New research confirms the steady decline of Martian ice with each glacial cycle

The obliquity cycles of Mars

Using orbital data from Mars Reconnaissance Orbiter (MRO) of glaciers inside mid-latitude craters, scientists have concluded that there was a steady decline in the growth of those glaciers with each new glacial cycle.

They focused on craters with indicative signs of glaciation, such as ridges, moraines (piles of debris left behind by glaciers), and brain terrain (a pitted, maze-like surface formed by ice-rich landforms). By comparing the shapes and orientations of these features with climate models, they found that ice consistently clustered in the colder, shadowed southwestern walls of craters. This trend was consistent across various glacial periods, ranging from approximately 640 million to 98 million years ago.

The results show that Mars didn’t just freeze once—it went through a series of ice ages driven by shifts in its axial tilt, also known as obliquity. Unlike Earth, Mars’ tilt can swing dramatically over millions of years, redistributing sunlight and triggering cycles of ice build-up and melting. These changes shaped where water ice could survive on the planet’s surface. Over time, however, each cycle stored less ice, pointing to a gradual planetary drying. [emphasis mine]

You can read the paper here [pdf]. This result is not new. Based on the orbital data scientists have theorized now for almost a decade that as Mars’ rotational tilt (its obliquity) swings from 11 to 60 degrees, it produces extreme climate cycles on the planet. Those swings are shown on the graph to the right, taken from this 1993 paper [pdf]. When the obliquity is low, the mid-latitudes are warm and the glaciers there shrink, with the snow falling at the poles. When obliquity is high, the poles are warmer and its ice sublimates away to fall as snow in the mid-latitudes, thus causing those glaciers to grow instead.

The orbital data has consistently shown that with each new cycle, the glaciers grew less, suggesting that less global water was available on the planet. This new study further confirms these conclusions.

One last point: Though the amount of water ice on Mars has declined, we mustn’t think the red planet now has none. The orbital data shows that there is a lot of near surface ice on Mars, covering the planet from 30 degrees latitude poleward. As I’ve noted numerous times, Mars is a desert like Antarctica.

Astronomers take first radio image of the supermassive binary system OJ287

First image of OJ287

Using archive data from the now retired Russian orbiting radio telescope RadioAstron, scientists have now obtained the first image of the binary supermassive black hole system OJ287 that was previously detected flaring as predicted when the smaller black hole (150 million solar masses) circled near the larger (18 billion solar masses).

That image is to the right, cropped and annotated to post here. The cartoon in the lower right shows the theorized orientation of the system, taken from figure 2 of the published paper [pdf]. According to the paper the elongation of the three objects is an artifact of the data and is “not real.” From the press release:

In this latest study, the astronomers compared the earlier theoretical calculations with a radio image. The two black holes were there in the image, just where they were expected to be. This gave the researchers an answer to a question that has been open for 40 years: whether black-hole pairs exist in the first place. “For the first time, we managed to get an image of two black holes circling each other. In the image, the black holes are identified by the intense particle jets they emit. The black holes themselves are perfectly black, but they can be detected by these particle jets or by the glowing gas surrounding the hole,” Valtonen says.

The researchers also identified a completely new kind of a jet emanating from a black hole. The jet coming out of the smaller black hole is twisted like a jet of a rotating garden hose. This is because the smaller black hole moves fast around the primary black hole of OJ287, and its jet is diverted depending on its current motion. The researches liken it to “a wagging tail” which should be seen twisting in different directions in the coming years when the smaller black hole changes its speed and direction of motion.

This image is cropped from the full dataset. The jet continues upward and then curves to the right as it “wags” away.

This incredible black hole binary system, estimated to be about 3.5 billion light years away, has been posited since 1982, when one astronomer noticed that it repeatedly flared every twelve years. Since then scientists have successfully predicted several flares, based on the system’s theorized orbit. These images further confirm the system’s shape.

Saturn as seen by Cassini in 2004, four months before orbital insertion

Saturn as first seen up close by Cassini
Click for original.

Cool image time! As most of the new cool images coming down from space seem mostly limited to Mars and deep space astronomy, I decided today to dig into the archive of the probe Cassini, which orbited Saturn from July 1, 2004 until September 15, 2017, when it was sent plunging into the gas giant’s atmosphere.

The picture to the right heralded the start of that mission, in that it was taken on February 19, 2004, a little over four months before the spacecraft fired its engines and entered orbit. I have rotated the image and cropped it to post here.

When Cassini snapped this picture it was just approaching the gas giant. The image itself is relatively small, with the resolution also relatively poor. You can see one of Saturn’s moons above the planet, but I can’t tell you which one. As noted at the webpage, this is a raw image that has not been “validated or calibrated.”

