SLS launch early on November 16th remains uncertain

Despite repeated assurances that the November 16, 2022 1:04 am (Eastern) launch of NASA’s SLS rocket remains on target, managers have also noted that damage to a small piece of caulking at the base of the shroud protecting the Orion capsule remains an issue that could cause a scrub.

But high winds from Nicole caused a thin strip of caulk-like material known as RTV to delaminate and pull away from the base of the Orion crew capsule’s protective nose cone at the top of the rocket. The material is used to fill in a slight indentation where the fairing attaches to the capsule, minimizing aerodynamic heating during ascent. The fairing fits over the Orion capsule and is jettisoned once the rocket is out of the dense lower atmosphere. “It was an area that was about 10 feet in length (on the) windward side where the storm blew through,” said mission manager Mike Sarafin. “It is a very, very thin layer of RTV, it’s about .2 inches or less … in thickness.”

Engineers do not have access for repairs at the pad and must develop “flight rationale,” that is, a justification for flying despite the delaminated RTV, in order to proceed with the launch. Managers want to make sure any additional material that pulls away in flight will not impact and damage downstream components.

In plain language, NASA managers would either have to issue a waiver that says this small piece of caulking poses no risk, or scrub and roll the rocket back to the assembly building to fix it. The second option would delay the launch another month, at a minimum.

A waiver however would continue NASA’s pattern with the shuttle (and continuing with SLS) to dismiss potential engineering problems simply to avoid schedule delays. With the shuttle, this pattern twice caused the loss of a shuttle and crew. With SLS, NASA has already waived by more than a year its rules concerning the stacked life of the rocket’s solid-fueled boosters. Agency managers have also waived the full test requirements from the dress rehearsal countdown, so that this test did not test everything it should.

It is expected that NASA managers will announce the waiver today on this problem. Whether it matters when the rocket goes through maximum dynamic pressure shortly after lift-off will likely determine the future of SLS.

SLS rides out hurricane; engineers now assessing damage

NASA’s SLS rocket has apparently successfully survived on the launchpad the hurricane-force winds from Nicole, though engineers will need to inspect the rocket to see if there is any less obvious damage that might delay the now scheduled November 16th launch.

With blastoff on a long-delayed maiden flight on tap next week, sensors at pad 39B recorded gusts as high as 100 mph atop a 467-foot-tall lightning tower near the rocket. But winds at the 60-foot-level, which are part of the booster’s structural certification, peaked at 82 mph, just below the 85 mph limit.

The observed winds were “within the rocket’s capability,” said Jim Free, manager of exploration systems at NASA headquarters. “We anticipate clearing the vehicle for those conditions shortly.”

“Our team is conducting initial visual check outs of the rocket, spacecraft and ground system equipment with the cameras at the launch pad,” he tweeted. “Camera inspections show very minor damage such as loose caulk and tears in weather coverings. The team will conduct additional on-site walk down inspections of the vehicle soon.”

If no issues are found, the countdown will begin on November 14th.

NASA sets November 14th as next SLS launch date

NASA today announced that it will make its next attempt to launch its SLS rocket just past midnight on November 14, 2022.

NASA is targeting the next launch attempt of the Artemis I mission for Monday, Nov. 14 with liftoff of the Space Launch System (SLS) rocket carrying the Orion spacecraft planned during a 69-minute launch window that opens at 12:07 a.m. EST. Artemis I is an uncrewed flight test to launch SLS and send Orion around the Moon and back to Earth to thoroughly test its system before flights with astronauts.

This is the second launch opportunity in the November launch window, as shown in this graph [pdf]. It will result in a 26-day mission for the Orion capsule to and from lunar orbit, returning on December 9th.

NASA now aiming for SLS launch in November

In finding that Hurricane Ian caused little damage at its vehicle assembly building at Kennedy, NASA managers have decided to target the the November 12 to 27 launch window for the first launch of its SLS rocket.

According to this graph [pdf], November 27th is the only date that will provide NASA with the longest mission for Orion (38 to 42 days). Furthermore, the mission precludes launches on November 13, 20-21, and 26.

Expect them to aim for November 12th, even though that will result in an Orion mission only 26 to 28 days long.

NASA and ESA sign simple lunar exploration agreement

In what appears to be an attempt by both to maintain their working relationship, even though several major European nations have not yet signed the Artemis Accords, last week NASA and ESA signed a simple agreement reaffirming their desire to work together in exploring the Moon.

