The most interesting aspect of this discovery is that it was done with small, inexpensive ground-based telescopes.


Astronomers find that Epsilon Eridani solar system resembles our own system

New data of the Epsilon Eridani solar system 10.5 light years away confirms that its debris disk has a structure somewhat resembling our own solar system.

The data has found that the debris disk has two narrow belts, one located at about the same distance from the star as our asteroid belt, and the other orbiting at about where Uranus is located. In addition, the system appears to have a Jupiter-sized planet orbiting the same distance from the star as does Jupiter.


Citizen scientists crowd scource discovery of 4 exoplanets

After being promoted on an Australian tv show an effort to use public help to plow through Kepler’s vast archives discovered four new exoplanets within two days.

In three days, the Australia iteration of astronomy TV show Stargazing Live brought us #SpaceGandalf and now its viewers have discovered four planets. After it was promoted on the show, citizen scientists and fans of the program came together to contribute to a crowd-sourcing project, stalking around 100,000 stars on the Zooniverse website, which displays recent data from the Kepler Space Telescope.

And you betcha, in just 48 hours, around 10,000 volunteers discovered scores of potential new planet candidates, with scientists confirming the discovery of four “super-Earth” planets orbiting a star in the constellation of Aquarius.


A solar system of exoEarths!

Astronomers have discovered a nearby solar system of exoplanets, all approximately Earth-sized with at least three in the habitable.

Following these initial findings, the star was systematically monitored to find out whether it contained any other planets. The result of this follow-up exceeded all expectations: TRAPPIST-1 has at least seven planets, all of which are Earth-sized (to within 15%). The six nearest planets (b to g) orbit their star in 1.5 to 12 days (the period of the seventh planet remains to be determined), and are 20 to 90 times closer to their star than the distance from the Earth to the Sun. At such distances, the tidal forces exerted by the star are considerable, locking the planets into synchronous rotation, which means that they rotate about their axis exactly once in one orbit, thus always showing the same face to their star (just as the Moon does relative to the Earth).

The planets of TRAPPIST-1 have insolations, and therefore average temperatures, similar to Earth’s: the insolation of the innermost planet (b) is slightly higher than that of Mercury, while the outermost planets (g and h) have an insolation that is a little lower than that of Mars. The insolations of at least three of the planets (e, f and g) are compatible with the existence of liquid water on their surface for a wide range of atmospheric compositions, as is shown by numerical simulations of their climate. Due to their synchronous rotation, it cannot be excluded that the planets with the highest irradiation (b, c and d) may harbor liquid water in temperate regions with little or no sunlight.

More here. The star, a cool dwarf, is only 40 light years away.

Posted in the Belize City airport, as we wait for our pickup.


The clouds of hot Jupiter exoplanets

Exoplanet clouds

Cool image time! The image on the right, reduced to show here, provides an overall summary of what astronomers know about the atmospheres of many gas giant exoplanets that also orbit very close to their suns and are tidally locked. The view is of the planet hemisphere facing away from the star, which is also where most of the clouds are thought to be. These results come from Kepler data combined with computer modeling, and show what scientists thinks happens with different cloud compositions at different temperatures.

Link fixed!


Scientists discover exoplanets orbiting both stars of binary system

Worlds without end: Scientists have discovered a stellar binary system which has giant exoplanets orbiting each of the system’s stars.

The twin stars studied by the group are called HD 133131A and HD 133131B. The former hosts two moderately eccentric planets, one of which is, at a minimum, about 1 and a half times Jupiter’s mass and the other of which is, at a minimum, just over half Jupiter’s mass. The latter hosts one moderately eccentric planet with a mass at least 2.5 times Jupiter’s.

The two stars themselves are separated by only 360 astronomical units (AU). One AU is the distance between the Earth and the Sun. This is extremely close for twin stars with detected planets orbiting the individual stars. The next-closest binary system that hosts planets is comprised of two stars that are about 1,000 AU apart.


More details about Proxima Centauri’s Earthlike exoplanet

Link here. Lots of background into the discovery itself, but I think these paragraphs really sum things up:

“The search for life starts now,” says Guillem Anglada-Escudé, an astronomer at Queen Mary University of London and leader of the team that made the discovery.

Humanity’s first chance to explore this nearby world may come from the recently announced Breakthrough Starshot initiative, which plans to build fleets of tiny laser-propelled interstellar probes in the coming decades. Travelling at 20% of the speed of light, they would take about 20 years to cover the 1.3 parsecs from Earth to Proxima Centauri.

Proxima’s planet is at least 1.3 times the mass of Earth. The planet orbits its red-dwarf star — much smaller and dimmer than the Sun — every 11.2 days. “If you tried to pick the type of planet you’d most want around the type of star you’d most want, it would be this,” says David Kipping, an astronomer at Columbia University in New York City. “It’s thrilling.”

The human race now has a real interstellar target to aim for. Don’t be surprised if we get there sooner than anyone predicts.


Astrobiologists meet to better their search for exoplanet life

The uncertainty of science: Astrobiologists are meeting this week in Seattle to discuss and refine their methods for detecting astrobiology on exoplanets.