While not up to the amazing standard exhibited by Cassini’s images during its thirteen year stay at Saturn, it gave us a flavor of the wonders to come. Of all the planets, Saturn might be the most beautiful.

Congressional budget action appears to just save two of seventeen on-going NASA missions

Though no final budget has yet been approved, based on the language in the budget the House has approved and sent to the Senate, only two of the seventeen on-going missions presently in space are specifically allocated money, thus allowing the Trump administration to zero out funding for the remaining fifteen.

The two missions saved are Osiris-Apex, on its way to the potentially dangerous asteroid Apophis, and the Magnetospheric Multiscale Mission (MMS), four satellites in orbit that observe the Earth’s magnetosphere.

The article at the link is typical of our propaganda press. It clearly opposes any cuts to NASA, and lobbies repeatedly for all funding to be reinstated. This pattern has gotten quite boring and tedious. It would be so refreshing to see a more objective take, at least one in a while.

However, its reporting confirms my own reporting from mid-September, where I noted that the vague language in the House budget bill would allow Trump to cut these missions. Congress wants to preen itself as supporting all funding for NASA, while carefully allowing Trump to go ahead with large cuts.

It is a good thing these two missions have been saved, though it does appear their funding has been trimmed. Of the fifteen missions in limbo, the only two that seem worth keeping is the Chandra X-Ray Observatory and New Horizons, though the second should likely be set up similar to the two Voyager spacecraft, with a very small crew aimed mainly at keeping the spacecraft functioning and able to send back data periodically.

We are in great debt. It is time that the federal government make some real choices. We can no longer afford to buy all the candy in the store.

New study claims the giant impact that created the Moon’s South Pole-Aitken Basin was oblique, from the south

South Pole-Aitken Basin
Click for original. Blue indicates the basin, red
the “thorium-rich and iron-rich ejecta deposit”

While previous work had suggested the giant bolide that had created the Moon’s South Pole-Aitken Basin came in from the north, a new study now proposes that the impact was instead oblique from the south. From the paper’s abstract:

The ancient South Pole–Aitken impact basin provides a key data point for our understanding of the evolution of the Moon, as it formed during the earliest pre-Nectarian epoch of lunar history, excavated more deeply than any other known impact basin, and is found on the lunar far side, about which less is known than the well-explored near side. Here we show that the tapering of the basin outline and the more gradual topographic and crustal thickness transition towards the south support a southward impact trajectory, opposite of that commonly assumed. A broad thorium-rich and iron-rich ejecta deposit southwest of the basin is consistent with partial excavation of late-stage magma ocean liquids.

These observations indicate that thorium-rich magma ocean liquids persisted only beneath the southwestern half of the basin at the time of impact, matching predictions for the transition from a global magma ocean to a local enrichment of potassium, rare-earth elements and phosphorus (KREEP) in the near-side Procellarum KREEP Terrane.

In other words, when this impact occurred, part of the impact site in the south was still a magma ocean.

This result, if confirmed, has research implications for the missions targeting the Moon’s south pole. It suggests the geology will have that KREEP materials readily available, which will provide important information about the Moon’s early geological history.

Martian winds are faster than expected

According to an analysis of pairs of 300 hundred orbital images taken seconds apart, scientist have found that Martian winds can reach speeds of 100 miles per hour (160 kilometers per hours), much faster than previously expected.

The results show that the dust devils and the winds surrounding them on Mars can reach speeds of up to 44 m/s, i.e. around 160 km/h, across the entire planet, which is much faster than previously assumed (previous measurements on the surface had shown that winds mostly remain below 50 km/h and – in rare cases – can reach a maximum of 100 km/h). The high wind speed in turn influences the dust cycle on the Red Planet: “These strong, straight-line winds are very likely to bring a considerable amount of dust into the Martian atmosphere – much more than previously assumed,” says Bickel. He continues: “Our data show where and when the winds on Mars seem to be strong enough to lift dust from the surface. This is the first time that such findings are available on a global scale for a period of around two decades.”

You can read the paper here. The study also found dust devils favor the spring and summer in both the north and south hemispheres, and tended to be concentrated in the mid-latitudes.

What is most interesting about this data, which because it is somewhat sparse has a lot of uncertainties, is that it suggests the candidate landing zone for SpaceX’s Starship is a region with one of the most intense dust devil seasons every spring and summer. This is not really a threat to settlement, because the atmosphere is so thin even these high winds would hardly be felt, but it does indicate an environmental condition that must be considered for any future settlement there.

Fresh slope streak on Mars

Fresh slope streak on Mars
For original images go here and here.

Cool image time! One of the geological mysteries on Mars seen no where on Earth is something scientists have dubbed “slope streaks.” Though they at first glance appear to be avalanches, they do nothing to change the topography, have no debris pile at their base, and sometimes even travel up and over rises on their way downhill. They can also appear randomly throughout the year, can be bright or dark, and fade with time.