Neither ESA nor NASA published the agreement, which in a photograph appeared to be little more than one page. In a Sept. 23 statement, NASA described the agreement as a “non-binding joint statement” about current and prospective future cooperation in Artemis.

Of ESA’s members, only France, Italy, Luxembourg, Poland, and the United Kingdom have signed the Artemis Accords. Thus, ESA and NASA face a conundrum. According to the accords and the NASA policy established by the Trump administration and supposedly continued under Biden, only signatories can participate in the Artemis program. Yet, most of the members of ESA have not signed, and ESA has no authority to make them do so. ESA however is building the service module for the Orion capsule — as well as other major components of Artemis — which NASA must have.

I suspect this short one page agreement is the Biden administration’s under-handed admission that — when it comes to Europe — the Artemis Accords will no longer be required.

NASA managers decide finally to roll SLS back to assembly building

NASA managers this morning finally gave up on launching their SLS rocket in an early October launch window and scheduled rolling back the rocket to the assembly building tonight.

NASA will roll the Artemis I Space Launch System rocket and Orion spacecraft back to the Vehicle Assembly Building on Monday, Sept. 26. First motion is targeted for 11 p.m. EDT.

Managers met Monday morning and made the decision based on the latest weather predictions associated with Hurricane Ian, after additional data gathered overnight did not show improving expected conditions for the Kennedy Space Center area. The decision allows time for employees to address the needs of their families and protect the integrated rocket and spacecraft system. The time of first motion also is based on the best predicted conditions for rollback to meet weather criteria for the move.

Based on this graph [pdf] provided by NASA earlier this year, the next launch window is from October 17 to October 31, followed by another from November 12 to November 27. It is unclear whether they can meet that first window, even if all engineers do is check and recharge the flight termination system batteries.

The question of the rocket’s two solid-fueled boosters however looms. Both are now one year past NASA’s use-by date, and it appears somewhat unknown what the risks are using them. Replacing them however will entail a significant delay, from three to six months.

As I said this weekend, NASA managers face no good choice, because of the impractical and inefficient design of this rocket.

NASA managers might forego SLS rollback and aim for Oct 2nd launch

Based on the present hurricane track, NASA managers are considering the possibility of leaving SLS on the launchpad so that they can go for a launch on October 2, 2022.

NASA managers will meet this evening to evaluate whether to roll back or remain at the launch pad to preserve an opportunity for a launch attempt on Oct. 2. The exact time of a potential rollback will depend on future weather predictions throughout the day and could occur Monday or very early Tuesday morning.

If they stay on the launchpad, it means the flight termination system is questionable at launch. If the rocket goes out of control during its first test launch — a not-unreasonable possibility for a new rocket — there is a chance the range officer will not be able to destroy it.

If they roll back to the assembly building, it means the rocket’s two solid strap-on boosters will either have to be replaced, delaying the launch months more, or the rocket will launch with two boosters that are questionable.

Every choice they face is a bad one, simply because this rocket is really not well designed for practical use.

NASA managers scrub September 27th SLS launch

NASA managers today decided that they had to scrub their attempt to launch SLS on September 27, 2022 due to a hurricane threatening Florida, and are instead preparing to roll the rocket back to the assembly building to protect it.

During a meeting Saturday morning, teams decided to stand down on preparing for the Tuesday launch date to allow them to configure systems for rolling back the Space Launch System rocket and Orion spacecraft to the Vehicle Assembly Building. Engineers deferred a final decision about the roll to Sunday, Sept. 25, to allow for additional data gathering and analysis. If Artemis I managers elect to roll back, it would begin late Sunday night or early Monday morning.

This will likely delay the launch until the late October launch window, or the mid-November window, as shown in this graph [pdf]. During this time engineers will certainly test and recharge the batteries that run the rocket’s flight termination system so that there will be no question they will work should the Space Force safety range officer need to destroy the rocket during launch.

NASA however now faces another quandary it has been avoiding for the past year. The stacking of the five segments of SLS’s two solid rocket strap-on boosters began in November 2020, two years ago. During the shuttle era and until last year, NASA had a rule that said a booster must launch within a year of stacking. The fear was that the weight of the solid rocket fuel could distort it over time, and possibly cause it to burn improperly once ignited. As these boosters are the equivalent of firecrackers — once you light them you can’t turn them off — NASA had chosen, until last year, to have a use-by date of one year for the boosters.

