A Martian knife mesa with terraces

A Martian knife mesa with terraces
Click for full image.

Cool image time! The photo to the right, rotated, cropped, reduced, and sharpened to post here, was taken on August 21, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label as a “layered mound.” It also shows a plethora of geological mysteries, all of which relate to the as yet not quite understood geological history of Mars.

First, note the different colors north and south of the ridgeline. According to the science team’s understanding of what these colors mean [pdf], the orange-red to the north suggests dust, while the bluish-green to the south suggests coarser materials, such as rocks and sand. Though frost and ice are generally bluer, such things are generally found on the pole-facing slopes where there is less sunlight. Thus the bluish-green material to the south is unlikely to be ice or frost, though this is not impossible, as the picture was taken in the winter and the latitude is 35 degrees north.

Why however is there such a dichotomy of rocks, sand, and dust between the north and south slopes? And if frost and ice, why is it more prominent to the south, when it should instead be more prominent to the north?

Other mysteries: Is the circular depression on the ridgetop an impact crater or a caldera? If the latter, this suggests the mound is some kind of volcano, likely mud, though lava is not excluded. If so, however, why is there no caldera on top of the ridge to the south?

The location, as shown in the overview map below, reveals other puzzles.
» Read more

Perseverance data so far finds no evidence of lake in Jezero Crater

The uncertainty of science: Though scientists had assumed the presence of an ancient delta that once flowed into Jezero Crater meant a lake once filled the crater, Perseverance data from its first year of roving has so far found no evidence that a lake every existed.

[A] summary of the first year of data from the rover, published in three different papers being released today, suggests that Perseverance has yet to stumble across any evidence of a watery paradise. Instead, all indications are that water exposure in the areas it explored was limited, and the waters were likely to be near freezing. While this doesn’t rule out that it will find lake deposits later, the environment might not have been as welcoming for life as “a lake in a crater” might have suggested.

Jezero Crater, like Gale Crater where Curiosity is roving, is located in the Martian dry equatorial regions. Though the data from Gale suggests a lake had once existed there, the data also suggests strongly that any water there acted more like water in cold climates like Iceland, existing mostly as glacial ice.

The jury is still out, but these results from Perseverance once again point to ice and glaciers as a possible explanation for many of the geological features on Mars that we on Earth automatically assume were caused by liquid water.

Ingenuity completes 34th flight using new hazard avoidance software

Overview map
Click for interactive map.

Ingenuity yesterday completed its 34th flight on Mars, a short vertical up-and-down flight lasting only eighteen seconds in order to test just installed new hazard avoidance software.

The tan dotted line on the map to the right shows Ingenuity’s recent flights and ends where it sits today. The white dotted line marks Perseverance’s travels.

Ingenuity’s navigation software was designed to assume the vehicle was flying over flat terrain. When the helicopter is flying over terrain like hills, this flat-ground assumption causes Ingenuity’s navigation software to think the vehicle is veering, causing Ingenuity to start actually veering in an attempt to counter the error. Over long flights, navigation errors caused by rough terrain must be accounted for, requiring the team to select large airfields. This new software update corrects this flat-ground assumption by using digital elevation maps of Jezero Crater to help the navigation software distinguish between changes in terrain and vehicle movement. This increases Ingenuity’s accuracy, allowing the pilots to target smaller airfields going forward.

The new software is part of an effort to use Ingenuity to test helicopter flying in Jezero Crater in preparation for the two sample return helicopters which will eventually land here to grab Perservance’s core samples and bring them to the ascent vehicle for return to Earth.

Frozen glacial eddies on Mars?

Overview map

Frozen glacial eddies on Mars?
Click for full image.

Cool image time! The photo to the right, cropped, reduced, and enhanced to post here, was taken on August 26, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Though the science team labels this image vaguely as showing “Features in Mamers Valles,” the features are likely glacial ice since this location is at the western end of the 2,000-mile-long northern mid-latitude strip I dub glacier country, where glacial features are seen everywhere.

The white dot marks this picture’s location in Mamers Valles, as shown on the overview map above. This particular Martian channel, that meanders in a wildly random manner (including a few sharp ninety degree turns), is theorized [pdf] by some scientists to have formed not by surface flows but by a subterranean drainage that created voids. On the surface the voids caused sagging, collapses, and the eventual formation of the surface channel.

Under such conditions, any ice in the channel would not necessarily have a clear flow direction, thus providing an explanation (though hardly certain) of the eddy-like shape of these features.