No theory as to their cause has yet been accepted, though recent research suggests they are dry events, dust avalanches triggered by dust devils, wind, or the accumulation of dust.

To better understand this geology, scientists repeatedly monitor known slope streak locations looking for changes. The two images to the right are an example, downloaded from the high resolution camera on Mars Reconnaissance Orbiter (MRO) on July 2, 2024 and September 1, 2025. In the fourteen months that passed between the first and second images, two distinct and large slope streaks occurred next to each other, near the bottom of the picture. All the other streaks merely faded.
» Read more

Martian boxwork on the flanks of Mount Sharp

The boxwork on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on October 5, 2025 by the left navigation camera on the Mars rover Curiosity.

The picture looks north and downhill from the lower flanks of Mount Sharp, inside Gale Crater. In the far distance on the horizon can be seen the crater’s northern rim, about 20 to 30 miles away. As it is now moving into the dusty season on Mars, the haze has increased from only a month ago, making it hard to see many distant details.

In the foreground can be seen clearly the light-colored ridges of the boxwork that the rover has been traversing for the past three months, with one rover track visible on the nearest ridge. Unlike the very rocky and boulder-strewn terrain the rover has seen in most of its travels on Mount Sharp, this boxwork seems smoother.
» Read more

The Juno mission at Jupiter is almost certainly over

An article yesterday at Space.com speculated that the Juno mission to Jupiter is likely over, but added that we cannot yet be sure because the government shutdown has prevented NASA from making any definitive announcement.

NASA’s management had previously extended the orbiter’s mission several times, with the last extension going until the end of the 2025 fiscal year, that ended on September 30, 2025. No new budget has yet been approved, and the proposed Trump budget had included no money for extending the mission farther.

Due to the government shutdown, NASA is currently unable to say whether Juno is still operating or already powered down. At the time of publication, responses from agency officials state that “NASA is currently closed due to a lapse in government funding … Please reach back out after an appropriation or continuing resolution is approved.”

Under shutdown rules, only missions that fall under “excepted activities” — those required to protect life, property, or national security — can continue operations or communications. NASA’s continuity plans also specify that carryover funding may only be applied to “presidential priorities,” which limits what science programs can proceed during a lapse.

Juno does not fall into those protected categories, and was also zeroed-out on the President’s fiscal year 2026 budget request — making the mission, presumably, not a priority. So, until normal government operations resume, the spacecraft’s future is uncertain.

I think Juno’s future at this point is not uncertain in the least. While other active missions that the Trump proposed shutting down might get revived, Juno is unlikely to be one of them. I suspect the science team has put it in hibernation, and is already beginning to move on to other projects and work. They are being coy about this in the faint hope Congress will save Juno, but this should not be a priority. At this point I think NASA would be wiser to spend its resources elsewhere.

A galaxy with a starburst ring within its nucleus

A galaxy with a starburst ring
Click for full image.

Cool image time! The picture to the right, cropped, reduced, sharpened, and annotated to post here, was released today by the science team of the Hubble Space Telescope as the picture of the week. This crop focuses on the central regions of this barred spiral galaxy, about 70 million light years away, with an unusual extra feature, a starburst ring encircling its nucleus. From the caption:

NGC 6951’s bar may be responsible for another remarkable feature: a white-blue ring that encloses the very heart of the galaxy. This is called a circumnuclear starburst ring — essentially, a circle of enhanced star formation around the nucleus of a galaxy. The bar funnels gas toward the centre of the galaxy, where it collects in a ring about 3800 light-years across. Two dark dust lanes that run parallel to the bar mark the points where gas from the bar enters the ring.

The dense gas of a circumnuclear starburst ring is the perfect environment to churn out an impressive number of stars. Using data from Hubble, astronomers have identified more than 80 potential star clusters within NGC 6951’s ring. Many of the stars formed less than 100 million years ago, but the ring itself is longer-lived, potentially having existed for 1–1.5 billion years.

This galaxy has also seen about a half dozen supernova, which raises the question: Does intense star formation trigger more supernovae? That is a question that can’t be answered with the data presently available.

Update on the plans to observe interstellar Comet 3I/Atlas using interplanetary spacecraft

Link here. The key take-away is that nothing is being repurposed to attempt to fly to Comet 3I/Atlas. Instead, as expected the science teams for all the Mars orbiters will turn their instruments to the comet when it is at its closest point to Mars, about 19 million miles away.

Don’t expect any Earth-shattering revelations:

The cameras on these spacecraft were designed to photograph the surface of Mars from Mars orbit, and won’t be able to pick out much detail on such a relatively small comet 30 million km away. But the cameras may be able to capture images of its long tail and also gather data that scientists can use to find out more about what 3I/ATLAS is made of.