Now however NASA has abandoned that rule. The boosters have been stacked for twice that time, and the agency has to ask if it will be safe to use them. To change them out however will take at least three months, if not longer. The present set of boosters would have to be removed, and a new set stacked and installed.

I fully expect NASA to stay with these boosters, despite their age, once again violating its own safety rules, as it did routinely during the shuttle era (resulting in the loss of two shuttles and the death of fourteen astronauts). Though no humans will be on this test flight, this sloppy engineering culture clearly threatens the lives of the astronauts who will fly on the second Artemis SLS mission, around the Moon.

Range gives NASA waiver to launch SLS on September 27th, despite a questionable flight termination system

In a briefing today, NASA officials confirmed that they are proceeding with their September 27, 2022 first launch of the SLS rocket, having obtained a waiver from the Space Force’s range office on testing the batteries for the flight termination system that would destroy the rocket should it begin flying out of control.

During a Sept. 23 teleconference, NASA announced an extension for the flight termination system battery certification, which expired after 25 days on Sept. 6. Now the Space Force’s Eastern Range has granted a waiver to allow the rocket to launch as late as Oct. 2 before needing to be returned to the Vehicle Assembly building to recertify the batteries.

The flight termination system is only used in the event the rocket veers off course during a launch anomaly.

Note that the 25 day use-by limit was actually an extension itself, as these batteries had been previously required testing every 20 days. Now the range is willing to let them go for as long about 50 days without testing, a two and half times increase.

If the rules before — based on engineering — said the batteries were not reliable after 20 days, why are those batteries now considered reliable up to 50 days? What facts or data does NASA or the Space Force have to allow this waiver? And if they have no data, it seems almost criminal to allow the go-ahead of this launch of a giant untested rocket on its first lift-off. Should something go seriously wrong — which is not that unlikely — and the flight termination system fails to work, we could see a very big rocket careening out-of-control into populated areas.

We all hope SLS launches with no problem on September 27th. We now have a really serious reason for that desire.

Regardless, the launch is now scheduled for a 70-minute launch window that opens at 11:37 am (Eastern) on September 27th, with a back-up launch window on October 2nd of 102 minutes beginning at 2:52 pm (Eastern).

Meanwhile, a developing tropical storm could put a kabosh on all these plans, forcing NASA to roll SLS back to the assembly building anyway. NASA managers plan to meet again before launch to make a decision.

SLS fueling test completed

NASA engineers today successfully completed the tanking test of the agency’s SLS rocket, completing all objectives after successfully dealing with a hydrogen fuel leak at the beginning of fueling.

The four main objectives for the demonstration included assessing the repair to address the hydrogen leak identified on the previous launch attempt, loading propellants into the rocket’s tanks using new procedures, conducting the kick-start bleed, and performing a pre-pressurization test. The new cryogenic loading procedures and ground automation were designed to transition temperature and pressures slowly during tanking to reduce the likelihood of leaks that could be caused by rapid changes in temperature or pressure. After encountering the leak early in the operation, teams further reduced loading pressures to troubleshoot the issue and proceed with the demonstration test. The pre-pressurization test enabled engineers to calibrate the settings used for conditioning the engines during the terminal count and validate timelines before launch day to reduce schedule risk during the countdown on launch day.

Teams will evaluate the data from the test, along with weather and other factors, before confirming readiness to proceed into the next launch opportunity. The rocket remains in a safe configuration as teams assess next steps. [emphasis mine]

The highlighted words are key. NASA has proposed a September 27, 2022 launch date. For that launch to occur, the rocket must remain on the launchpad, where it is impossible to check the batteries for operating the flight termination system used by the military range office to destroy the rocket should it go wildly out of control during launch. To check the batteries they need to roll it back to the assembly building, and one week is simply not enough time.

The vagueness of the highlighted language suggests that NASA has not yet gotten a waiver from the range for that date. Nor should it. Those batteries normally have a 20-day limit. On September 27th they will been unchecked for about 42 days, well past their use-by date.

This will be the first test launch of this rocket. Such first launches very frequently go wrong, and if SLS goes wrong, it would go wrong in a very big way, considering the size of the rocket. To do such a risky launch with a questionable flight termination system would not simply be improper it would be downright criminal.