Curiosity’s wheels: Maybe not so bad after all

Comparison of one wheel on Curiosity
To see the original images, go here and here.

Today the science team for the Mars rover Curiosity downloaded more photos of its wheels, a survey taken routinely now after every 500 meters or 1640 feet of travel. Unlike the pictures made available yesterday that showed some of the worst damage to one of Curiosity’s middle wheels, these new images included the wheel I have been tracking since 2017 as a baseline to see if further damage has occurred.

The photos to the right show that wheel, with the top photo from August and the bottom created from two pictures taken on November 20, 2022. The numbers indicate the matching treads. The “+” sign in the top image indicates a location where new damage was spotted in August.

As you can see, this wheel does not appear to have experienced any additional damage in the more than three months since that August update. While the damage to Curiosity’s wheels remains very concerning, it does appear based on this one wheel that — despite the generally very rough terrain the rover has been traversing since it entered the foothills of Mount Sharp — the wheels in general seem to be holding up.

Though I have not done a careful comparison of these new wheel images with earlier ones, none of the new images appear to show any additional significant damage. It appears that the travel criteria the science team adopted years ago — right after discovering the wheel damage — continues to work to protect the wheels. It picks the rover’s path more carefully to avoid sharper rocks, and includes software that stops the rover should it sense it is crossing a rock sharper than desired.

InSight still alive

InSight's power levels

The InSight science team today posted another update on the power status of the Mars lander, as shown in the graph to the right.

As of Nov. 21, 2022, InSight is generating an average between 300 and 310 watt-hours of energy per Martian day, or sol. The tau, or level of dust cover in the atmosphere, was estimated at 1.33 (typical tau levels outside of dust season range from 0.6-0.7).

Power levels, while critically low, remained level and sufficient to run the seismometer, though nothing else. At the beginning of the month the science team said these levels would only allow operations for a few more weeks, but here we are, a few weeks later, and InSight is still alive, though barely.

At this moment the situation is essentially day-to-day. If the lander misses two scheduled communications sessions, they will declare it dead. So far, that has not happened.

Colliding glaciers

Overview map

Colliding glaciers

For today’s cool image we return once again to glacier country in the northern mid-latitudes of Mars. The picture to the right, rotated, cropped, reduced, and enhanced to post here, was taken on August 28, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a spot where I think glacial flows coming from the north and south have collided at a low point. The white dot in the box on the overview map above marks its location, with the inset showing the mesas to the north and south that suggest this flow pattern.

What makes these colliding flows especially cool is the source of the northern flow. It appears that came out of the impact heat from that crater, which caused the ice on the downhill side to flow. You can also see the same phenomenon a short distance to the east, with a much smaller crater, likely a secondary impact from the first.

Note also the glacial fill inside the larger crater. This impact happened on top of older glaciers, but later climate cycles caused more ice to be deposited within the crater afterward. That this glacial fill appears terraced and thus layered also suggests that there were several if not many such later climate cycles.

Glaciers everywhere in Mars’ glacier country

Glaciers everywhere in Mars' glacier country
Click for full image.

Cool image time! The picture to the right, rotated, cropped, reduced, and annotated to post here, was taken on August 24, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows glaciers apparently flowing down from two different mesas to the north and south.

The arrows indicate a major glacial stream coming from two directions. The many layered flow on the image’s upper right illustrates the many past climate cycles of Mars, with each subsequent period of snowfall and glacial growth producing progressively less ice. The chaotic region in the lower right marks what I think is the lowest point between the two mesas. Here the flows form eddies as the glaciers collide.

The overview map below shows us why there are so many glaciers at this spot on Mars.
» Read more

The lunar surface is arid

The uncertainty of science: According to a paper published at the end of October, scientists have used data from the LADEE lunar orbiter (that circled the Moon in 2013-2014) and found that the surface of the Moon is extremely arid, and if there is any ice trapped in the permanently shadowed craters at the poles it did not come from meteorite impacts elsewhere on the Moon. From the abstract:

The upper bound for exospheric water derived here from data collected in 2013–2014 by the neutral mass spectrometer on the Lunar Atmosphere and Dust Environment Explorer spacecraft [LADEE], about three molecules/cc, pales in comparison to the concentration of ∼15,000 molecules/cc needed to sequester the meteoritic water influx. The only pragmatic conclusion is that the hypothesis for water ice accumulation at the poles due to exospheric transport is false.