Some spectroscopic data will be obtained, but it likely will not be much better than what Webb and other Earth-based telescopes have gotten already.

Similarly, the science team for Europe’s Juice mission, on its way to Jupiter, will take a look, but the distances and orbital positioning will likely limit what it can detect as well.

Climategate global-warming activist Michael Mann resigns from PennU after celebrating murder of Charlie Kirk

Michael Mann
Climate activist Michael Mann

Though he has claimed to be a climate scientist for decades, Michael Mann at the University of Pennsylvania has been proven time and again to merely be a leftwing global-warming activist, faking data to make it appear the increase of carbon dioxide in the atmosphere is causing global warming, falsely claiming he was a Nobel laureate winner, and acting to destroy the careers of anyone who challenged the veracity of his research.

Sadly, when these facts were discovered almost two decades ago, about the time the climategate emails were released, the climate science community ignored the facts (a very bad thing for scientists to do) and acted to defend Mann. Thus he was able to continue to publish while keeping his job as a professor in academia, first at Pennsylvania State University and then at the University of Pennsylvania.

Mann’s ability to survive fraud and abuse of power however has finally come to an end, and it did so because he decided to go on line after Charlie Kirk was assassinated to joke about that murder and to slander Kirk by reposting comments that called Kirk “head of Trump’s Hitler Youth.”

Though Mann subsequently denied that was what he was doing, deleting some of his worst tweets while claiming to condemn such violence, it appears no one believes him. As a result, he announced yesterday that he resigning his position at Pennsylvania University in order to become a full time political activist. From his resignation statement:
» Read more

The growing mystery of the little red dots in the early universe

The uncertainty of science: A review of the population of what scientists call “Little Red Dots” (LRDs) — discovered in the early universe by the Webb Space Telescope — has found that 30% do not appear to be compact objects when viewed in ultraviolet wavelengths.

The team studied 99 LRDs, and found that about 30% are not simply compact dots when observed in the ultraviolet.Instead, they reveal disturbed or clumpy structures, in stark contrast to their smooth, point-like appearance at optical wavelengths. Because these galaxies are so far away, their optical light is stretched, or “redshifted,” into the long-wavelength channel of JWST, where the resolution is not sharp enough to see structure, so they look like simple dots.

Rinaldi: ‘But their ultraviolet light is shifted into JWST’s short-wavelength channel, where the telescope has much finer resolution, and there we suddenly see clumps, asymmetries, and signs of interaction. On top of this, in the spectra of some of our LRDs we directly detect the fingerprints of active black holes, with gas moving at thousands of kilometres per second.’ This shows that at least part of this population is powered by growing black holes, while others seem to be dominated by star formation, making LRDs a mixed and diverse family of sources. This is a crucial clue, suggesting that mergers and galaxy interactions may be the trigger for the “LRD phase”.

In other words, astronomers don’t really know what these dots are at present. If some are supermassive black holes, this poses a problem for Big Bang cosmology, as there should not have been enough time since the Big Bang for these black holes to have formed.

That 70% still appear to be compact single objects might mean that’s what they are, but it could also mean that our present observations tools don’t yet have the ability to resolve them.

Analysis of archived Cassini data finds a new slate of carbon-based molecules in the plumes of Enceladus

Enceladus at 77 miles
The tiger strip vents on Enceladus, seen
from 77 miles during 2015 fly-by. Resolution is
50 feet per pixel.

A new analysis of the archived Cassini data taken when the spacecraft flew through the plumes of the Saturn moon Enceladus in 2008 has revealed a number of new organic molecules (not life but carbon-based) that suggest the chemistry of the moon of Saturn is far more complex that expected.

You can read the paper here. From the abstract:

Here we present a comprehensive chemical analysis of organic-bearing ice grains sampled directly from the plume during a Cassini fly-by of Enceladus (E5) at an encounter speed of nearly 18 km [per second]. We again detect aryl and oxygen moieties in these fresh ice grains, as previously identified in older E-ring grains. Furthermore, the unprecedented high encounter speed revealed previously unobserved molecular fragments in Cosmic Dust Analyzer spectra, allowing the identification of aliphatic, (hetero)cyclic ester/alkenes, ethers/ethyl and, tentatively, N- and O-bearing compounds. These freshly ejected species are derived from the Enceladus subsurface, hinting at a hydrothermal origin and involvement in geochemical pathways towards the synthesis and evolution of organics.

In other words, this data further suggests there exists an underground ocean inside Enceladus, and that ocean has a lot of complex organic chemistry energized by the planet’s internal heat and the tidal forces imposed by Saturn’s gravity.