Hydrogen leak detected during today’s SLS tank test

Though engineers have apparently overcome the issue so that today’s tank test of NASA’s SLS rocket can continue, a hydrogen leak was nonetheless detected during fueling.

The fueling tank test is not yet complete.

At this moment I cannot imagine the military’s range office will allow NASA to launch on September 27th, as the agency has requested. To do so will require the range to ignore the possibility that the flight termination is inoperable, as its batteries are past their use-by date by almost a month. Combined with these ongoing leak issues, it would be irresponsible to do otherwise.

NASA issues call for new manned lunar lander proposals

NASA yesterday announced a solicitation for proposals for new manned lunar lander proposals, aimed at obtaining services long term, rather than the initial contract it has awarded SpaceX which only covered the first few Artemis lunar missions.

This solicitation is essentially being offered so that Jeff Bezos’s company Blue Origin will have a second chance to win such a contract, having lost out to SpaceX initially. It also is NASA’s effort to get Congress to give it a bigger budget so that it can pay for two different lunar lander contracts.

Having two competing lunar landers is not a bad thing. Giving a second contract however simply because the company (Blue Origin) exerts political clout is not. Right now it is unclear whether this solicitation is the former or the later.

The announcement also included what has become boilerplate in all NASA announcements about its Artemis lunar missions:

Through Artemis missions, NASA is preparing to return humans to the Moon, including the first woman and first person of color, for long-term scientific discovery and exploration. [emphasis mine]

It is very clear that the number one criteria that NASA has established, under the Biden administration, for picking the crew on that first Artemis lunar landing mission is race and gender, not talent, skill, or ability. While it will be a great thing when the first woman and black steps on the Moon, their skin color or sex should not be the reason they got to go. If it is, it will be incredibly insulting to their talent, skill, and ability. In fact, by making race or gender the only qualification that NASA cares about, it puts an asterisk on those qualifications. Forever people will wonder if these individuals really deserved the honor.

NASA revises its SLS launch schedule, pending approval of the range’s safety office

NASA today announced that it is now targeting September 27, 2022 for the first test launch of its SLS rocket and Orion capsule.

Engineers have — on the launchpad — completed the repair work on the hydrogen leak that caused the previous launch scrubs. The plan now is to do a test fueling on September 21st to see if the repair worked.

If all is then well, the agency wants to launch on September 27th. To do so however NASA needs to get the approval of the safety range office to waive the use-by date of the batteries used to terminate the flight after launch, should something go seriously wrong. The rules require those batteries to be checked every 20 days, and as of today they have been in use for 31 days. The range had already given NASA a five day waiver so it could try to launch on September 5. To launch on September 27th will require the range to allow those batteries to remain unchecked for 46 days, more than double their accepted use-by date.

For the range to allow such a waiver would be I think entirely unprecedented, especially for the very first launch of a new rocket. Such test launches are exceedingly risky. A lot can go wrong, and often does when a rocket tries to fly for the first time. To allow such a lift-off with a questionable flight termination system seems completely insane and irrational.

NASA is also proposing an October 2nd launch date. I suspect this date is based on the range safety office refusing to give this waiver. If so, NASA would then do its September 21st fueling test on the launchpad, quickly roll the rocket back to the assembly building to check the batteries, and then try to get it back to the launch pad in time for that October 2nd date.

NASA wants to launch SLS in September; needs range safety office waiver to do it

In outlining the status of the repair work on the hydrogen leak on SLS on the launchpad yesterday, NASA officials indicated that they are targeting a September 23rd launch date that will require the Space Force range safety office to okay the use of a flight abort system with batteries that are significantly past their use-by date.

NASA has submitted a request to the Eastern Range for an extension of the current testing requirement for the flight termination system. NASA is respecting the range’s processes for review of the request, and the agency continues to provide detailed information to support a range decision.

The range office had required that the batteries for that flight termination system be checked every 20 days, a process that requires the rocket to be rolled back to the assembly building. It had already given NASA a five day extension to 25 days, but even that was insufficient to get the rocket launched in its previous launch window, expiring on September 6th. Though NASA has not said how long an extension it is requesting, to do a September 23rd launch would require another extension of 17 days, making for a total 23-day waiver for those batteries. Thus, instead of limiting the life of those batteries to 20 days, NASA is requesting the range to allow the batteries to go unchecked for 43 days, at a minimum.

For the range to give that first waiver I think is somewhat unprecedented. To do it again, for that much time, seems foolish, especially as this will the rocket’s first launch, and a lot can go wrong.