The theory had been that any water from these meteorites could have been transported by various processes to the polar cold traps. This data says that did not happen, and if there is water ice in the polar cold traps, its origin remains unknown, though comet impacts at the poles might have been a source.

This result also appears to contradict other orbital data that has suggested there is some water in the lunar regolith at mid and low latitudes.

Martian helicopters of the future

Today Bob Balaram, the chief engineer for the Mars helicopter Ingenuity, wrote up a short essay summarizing the helicopter’s successes on Mars.

This aircraft, very much also a spacecraft, has been on its own on the surface of Mars, detached from its traveling companion Perseverance, for over 500 Martian days or sols. It has operated way beyond its original planned mission of 30 sols, including surviving a brutal winter that it was not designed for. With 33 flights, almost an hour of flight time, over 7 km of travel in Jezero crater, takeoffs and landings from 25 airfields, almost 4000 navigation camera images, and 200 high-resolution color images, it has proven its worth as a scout for both scientists and rover planners. Currently, it is getting ready to use its fourth software update – this one with advanced navigation capabilities that will allow it to safely fly up the steep terrain of the Jezero river delta, scouting ahead of the rover Perseverance as it searches for signs of past life on Mars. [emphasis mine]

I have highlighted the number of flights above because Ingenuity was supposed to do a very short 34th flight on November 10th that would only have the helicopter go straight up 16 feet, hover, and then come straight back down. Yet, I have seen no postflight reports, and Ingenuity’s flight log still does not include it as of today. One image from Ingenuity that was taken on November 9th has been released, and shows the ground directly below it. No other recent images of this 34th flight however have been released.

The flight could still have happened, or was scrubbed for a later time. What is important however is all those other 33 flights, and what Ingenuity’s overall success has meant for future Martian exploration. As Balaram writes,
» Read more

The Martian cycles of climate change, as shown in just one crater

The Martian cycles of climate change, as shown in one crater

Cool image time! The photo to the right, rotated, cropped, reduced, and enhanced to post here, was taken on September 2, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The science team titled this picture “Gullies with Terminal Ridges on Glacial Crater Fill,” a title that in one phrase encapsulates everything we see here of this unnamed 8-mile-wide crater’s western rim and interior.

The crater is located at 46 degrees south latitude inside the much larger 145-mile-wide Kepler Crater, and about 1,500 miles east of Hellas Basin in a region where a lot of glacial ice is found. A context camera image taken in July 2020 shows the entire crater floor apparently covered with glacial fill that on the edges appears to be eroding away.

Today’s high resolution photo focused on the western part of the crater, where that eroding edge was instead replaced by a meandering ridge reminiscent of a moraine. The gullies on the interior slope to the west, as well as the parallel north-south cracks, suggest that debris falling and sliding down from that rim had pushed up against this glacial ice and created that ridge.

There is a lot more to this geology however.
» Read more

A cliff face of volcanic erosion on Mars

A cliff face of volcanic erosion on Mars
Click for full image.

Today’s cool image is a variation of yesterday’s, showing another area on the edge of Mars’ largest volcanic ash field, dubbed the Medusae Fossae Formation and about the size of India. This time however the edge is an abrupt cliff, not the slow petering out of wind-shaped mesas.

The picture to the right, cropped, reduced, and sharpened to post here, was taken on August 27, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what I very roughly estimate to be a 1,500 to 2,500 foot high cliff that appears to delineate the edge. To the north we have a plateau of intersperse layers of flood lava and ash. To the south those layers have eroded away, leaving a rough lava plain with a handful of scattered wind-sculpted mesas.

The overview map below, by providing a wider view of his region, makes its nature clearer.
» Read more

Erosion at the edge of Mars’ biggest volcanic ash field

Erosion at the edge of Mars' biggest ash field
Click for full image.

Cool image time! The photo to the right, rotated, cropped, reduced, and sharpened to post here, was taken on August 13, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It is another fine example of the wind-blown sculpted terrain that one finds routinely in Mars’ largest volcanic ash field, dubbed the Medusae Fossae Formation. About the size of India, this gigantic field is thought to be the source of most of the dust on Mars.

This particular location sits on the northernmost edge of that huge field. The elongated mesas mark the field’s edge, disappearing to the north but becoming thick and extensive to the south. The prevailing southeast-to-northwest winds have acted to clean most of the ash away.