This is not the first time scientists have reviewed archived Cassini data of these plumes and found new molecules. It is simply a closer look at earlier analyses in 2018 and 2019.

This data has not discovered life, but it suggests that life is certainly possible within that proposed underground ocean. At a minimum, the chemistry there will be very complex and alien.

Astronomers snap picture of a baby exoplanet

Baby planet
Click for original image.

Cool image time! The picture to the right, cropped to post here, was taken using Magellan Telescope in Chile and the Large Binocular Telescope in Arizona. The exoplanet is the small purple dot to the right of the star and the accretion ring that surrounds it.

This exoplanet is very young, only about five million years old, and is thus still accumulating material. Even so, its mass is presently estimated to be five times that of Jupiter.

Following [the first] observations of the system, researchers looked at WISPIT 2, and spotted the planet WISPIT 2b for the first time, using the University of Arizona’s MagAO-X extreme adaptive optics system, a high-contrast exoplanet imager at the Magellan 2 (Clay) Telescope at Las Campanas Observatory in Chile. This technology adds another unique layer to this discovery. The MagAO-X instrument captures direct images, so it didn’t just detect WISPIT 2b, it essentially captured a photograph of the protoplanet.

…In addition to discovering WISPIT 2b, this team spotted a second dot in one of the other dark ring gaps even closer to the star WISPIT 2. This second dot has been identified as another candidate planet that will likely be investigated in future studies of the system.

You can read the paper here [pdf]. The other candidate exoplanet is the bright spot below the star, inside the ring.

The technology of astronomy continues to advance.

Study suggests low dose radiation reduces severe knee pain

A new study suggests that exposing patients with advanced osteoarthritis (OA) to low doses of radiation reduced their pain significantly.

The trial included 114 people with primary knee OA, diagnosed by moderate damage visible on X-rays, and significant pain with walking. They were randomly assigned to one of three groups: very low-dose radiation (0.3 Gy total, spread over six sessions of 0.05 Gy), low-dose radiation (3 Gy total, spread over six sessions of 0.5 Gy), or a sham treatment that did not deliver radiation.

…Each treatment in this trial was 500 mGy, which works out to be 5,000 times the radiation dose of a chest X-ray and around 70 times the dose of a chest CT scan. However, while this sounds like a lot, the treatment delivered in the study is still considered to be low-dose. For radiotherapy cancer treatment, for example, total doses are usually 50 to 70 Gy – so a total of 3 Gy is roughly one-twentieth or less of that.

…Trial participants couldn’t take regular pain meds during the first four months, other than occasional “rescue” meds if needed. No second round of radiation was allowed. The main treatment outcome was how many participants showed significant improvement after four months, as measured by assessments of pain and function.

The 3 Gy group did significantly better than the sham group. About 70% improved vs 42% in the sham group. Over half (57%) of people in the 3 Gy group had a clinically meaningful improvement in joint pain and function scores vs about 31% in the sham group. The 0.3 Gy group didn’t show a statistically significant improvement; about 58% improved. No meaningful differences were seen in blood markers of inflammation or in the amount of pain medication people used. The treatment was deemed to be safe, with no side effects or toxicity reported.

If this result is confirmed, it suggests strongly that especially for the older population there is now a viable treatment for knee pain that avoids surgery and could be far more reliable.

Modeling suggests Uranus’s moon Ariel needed underground oceans to shape its known surface

Ariel as seen by Voyager-2 in 1986
Ariel as seen by Voyager-2 in 1986.
Click for original image.

The uncertainty of science: Using computer modeling based on our scant data of the surface features of the Uranus moon Ariel, scientists now posit that underground oceans, some of gigantic depth as much as 100 miles deep, were required to shape those features.

“First, we mapped out the larger structures that we see on the surface, then we used a computer program to model the tidal stresses on the surface, which result from distortion of Ariel from soccer ball-shaped to slight football-shaped and back as it moves closer and farther from Uranus during its orbit,” Patthoff said. “By combining the model with what we see on the surface, we can make inferences about Ariel’s past eccentricity and how thick the ocean might have been.”

The team found that, in the past, Ariel needed to have an eccentricity of about 0.04 [to create those surface structures]. This is about 40 times larger than its current value. While 0.04 may not sound dramatic, eccentricity can strengthen the effects of tidal stresses, and Ariel’s orbit would have been four times more eccentric than that of Jupiter’s moon Europa, which is wracked by the tidal forces that push and pull it to create its cracked and broken surface. Yet, to the eye, the orbit will still resemble a circle.

“In order to create those fractures, you have to have either a really thin ice on a really big ocean, or a higher eccentricity and a smaller ocean,” Patthoff said. “But either way, we need an ocean to be able to create the fractures that we are seeing on Ariel’s surface.”