The Seattle meeting aims to compile a working list of biosignature gases and their chemical properties. The information will feed into how astronomers analyse data from NASA’s James Webb Space Telescope, slated for launch in 2018. The telescope will be able to look at only a handful of habitable planets, but it will provide the first detailed glimpse of what gases surround which world, says Nikole Lewis, an astronomer at the Space Telescope Science Institute in Baltimore, Maryland.

No single gas is likely to be a slam-dunk indicator of alien life. But Domagal-Goldman hopes that the workshop will produce a framework for understanding where scientists could trip themselves up. “We don’t want to have a great press release,” he says, “and then a week later have egg on everybody’s faces.”

A few years ago I was told by one astronomer that the field’s biggest and most exciting area of research in the coming decades will be the effort to study the thousands exoplanets they only just discovered. I agree. The Webb telescope might have been built to study cosmology, but the data it will produce about exoplanets will be much more real and less uncertain, thus making it more compelling and convincing.


Nearby exoplanets have Earthlike atmospheres

Worlds without end: New data from Hubble suggests that two rocky exoplanets only 40 light years away have atmospheres more similar to Earth’s than to that of gas giants.

Specifically, they discovered that the exoplanets TRAPPIST-1b and TRAPPIST-1c, approximately 40 light-years away, are unlikely to have puffy, hydrogen-dominated atmospheres usually found on gaseous worlds. “The lack of a smothering hydrogen-helium envelope increases the chances for habitability on these planets,” said team member Nikole Lewis of the Space Telescope Science Institute (STScI) in Baltimore, Maryland. “If they had a significant hydrogen-helium envelope, there is no chance that either one of them could potentially support life because the dense atmosphere would act like a greenhouse.”

The actual make-up of these atmospheres remains unknown. Also, the central star, a red dwarf, is estimated to be about a half billion years old. Both the star’s make-up — red dwarfs are not as rich in elements as a G-type sun — and age do not provide much margin for the development of life.

Nonetheless, the new data increases again the likelihood that we will eventually find habitable worlds orbiting other stars, and we will find them in large numbers.


100 Kepler exoplanet candidates confirmed

Worlds without end: Astronomers have confirmed another 100 of Kepler’s more than 3,000 candidate exoplanets.

One of the most interesting set of planets discovered in this study is a system of four potentially rocky planets, between 20 and 50 percent larger than Earth, orbiting a star less than half the size and with less light output than the Sun. Their orbital periods range from five-and-a-half to 24 days, and two of them may experience radiation levels from their star comparable to those on Earth.

Despite their tight orbits—closer than Mercury’s orbit around the sun—the possibility that life could arise on a planet around such a star cannot be ruled out, according to Crossfield.

Because the host star of this as well as many of these other confirmed exoplanets are red dwarf stars, the possibility of life is reduced because the star and its system is likely to have a less rich mix of elements compared to our yellow G-type Sun.


A planet with three suns

Astronomers, using instruments on the Very Large Telescope in Chile, have discovered an exoplanet that orbits around three suns.

Located about 340 light years from Earth in the constellation Centaurus, HD 131399Ab is believed to be about 16 million years old, making it one of the youngest exoplanets discovered to date, and one of very few directly imaged planets. With a temperature of 850 Kelvin (about 1,070 degrees Fahrenheit or 580 degrees Celsius) and weighing in at an estimated four Jupiter masses, it is also one of the coldest and least massive directly imaged exoplanets.

“HD 131399Ab is one of the few exoplanets that have been directly imaged, and it’s the first one in such an interesting dynamical configuration,” said Daniel Apai, an assistant professor of Astronomy and Planetary Sciences who leads a research group dedicated to finding and observing exoplanets at the UA.

“For about half of the planet’s orbit, which lasts 550 Earth-years, three stars are visible in the sky, the fainter two always much closer together, and changing in apparent separation from the brightest star throughout the year,” said Kevin Wagner, a first-year PhD student in Apai’s research group and the paper’s first author, who discovered HD 131399Ab. “For much of the planet’s year the stars appear close together, giving it a familiar night-side and day-side with a unique triple-sunset and sunrise each day. As the planet orbits and the stars grow further apart each day, they reach a point where the setting of one coincides with the rising of the other – at which point the planet is in near-constant daytime for about one-quarter of its orbit, or roughly 140 Earth-years.”

The orbit of the planet remains somewhat uncertain, and thus it might not be stable.


Jupiter exoplanet around baby star

The uncertainty of science: Astronomers have discovered a Jupiter-class exoplanet orbiting a very young star, something their models of planetary formation told them shouldn’t happen.

“For decades, conventional wisdom held that large Jupiter-mass planets take a minimum of 10 million years to form,” said Christopher Johns-Krull, the lead author of a new study about the planet, CI Tau b, that will be published in The Astrophysical Journal. “That’s been called into question over the past decade, and many new ideas have been offered, but the bottom line is that we need to identify a number of newly formed planets around young stars if we hope to fully understand planet formation.”

CI Tau b is at least eight times larger than Jupiter and orbits a 2 million-year-old star about 450 light years from Earth in the constellation Taurus.

In other words, a planet that, according to the present models for planetary formation, supposedly needs 10 million years to form is orbiting a star only 2 million years old. In other words, the models are wrong. We simply don’t know enough yet about planetary formation to create any reliable models.

1 2 3 6