We can get an idea about how deep and pervasive that field once was at this location by the pedestal crater in the middle right. Once, the floor of that crater was below the top of the ash field. At that time, the top of the dunes marked the general ground level across this entire image. Over time, the winds blew most of this material away, but the denser packed floor of the crater resisted that erosion, and thus now stands above the surrounding terrain.

The more normal-looking craters nearby could have occurred before the ash was deposited, or after it was blown away. The impact that created the pedestal crater however occurred when the ash covered everything here.
» Read more

The weirdly eroded rocks of Mount Sharp

A weirdly eroded rock on Mars

Cool image time! The picture to the right, cropped, reduced, and enhanced to post here, was taken on November 2, 2022 by one of the high resolution cameras on the Mars rover Curiosity.

There isn’t much to say. This strangely eroded rock appears somewhat typical for many surface rocks in this area in the foothills of Mount Sharp. The erosion is likely from wind, combined with the rock’s low density because of Mars’ one-third Earth gravity. Even so, that wind would have needed many many eons to achieve this erosion, as the atmosphere on Mars is only about 1% as thick as Earth’s.

The lack of data also leaves open the possibility that other as-yet-unknown chemical processes contributed to that erosion.

Note: The grid pattern in the image is an artifact from the camera, and is not an actual feature on the Martian surface.

Perseverance leaps forward

Perseverance's view on November 3, 2022 (Sol 606)
Click for full resolution. The original images can be found here and here.

Overview map
Click for interactive map.

Cool image time! After spending several weeks at one location at the base of the delta that flowed into Jezero Crater eons ago, the science team today put the rover Perseverance into high gear, programming it to move 684 feet in one leap forward. The move worked, so that Perseverance has now climbed up onto a terrace of that delta so that it sits at the base of one of the hills that forms the delta’s head. The panorama above shows that hill. I estimate that hill is about thirty feet high, give or take 50%.

The blue dot on the map to the right shows the rover’s position. The yellow lines show the area viewed in the panorama above. The green dot shows the location of the helicopter Ingenuity.

It is almost certain that the science team will get another core sample from this location, as it is at least one layer higher on the delta, thus providing new geology for that core to document. I am guessing unfortunately. Unlike the Curiosity science team (which posts updates at least one to three times a week), the Perseverance science team posts updates at best only once a week, if that, and those posts have rarely provided information about the team’s future plans.

The panorama above is cool, but what prompted this post is the image below that the rover took after arriving at this location.
» Read more

Curiosity begins a detour

Panorama taken November 2, 2022 by Curiosity
Click for full image.

Overview map
Click for interactive map.

The science team running the Curiosity rover on Mount Sharp on Mars have decided to take the rover on a detour. As shown in the overview map to the right, rather than continue climbing directly up the mountain in the canyon dubbed Gediz Vallis, they have turned the rover to the west in order to put it back on its original planned route, though traveling in the opposite direction. The goal is to get to Gediz Vallis Ridge, which the rover attempted to reach by crossing the Greenheugh Pediment back in the spring, but was forced to retreat because the ground was simply too rough for the rover’s wheels.

From their October 31st update:

We are now officially on our detour, a short round trip to image and capture geochemistry of the “Gediz Vallis ridge” up on the pediment, before coming back down to the “Marker Band valley” and rejoining the MSAR (Mount Sharp Ascent Route). This detour will allow us to access some of the area we’d planned to visit before getting turned around by the ‘gator-back’ terrain on the Greenheugh pediment. For this part of the campaign, we are prioritizing driving, getting to our destination as fast as we can, but imaging as we go and marking areas of interest for contact science as we come back down.

The panorama above, cropped and reduced to post here, shows the rover’s view uphill to get to the ridge. The blue dot marks its present position. The yellow lines mark the approximate area viewed by the panorama above.

I think the rover’s path will take it up through the saddle between the two small peaks on the left. The science team is likely hoping that once they get up over that saddle, the terrain to get to the ridge will be smoother and less treacherous than the very broken and rocky surface of the Greenheugh Pediment.

This route also appears to also get them up on the marker band more safely. That band, marked by the white arrows, is a distinct smooth layer found in many places on the flanks of Mount Sharp.

InSight status update: still alive!