This result does not prove an underground ocean now exists, or even if one existed in the past. The data is based on the few fly-by images taken by Voyager-2 when it passed close to Uranus in 1986. Coverage of the entire surface of Ariel was not complete, nor did the images have much resolution. The data is suggestive of this conclusion, but not conclusive by any means.

Webb: Accretion disk surrounding exoplanet rich in carbon molecules

Using the Webb Space Telescope, scientists have detected a host of carbon molecules inside an accretion disk that surrounds an exoplanet circling a baby star 625 light years away.

Infrared observations of CT Cha b were made with Webb’s MIRI (Mid-Infrared Instrument) using its medium resolution spectrograph. An initial look into Webb’s archival data revealed signs of molecules within the circumplanetary disk, which motivated a deeper dive into the data.

…Ultimately, the team discovered seven carbon-bearing molecules within the planet’s disk, including acetylene (C2H2) and benzene (C6H6). This carbon-rich chemistry is in stark contrast to the chemistry seen in the disk around the host star, where the researchers found water but no carbon. The difference between the two disks offers evidence for their rapid chemical evolution over only than 2 million years.

You can read the original paper here [pdf]. The exoplanet itself is thought to have a mass 14 to 24 times that of Jupiter, making it almost a brown dwarf star. The NASA makes a big deal claiming this disk is forming a moon around the exoplanet, but that is not what the paper finds. This research did not find any evidence of a new moon exoplanet.

Instead, the paper found an accretion disk rich in carbon molecules, a finding that is significant on its own. It also found that that the accretion disk around the central star, while lacking carbon molecules, appears rich in water.

In other words, this baby solar system is packed with the right material for eventually producing life. Moreover, in this system’s relatively short life, two million years, these materials were able to sort themselves out so that the star has one concentration of material while the exoplanet has another. Both facts suggest that organic chemistry is common in the universe, and can evolve fast.

That is the important discovery here.

New study finds ice is better at dissolving iron than liquid water

In a result that could have a direct bearing on trying to understand the inexplicable geology of Mars, a new study has found that ice actually does a better job at releasing iron from mineral deposits than liquid water.

It was once believed that when iron-rich mineral deposits were locked in ice, the iron would stay put, but a new study from Sweden’s Umeå University shows that the ice itself is actually working better than permafrost melt to release the iron. The study showed that ice at -10 °C (14 °F) releases more iron from mineral deposits than liquid water at 4 °C (39.2 °F). “It may sound counterintuitive, but ice is not a passive frozen block,” says study co-author Jean-François Boily. “Freezing creates microscopic pockets of liquid water between ice crystals. These act like chemical reactors, where compounds become concentrated and extremely acidic. This means they can react with iron minerals even at temperatures as low as minus 30 degrees Celsius.”

The researchers also found that the seasonal freeze/thaw cycle helped this process, and that brackish fresh water did better in dissolving the iron than seawater.

The significance for Mars geology is that this suggests glacial ice in the alien Mars climate might be the catalyst for creating its meandering canyons that so much resemble features on Earth produced by liquid water. On Mars however no model yet has been convincingly successful in creating past conditions where liquid water could flow on the surface. Mars has either been is too cold or its atmosphere too thin to allow it.

This study suggests ice however could do the work. It also fits with other Martian data that suggests the same, that at the base of the Martian glaciers pockets of liquid water could exist that act to shape the canyons.

All of this is speculation on my part, but it seems that the planetary scientists who are studying Mars should take a close look at this research.

Astronomers detect the spiral motion of the accretion disk surrounding a star 515 light years away

The changes to the spiral over seven years
Click for movie.

A team of Japanese astronomers have used the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile to detect for the first time the rotation of the spiral accretion disk that surrounds a young star, rotation that showed the spiral was in the process of forming new planets.

Observations have revealed a spiral pattern in the disk of gas and dust around the young star IM Lup located 515 light-years away in the direction of the constellation Lupus. Spiral patterns are thought to be one of the signs that a new planet will form soon, but other things, such as an already formed planet, can also form spirals. These different types of spirals cannot be distinguished by visual inspection, but they are expected to move differently over time.

To determine the origin of the spirals around IM Lup, an international research team led by Tomohiro Yoshida, a graduate student at The Graduate University for Advanced Studies, SOKENDAI and the National Astronomical Observatory of Japan (NAOJ), created a stop-motion animation of the spiral pattern using four observations taken by ALMA over the course of seven years. The motion of the spirals in the stop-motion animation shows that they were not caused by an already formed planet, and instead the spirals might be helping to form a new planet.

The two images to the right, taken from the movie, show the spiral’s shift over seven years. I have added the vertical line down the center to help highlight that change.