NASA officials also hinted during yesterday’s press conference — in their bureaucrat way — that human error might have caused the hydrogen leak.

NASA has not confirmed if an “inadvertent” manual command that briefly overpressurized the hydrogen fuel line caused the leak, but the agency is investigating the incident. Bolger said new manual processes replaced automated ones during the second attempt and the launch team could have used more time to practice them. “So we didn’t, as a leadership team, put our our operators in the best place we could have,” Bolger said. During the Sept. 17 fueling test, NASA will try out a slower, “kinder and gentler” process that should avoid such events.

If the Space Force and the Biden administration demand the range officer allow this rocket, with this team, to be launched with a questionable flight termination system, we should expect public resignations from several range officers. Whether anyone in our present government however has the ethics to do such a thing appears very doubtful.

Axiom chosen by NASA to build first Artemis moonsuits

Capitalism in space: NASA today awarded Axiom the contract to build the moonsuits the astronauts will use on the first lunar landing of its Artemis program, dubbed Artemis-3.

After reviewing proposals from its two eligible spacesuit vendors, NASA selected Axiom Space for the task order, which has a base value of $228.5 million. A future task order will be competed for recurring spacesuit services to support subsequent Artemis missions.

The contract award continues NASA shift from its failed spacesuit effort — taking fourteen years and a billion dollars to produce nothing — to hiring the private sector to do it.

Previously NASA had awarded contracts to both Axiom and Collins Aerospace to build spacesuits, either for spacewalks or on the Moon. Today’s award is specifically for moonsuits for that first lunar mission.

NASA to roll SLS back to assembly building, delaying launch by weeks at minimum

NASA managers today decided they will not attempt another launch of SLS during the present launch window that closes on September 6, 2022, and will bring the rocket back to assembly building for more detailed trouble-shooting.

Engineers not only need to solve the hydrogen fuel leak in a fuel line connection that caused today’s launch scrub, they will also have to replace the flight termination batteries needed in case the rocket has to be destroyed during liftoff because it is flying out of control. These batteries only have a few weeks life, and the launch delays this week caused them to reach their limit.

The next launch windows are either from September 19 to October 4, excluding September 29-30, or October 17 to October 31, excluding October 24, 25, 26, and 28.

At that point SLS’s two solid rocket strap-on boosters will have been stacked for about two years, one full year past what NASA once considered their safe lifespan. The agency has waived that rule for SLS, but waiving it for more than a full year might simply be too risky. If the boosters need to be replaced, that will delay the launch by at least another three months, at the minimum.

Right now the odds remain high this launch will not occur in 2022.

SLS test launch scrubbed again

NASA engineers once again were forced to scrub the launch of the SLS rocket today due to another hydrogen leak during fueling.

The launch director waived off today’s Artemis I launch attempt at approximately 11:17 a.m. EDT. Teams encountered a liquid hydrogen leak while loading the propellant into the core stage of the Space Launch System rocket. Multiple troubleshooting efforts to address the area of the leak by reseating a seal in the quick disconnect where liquid hydrogen is fed into the rocket did not fix the issue.

NASA has one more chance, on September 5th, to launch this rocket before it must return it to the assembly building to replace the flight termination batteries, used to abort the launch after liftoff should something go seriously wrong during flight. As I understand it, their use-by date is September 6th, and it would require a major safety waiver by the military range officer, who is entirely independent from NASA and under no obligation to it, to allow for a launch after that date with those batteries.

NASA thinks engine issue on SLS launch caused by misreading sensor

NASA engineers have now concluded that the improper temperatures in one engine in SLS’s core stage that forced the August 29, 2022 launch to be scrubbed were caused by a faulty sensor, and that the actual temperatures in the engine were correct.

During a news conference on Tuesday evening, NASA’s program manager for the SLS rocket, John Honeycutt, said his engineering team believed the engine had actually cooled down from ambient temperature to near the required level but that it was not properly measured by a faulty temperature sensor. “The way the sensor is behaving does not line up with the physics of the situation,” Honeycutt said.

The problem for NASA is that the sensor cannot be easily replaced and would likely necessitate a rollback to the Vehicle Assembly Building at Kennedy Space Center in Florida, a few kilometers from the launch pad. This would delay the launch of the rocket at least into October, and the space agency is starting to get concerned about wear and tear on a rocket that has now been stacked for nearly a full year.