InSight's daily power levels through October 31, 2022

UPDATE: JPL has released a press release, outlining the steps the InSight team will take to shut the mission down. Key quote:

NASA will declare the mission over when InSight misses two consecutive communication sessions with the spacecraft orbiting Mars, part of the Mars Relay Network – but only if the cause of the missed communication is the lander itself, said network manager Roy Gladden of JPL. After that, NASA’s Deep Space Network will listen for a time, just in case.

There will be no heroic measures to re-establish contact with InSight. While a mission-saving event – a strong gust of wind, say, that cleans the panels off – isn’t out of the question, it is considered unlikely.

Original post:
—————–

Another update on the power levels on the Mars lander InSight was released today, and is shown on the graph to the right.

As of October 31, 2022, InSight is generating an average between 280 and 290 watt-hours of energy per Martian day, or sol. The tau, or level of dust cover in the atmosphere, was estimated at 1.33 (typical tau levels outside of dust season range from 0.6-0.7).

Though the dust level in the atmosphere has dropped, it still is high. Moreover, there is no sign of any clearing of dust from InSight’s solar panels. During the press conference late last week announcing the discovery of impact craters using InSight’s seismometer, the science team gave the lander no more than six weeks of life. One of those weeks has now ticked off.

Streaks on the Moon

Streaks on the Moon
Click for full image.

Cool image time! The photo to the right, reduced and enhanced to post here, is an oblique view taken by Lunar Reconnaissance Orbiter (LRO) of the rays that were created when four million years ago an object smashed into the Moon’s far side and produced the 13.75 mile-wide Giordano Bruno crater.

Rays are formed as material ejected from an impact event slams into the surface and churns up local material. Rays are bright because they expose fresh material from depth (both the incoming material and locally churned soil). What is fresh material? Over time the lunar surface is impacted by micrometeoroids and bombarded by radiation; both processes work to darken the surface. The dark “mature” layer at the surface is often only about 50 cm (20 inches) thick, so energetic impacts can easily bring up fresh material from the subsurface. Eventually, the bright rays darken and fade into the background as the surface matures.

In this image, you can see where the ejecta blocks from Giordano Bruno hit the surface, creating a secondary crater, which dug up local material and spread that bright material downstream (so to speak).

The image itself is 4.78 miles wide, at its center, and was snapped from an altitude of 66 miles.

The knobby floor of a Martian crater

The knobby floor of a Martian crater

Cool image time! The picture to the right, rotated, cropped, reduced, and enhanced to post here, was taken on July 20, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a small portion of the knobby floor of a 70-mile-wide ancient and eroded unnamed crater in the southern cratered highlands of Mars.

Why knobby? Usually such terrain on Mars signifies an very ancient and well eroded region of chaos terrain, its knobs the leftover worn remains of ancient mesas cut by eons of glacier flow.

If this is so, the location as shown in the overview map below suggests if there were ever any glaciers — or any near surface ice — at this location, it had to be a very long time ago.
» Read more

Al-Amal orbiter tracks unusual northern summer dust storm on Mars

Fig. 3 from Al-Amal paper
Click for full figure.

Scientists, using UAE’s Al-Amal Mars orbiter, have documented the occurrence of a rare high northern latitude summer dust storm whose origin appears linked to both a major canyon in the northern ice cap as well as the giant sand dune seas that surround that ice cap.

The EMM [instrument on Al-Amal] observed a distinct dust cloud on 10 September 2021. That was outside of the classical Martian dust storm season. The observed dust cloud is an arc-shaped dust storm, typically observed at the northern polar cap edge. This type of non-season dust storm is a well-known phenomenon, but this particular case is interesting because the dust cloud has frontal structure. A large atmospheric front is unusual in this location and season.

EMM’s unique observational coverage adds value to this observation, by providing a sequence of four camera images of the frontal dust cloud, separated by 2–3 hr. The frontal dust cloud shows very little movement over 7–8 hr, that is, it is quasi-stationary. We estimated the wind speed and direction by tracking internal motion of the dust cloud. In one case, the estimated wind is consistent with near-surface easterly winds at the polar cap edge.

The two images to the right are adapted from the paper’s figure 3. The yellow line in the top image indicates the location of the dust storm’s front (about 1,200 miles long), aligned with the canyon Chasma Boreale, marked by the black line, that cuts a 300-mile-long and 4,600-foot-deep gash into the North Pole ice cap.

The storm’s wind speeds were estimated very roughly to be about 16 feet per second, about 10 mph. In Mars’ thin atmosphere these winds would be so gentle that they would be almost imperceptible.