This discovery once again illustrates the increasing sophistication of our astronomical tools, able to observe such changes at such a great distance.

A Martian landscape of volcanic pimples

A Martian landscape of volcanic pimples
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) and downloaded on August 3, 2025. Labeled as a “terrain sample,” such images are usually taken not as part of any specific research request but because the camera team needs to fill a gap in the camera’s schedule so as to maintain its proper temperature. When they do this, they always try to pick interesting targets within the time window, and usually succeed.

In this case, the camera team picked a location in the middle of Isidis Planitia, one of Mars’ four biggest basins thought to have been formed from a major impact several billion years ago, focusing on an area covered with these strange knobs that have craterlike depressions at their peaks.

According research published in 2010 [pdf], it is believed these cones — all of which are only a few feet high — are the result of volcanic activity following the impact that formed Isidis four billion years ago. In a sense, they are leftover pimples from that impact and the subsequent volcanic activity within that melted basin.
» Read more

European engineers develop a tumbling rover design moved by the Martian wind

Tumbleweed being tested on sandy ground
Tumbleweed being tested on sandy ground. Click for video.

European engineers at Aarhus University in Denmark have now developed and tested a tumbling rover design that is propelled solely by the Martian wind. You can read their most recent paper here.

Not surprisingly, they call it “Tumbleweed.” The screen capture to the right comes from a video of a wind tunnel test proving the Martian atmosphere could move a prototype on sandy ground. The engineers also did similar tests successfully on rocky and coarse ground.

In July 2025, Team Tumbleweed conducted a week-long experimental campaign, supported by Europlanet, at Aarhus University’s Planetary Environment Facility. Using scaled prototypes with 30-, 40- and 50-centimetre diameters, the team carried out static and dynamic tests in a wind tunnel with a variety of wind speeds and ground surfaces under a low atmospheric pressure of 17 millibars.

Results showed that wind speeds of 9-10 metres per second were sufficient to set the rover in motion over a range of Mars-like terrains including smooth and rough surfaces, sand, pebbles and boulder fields. Onboard instruments successfully recorded data during tumbling and the rover’s behaviour matched fluid-dynamics modelling, validating simulations. The scale-model prototypes were able to climb up a slope of 11.5 degrees in the chamber – equivalent to approximately 30 degrees on Mars – demonstrating that the rover could traverse even unfavourable slopes.

Their concept is to send a swarm of Tumbleweeds to Mars, where they could cheaply document prevailing wind and speeds globally. More sophisticated versions could act as full weather stations, as well as provide in situ data about the landscapes they traverse.

The concept is still in its development stage. The next stage of testing will see if Tumbleweed will work with some science sensors attached.

NASA awards orbital servicing startup Katalyst contract to save the Gehrels Swift space telescope

Katalyst's proposed Swift rescue mission
Katalyst’s proposed Swift rescue mission. Click for original image.

NASA today announced that it has awarded the orbital servicing startup Katalyst a $30 million contract to use a robotic servicing satellite to rendezvous and attach itself to the Gehrels Swift space telescope and raise its orbit.

Right now the telescope’s orbit is decaying, and it will burn up sometime in 2029 if something isn’t done. As one of the most successful low-cost astronomy space telescopes ever launched — central to the study of gamma ray bursts — spending this small amount to save Gehrels seems a no-brainer. In mid-August NASA had awarded Katalyst and a second company small contracts to study whether they could do this mission. Today’s announcement means NASA liked Katalyst’s proposal.

Whether this startup can do it however remains unknown. It appears from its own press release today describing this contract award that the company decided to add Gehrels to its already planned first demo servicing mission planned for next year.

The schedule is also unprecedented: while satellite servicing typically takes years to plan, Katalyst must be ready to launch in eight months, with docking operations scheduled for mid-2026, to save Swift before it burns up.

…Katalyst was already on schedule for an in-space demonstration of its rendezvous, proximity operations, and docking technology for June 2026. The demonstration would buy down technical risk ahead of the planned launch of Katalyst’s multi-mission robotic spacecraft, NEXUS, in 2027. When NASA raised the alarm about Swift, Katalyst seized the opportunity to pivot to a live rescue operation which would demonstrate similar capabilities.

The mission is even further risky in that Swift has no grapple or docking port for Katalyst’s satellite to attach to. Instead, it “will rely on a custom-built robotic capture mechanism that will attach to a feature on the satellite’s main structure–without damaging sensitive instruments.”

Two launches by China and SpaceX

Both China and SpaceX completed launches today. First, China launched another 11 satellites for its Geely internet-of-things constellation, its Smart Dragon-3 rocket lifting off from a ocean platform off the nation’s eastern coast.