With this SLS rocket, NASA management is now trapped between a rock and a hard place. The rocket’s solid rocket boosters has been stacked for just short of two years, almost a full year beyond their use-by date. Moreover, there are batteries on the rocket that only function for about a month before they must be replaced. Their replacement date is September 6th, which means if NASA cannot get the rocket launched by that date it will have to return it to the assembly building, delaying the launch to at least October. If it has to replace the solid rocket boosters the launch will likely then be delayed until next year, which will seriously impact the second SLS launch, set to send astronauts around the Moon and back.

At the moment the launch is scheduled for a two hour launch window beginning at 2:17 pm (Eastern) on Saturday, September 3, 2022. The countdown will be live streamed here. At the moment the weather for Saturday has improved, with s 60% chance the launch can proceed.

How SLS reveals the difference between state-run propaganda and real journalism

The cost of SLS

On August 29, 2022, NASA will attempt the first launch of a government-built, government-owned, and government-designed rocket in more than a decade. The rocket’s development took more than eighteen years, moved in fits and starts due to political interference and mandates, cost more than $50 billion, and has been both behind schedule and overbudget almost from day one. Along the way NASA management screwed up the construction of one multi-million dollar test stand, built another it will never use, mismanaged that test program, dropped a rocket oxygen tank, and found structural cracks in an early Orion capsule.

This dubious achievement, even if the launch and month-plus-long mission of the Orion capsule to lunar orbit and back is a complete success, is hardly something to tout. NASA claims it and this rocket will make it possible for America to explore the solar system, but any honest appraisal of SLS’s cost and cumbersome design immediately reveals that claim to be absurd. SLS can launch at best once per year, and in truth will likely lift off at a much slower rate. It will also eat up resources in the American aerospace industry from technology better designed, more efficient, and more capable of doing the job.

Worse, the generally sloppy management of this program, with numerous major errors in design and construction, raises serious questions about the safety of any future manned flight.

And yet, as this launch day approaches, the American established press is going ga-ga over SLS. Below are just a small sampling:
» Read more

NASA describes Starship’s first unmanned test lunar landing

In a briefing focused on the science that could be placed on the mission, a NASA official yesterday provided a status update of SpaceX’s first unmanned test flight by Starship to the Moon.

First, the official revealed that NASA is only requiring SpaceX to demonstrate a successful landing. Take-off will not be required. Also,

Starship is not designed to fly directly to the Moon like NASA’s Space Launch System, however. Instead, the first stage puts it only in Earth orbit. To go further, it must fill up with propellant at a yet-to-be-built orbiting fuel depot. Other Starships are needed to deliver propellant to the depot.

Watson-Morgan described the Concept of Operations for Starship’s Artemis III mission, starting with launch of the fuel depot, then a number of “propellant aggregation” launches to fill up the depot, then launch of the Starship that will go to Moon.

Previously SpaceX suggested that the ship would be directly refueled by subsequent Starships, with no middle-man fueling depot. It could be either engineering had made the depot necessary, or NASA politics have insisted upon it.

Finally, the talk outlined the elevator SpaceX is developing to lower the astronauts and equipment to the ground from Starship’s top.

NASA lists 13 candidate landing sites for Artemis-3 manned mission

Candidate landing sites for Artemis-3
Click for original image.

NASA yesterday revealed its first preliminary list of thirteen candidate landing sites for the Artemis-3 manned mission, the first manned mission the agency wants to send to the Moon in 2026.

The image to the right, reduced, enhanced, and annotated by me to post here, shows these thirteen zones in blue. I have added the red dot to mark what I understand to be the planned landing zone of Viper, an unmanned rover that NASA hopes to launch by ’23 at the latest. From the press release:

The team identified regions that can fulfill the moonwalk objective by ensuring proximity to permanently shadowed regions, and also factored in other lighting conditions. All 13 regions contain sites that provide continuous access to sunlight throughout a 6.5-day period – the planned duration of the Artemis III surface mission. Access to sunlight is critical for a long-term stay at the Moon because it provides a power source and minimizes temperature variations.

Note that this mission will land a Starship with crew at this South Pole region. That spacecraft’s large payload capacity likely means that it could conceivably leave behind supplementary supplies for a follow-up next mission, and thus speed up development of the first lunar base.