The storm front’s alignment with Chasma Boreale is intriguing, but the overview map below suggests another intriguing alignment.
» Read more

NASA & ESA pick site for Perseverance to deposit its samples for pickup

Overview map
Click for interactive map.

Engineers at NASA and the European Space Agency (ESA) have now chosen the site in Jezero Crater where Perseverance will deposit its first set of core samples for later pickup by a mission to bring them back to Earth.

The location, at the base of the delta that flows into the crater and indicated by the white cross on the map to the right, will contain all the core samples collected from the floor of the crater. This area, in the middle of the flat region the science team has dubbed Three Forks, provides a good landing place for the sample return helicopter that will fly from point to point to pick these samples up. The blue dot on the map indicates Perseverance’s present position. The green dot where the helicopter Ingenuity presently sits.

Once the rover has finished collecting samples and doing its research at the base of the delta, it will deposit those samples at this point and then move up onto the delta, where it will collect more samples that will be placed at a different spot for pickup.

NASA sets new launch date for Psyche asteroid mission

NASA yesterday announced that the delayed Psyche mission, to the asteroid Psyche, now has a new launch date of October 10, 2023, with a planned arrival in 2029.

The spacecraft missed its original launch date in 2022 because of the late delivery of its flight software combined with problems with the equipment needed to test that software.

The new launch date, though only one year later than planned, will cause the spacecraft to arrive two years late because of orbital mechanics.

InSight detects and dates large impact on Mars

InSight's Christmas Eve impact
Click for full image.

Using the data from InSight’s seismometer of a 4 magnitude earthquake on Mars on December 24, 2021, scientists were able to use the high resolution camera on Mars Reconnaissance Orbiter (MRO) to find the meteorite impact that produced that quake, the largest detected since spacecraft have been visiting Mars. The picture to the right, cropped and reduced to post here and unveiled at yesterday’s press conference, shows the new crater.

The meteoroid is estimated to have spanned 16 to 39 feet (5 to 12 meters) – small enough that it would have burned up in Earth’s atmosphere, but not in Mars’ thin atmosphere, which is just 1% as dense as our planet’s. The impact, in a region called Amazonis Planitia, blasted a crater roughly 492 feet (150 meters) across and 70 feet (21 meters) deep. Some of the ejecta thrown by the impact flew as far as 23 miles (37 kilometers) away.

With images and seismic data documenting the event, this is believed to be one of the largest craters ever witnessed forming any place in the solar system.

This is not the first such impact identified from InSight seismic data, but it is the largest. The white streaks surrounding the crater are thought to be near-surface ice ejected at impact.

The overview map below provides further context, as well as showing us the proximity of this impact to the proposed Starship landing sites on Mars.
» Read more

Past tree ring spikes in carbon-14 were likely not caused by solar flares

The uncertainty of science: According to researchers, past tree ring spikes in carbon-14 found in found at five different times going back seven thousand years were likely not caused by solar flares, as previously thought.

The team behind the new research created software to analyse every available piece of data on tree rings, producing the most comprehensive research on Miyake events to date. They found that the events didn’t show a consistent relationship to the 11-year solar cycle, which is the cycle that the Sun’s magnetic field goes through. (Currently we’re heading towards the solar maximum which means more sunspots and solar flares.)

This lack of relationship to the solar cycle means that Miyake events probably aren’t due to a solar flare, as flares occur more during the solar maximum.

The scientists also found that the events lasted years, not days as one would expect by a solar flare.

You can read their paper here. The bottom line is that the cause of these spikes remains unknown.

A glacier sea on Mars

A glacier sea on Mars
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, should at first glance be one of my “What the heck!?” images. However, a little detective work quickly provides us some understanding of the inexplicable geology seen at this particular location on Mars.

The picture was taken on August 29, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO) and was labeled by the science team a “Lobate Debris Apron in Deuteronilus Mensae.” This mensae region is the western part of the 2,000-mile-long strip in the northern mid-latitudes of Mars that I label glacier country, since almost every high resolution picture taken in this strip shows extensive glacial features.

This picture is no different, showing what appears to be glaciers, but by itself it is still difficult to make sense of it. Glaciers flow downhill, like rivers. In this high resolution image the direction of flow is somewhat unclear.

As always, a wider view clarifies the picture.
» Read more

Martian rectilinear ridges

Martian rectilinear ridges
Click for original image.