August 18, 2022 Quick space links

As stringer Jay correctly noted to me in an email today, “Slow news day.” None of the stories below merit a full post, even though they are pretty much all of today’s space news.

Having regained communications with CAPSTONE, engineers prepare for first mid-course burn

Engineers are now preparing CAPSTONE for its first first mid-course engine burn, slightly late due to a loss of communications during the past two days.

The spacecraft is in good health and functioning properly.

The CAPSTONE team is still actively working to fully establish the root cause of the issue. Ground-based testing suggests the issue was triggered during commissioning activities of the communications system. The team will continue to evaluate the data leading up to the communications issue and monitor CAPSTONE’s status.

If all goes well, that engine burn will occur as early as 11:30 am (Eastern) on July 7th.

SLS dress rehearsal countdown ends at T-29 seconds

NASA’s fourth attempt to complete a full dress rehearsal countdown of its giant SLS rocket today ended at T-29 seconds, just short of the complete countdown.

It appears the countdown had one issue — a hydrogen fuel leak at the point where the umbilical fuel line attaches to the rocket — that mission control decided to ignore (or “mask” to use their word) so that they could proceed into the count as far as possible. It was this decision however that caused the two-hour delay in the countdown. They then resumed the countdown at T-10 minutes, the beginning of terminal count.

During the terminal count, the teams performed several critical operations that must be accomplished for launch including switching control from the ground launch sequencer to the automated launch sequencer controlled by the rocket’s flight software, and important step that the team wanted to accomplish.

NASA will hold a press conference tomorrow at 11 am (Eastern) to discuss the results of this dress rehearsal. While the leak is concerning, I expect NASA to decide that this dress rehearsal was a success, that they will roll the rocket back to the vehicle assembly building where they will fix this problem, after which the agency will declare the rocket ready to launch by the end of August.

While risky, doing otherwise likely raises other risks. If they decide to do another dress rehearsal the launch faces more delays. And waiting much longer continues to increase the danger that the solid rocket side boosters will not function as intended because they have been stacked almost a year longer than their accepted use-by date.

If this turns out to be the plan, expect the actual launch countdown to be as plagued with issues and delays and scrubs. NASA has yet to demonstrate it can do this smoothly with no problems. Worse, this level of mediocre performance has been par for the course for this entire SLS program.

If that launch should go smoothly it will be a welcome and unprecedented event.

SLS dress rehearsal countdown continues, though T-0 delayed two hours

The SLS dress rehearsal countdown is proceeding today as planned, though the countdown’s end at T-0 is now 4:38 pm (eastern), two hours later than previously announced.

Apparently they have delayed T-0 from the beginning of the two-hour simulated launch window to its end. This decision so early in the count suggests the launch team wants to give itself extra time either to deal with some issue that has come up that they haven’t told us about yet, or to give themselves more time in case some issue should come up.

SLS dress rehearsal countdown begins

NASA engineers began their fourth attempt to complete a full dress rehearsal countdown of the SLS rocket yesterday, with everything proceeding so far as planned.

Overnight, engineers powered up the Orion spacecraft and the Space Launch System’s core stage. Teams also configured several systems on the ground, rocket, and spacecraft and performed activities to prepare umbilicals that connect the rocket and spacecraft to the mobile launcher and are used to provide power, communications, coolant, and propellant.

Actual fueling begins tomorrow, when the countdown is supposed to conclude at T-0 at 2:40 pm (Eastern).

NASA live stream is available here.

SLS dress rehearsal countdown set for June 20th with launch delayed again

According to NASA officials, the next attempt to complete a dress rehearsal countdown for its SLS rocket will take place on June 20, 2022, with the earliest date an actual launch can occur delayed again, and now set at best for an August 23 to September 6 window.

The article also notes that during a different press conference, NASA administrator Bill Nelson hinted that “there could be slips” in the present target date of ‘2025 for landing humans on the Moon.

Ya think? I guarantee that NASA will not land humans on the Moon in ’25, at least not using SLS. Based on all the issues confronting SLS, as well as NASA’s normal way of doing things, this mission will certainly slip at least one to two more years. And I am being very very very very optimistic.

We must also note that when first proposed by Bush Jr. in 2004, he predicted a NASA manned lunar landing by 2015, which means this launch will be at least one decade behind schedule, with it more likely being later than that.

But then, I can hear our glorious president yelling at me for complaining. “C’mon man! What’s a decade or two when you’re scheduling something important?”

1 2 3 4 5