Today’s cool image is also a bafflement. The photo to the right, cropped, reduced, and enhanced to post here, was taken on July 25, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The ridges in this picture are labeled by the scientists “Rectilinear Ridges,” but they really do not resemble any of the Martian rectilinear ridge types outlined in this paper [pdf], all of which appear to have a much more pronounced criss-cross pattern.

These ridges however are more meandering, and instead to my eye seem more like inverted channels, ancient channels whose beds became compacted and then became ridges when the less dense surrounding material eroded away. The problem with this conclusion however is the lack of any obvious tributary pattern. If these were once channels where either liquid water or glaciers once flowed, none of them seem to exhibit any drainage pattern. The ridges go in all directions.

The context map below only increases the mystery.
» Read more

InSight still hangs in, barely

InSight's power status as of October 22, 2022

A new update on the status of the Mars lander InSight was released today, showing its power output daily through October 22, 2022. The graph to the right shows this update. From the report:

As of October 22, 2022, InSight’s seismometer is collecting data again after being switched off to conserve energy after a recent dust storm. The lander was generating an average of 280 watt-hours of energy per Martian day, or sol. The tau, or level of dust cover in the atmosphere, was estimated at 1.45 (typical tau levels outside of dust season range from 0.6-0.7).

These power levels are very low, so low I am surprised the science team thought it was able to start the seismometer again. It could be they expect the lander to fail any moment, and decided to maximize the data it can get in the little time it has left.

A press conference is planned for Thursday, October 27, 2022 to provide an update on InSight’s future, as well it appears to describe a recent discovery (likely the exact moment some recent impacts took place) based on data from InSight and images from Mars Reconnaissance Orbiter (MRO). This was already reported in mid-September, but more impacts might have been identified.

It is also possible the MRO images detected some other change on the surface (not an impact) that InSight’s seismometer picked up. If so, the briefing will be far more interesting.

Bedrock layers in Terby Crater on Mars

Bedrock layers in Terby Crater on Mars
Click for full image.

Cool image to end the week! The picture to the right, rotated, cropped, reduced, and enhanced to post here, was taken by on July 18, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the bedrock layers on one of two very large mesas that jut out into the floor of 108-mile-wide Terby Crater.

I want to focus your eye on the spoon-shaped mesa near the top right of the photo. Note how the layers can be seen on both sides, even though the top of the mesa seems to be concave. This is strange and complex geology, made even more fascinating in that the two mesas almost reach the center of the crater floor. Why are they here? Why were they not flattened during impact, like the rest of the crater floor? Or maybe the original crater floor is the mesa top, but if so, why did the rest of the crater interior get eroded away.

The overview map below provides some context, and helps fill in some details, even if it fails to answer any of these questions.
» Read more

Frozen lava flows around Martian hills

Martian lava flowing around hills
Click for full image.

Cool image time! The photo to the right, rotated, cropped, reduced, and enhanced to post here, was taken on August 24, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the westernmost edge of the Athabasca flood lava plain, thought to be the youngest lava flow on Mars, having covered the area of Great Britain in a matter of weeks 600 million years ago.

This image was a captioned feature yesterday by the MRO science team. As they note:

Although you can’t sail a boat on a sea of lava, hills and craters that stick up higher than the lava flow act like barriers. When a boat is driven through the water, there is a bow wave at the front of the boat, and a wake that trails off behind that indicates which way the boat is moving. In a lava flow, when a hill sticks up, the lava piles up on the upstream side (just like a bow wave) and can leave a wake on the downstream side, so we can tell which way the lava was moving against the stationary hill.

As you can see, every hill has a pile of lava on its northeast slopes, and a wake to its southeast. As the main vent of the Athabasca eruption is to the northeast, about 500 miles away (as shown on the overview map below), the flow direction suggested by the wakes fit the general geography.
» Read more

Inverted river on Mars

Inverted river on Mars

Cool image time! The photo to the right, rotated, cropped, reduced, and enhanced to post here, was taken on May 30, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label as a “inverted fluvial system”.

Such features are not unusual on Mars. The theory explaining their formation is that this was once a channel where either water or ice flowed, packing the streambed down so that it was more dense than the surrounding terrain. After the flowing material disappeared, the less dense surrounding terrain eroded away, leaving the channel as a meandering ridge.

The location of this inverted channel, as shown in the overview map below, lends some weight to the flowing material being water or ice.
» Read more

1 21 22 23 24 25 60