This was the sixth launch for this constellation, bringing the number of satellites in orbit to 64, out of a planned 240. The constellation is designed to provide positioning and communications for trucking and other ground-based businesses.

Next, SpaceX successfully placed three government science satellites into orbit (two for NASA and one for NOAA), its Falcon 9 rocket lifting off from the Kennedy Space Center in Florida. The first stage completed its second flight, landing on a drone ship in the Atlantic. The two fairings both completed their first flight.

The two NASA satellites were the Interstellar Mapping and Acceleration Probe (IMAP) to study the Sun’s heliosphere at the edge of the solar system and the Carruthers Geocorona Observatory to study the exosphere, the outermost layer of the atmosphere. The NOAA probe, Space Weather Follow On – Lagrange 1 (SWFO-L1), will observe the Sun from one million miles from Earth, providing advance knowledge of strong solar flares and eruptions so that utility companies can shield the electric grid appropriately.

The leaders in the 2025 launch race:

123 SpaceX
55 China
13 Russia
12 Rocket Lab

SpaceX now leads the rest of the world in successful launches, 123 to 94.

Blobby Martian crater filled with ice

Overview map

A blobby Martian crater filled with ice
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on August 4, 2025 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The science team labels this a “concentric fill crater,” a term used by planetary scientists for Martian craters that appear to be filled with glacial material. That certainly appears to be the case, but this 3.5-mile-wide unnamed crater also appears to have been warped by the ice that impregnates the ground all around it.

The overview map above explains why. The white dot marks the location, on the eastern end of the 2,000-mile-long northern mid-latitude strip that I label glacier country, because almost every image in this region shows similar glacial features. Though it is hard to tell from the inset, all the craters here have similar glacial material within them, and the ground surrounding them also appears glacial in nature.

This particular location is at 40 degrees north latitude. While it might be difficult to establish a colony here, on ground that appears so unstable, going 700 to 800 miles to the southeast would put you in what is considered one of Mars’ prime mining regions. Thus, with the right equipment mining operations would have accessible water not that far away.

A galaxy sunnyside up

A galaxy sunnyside up
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, is the Hubble picture of the week. It shows a strange galaxy that defies categorization. From the caption:

The galaxy in question is NGC 2775, which lies 67 million light-years away in the constellation Cancer (The Crab). NGC 2775 sports a smooth, featureless centre that is devoid of gas, resembling an elliptical galaxy. It also has a dusty ring with patchy star clusters, like a spiral galaxy. Which is it, then: spiral or elliptical — or neither?

Because we can only view NGC [2775 from one angle, it’s difficult to say for sure. Some researchers have classified NGC 2775 as a spiral galaxy because of its feathery ring of stars and dust, while others have classified it as a lenticular galaxy. Lenticular galaxies have features common to both spiral and elliptical galaxies. It’s not yet known exactly how lenticular galaxies come to be, and they might form in a variety of ways.

To me, the galaxy most resembles a fried egg, sunnyside up, though I very strongly doubt that was the process that formed it. The bright center however suggests that something there has in the past emitted a lot of energy and radiation, thus clearing out the gas and dust from that center.

Blue Origin wins contract to bring NASA’s Viper rover to the Moon

NASA yesterday awarded Blue Origin a contract to use its Blue Moon lunar lander to transport the agency’s troubled Viper rover to the Moon’s south pole region.

The CLPS task order has a total potential value of $190 million. This is the second CLPS lunar delivery awarded to Blue Origin. Their first delivery – using their Blue Moon Mark 1 (MK1) robotic lander – is targeted for launch later this year to deliver NASA’s Stereo Cameras for Lunar-Plume Surface Studies and Laser Retroreflective Array payloads to the Moon’s South Pole region.

With this new award, Blue Origin will deliver VIPER to the lunar surface in late 2027, using a second Blue Moon MK1 lander, which is in production. NASA previously canceled the VIPER project and has since explored alternative approaches to achieve the agency’s goals of mapping potential off-planet resources, like water.

The contract does not guarantee this mission. NASA has several options along the way to shut things down, depending on the milestones Blue Origin achieves. The first of course is the success of that first lunar lander.

The announcement does not make clear how NASA is going to pay for the work needed to finish Viper. VIPER was originally budgeted at $250 million. When cancelled in 2024 its budget had ballooned to over $600 million, and that wasn’t enough to complete the rover for launch. Moreover, after getting eleven proposals from the private sector companies to finish and launch Viper, in May 2025 NASA canceled that solicitation.

It is very likely Blue Origin is picking up the tab, but if so the press release does not say so.

Inexplicable very large patterns found in Saturn’s upper atmosphere

Beads and arms in Saturn's upper atmosphere
Click for original image.

Using the Webb Space Telescope’s infrared capabilities, scientists have detected several different and inexplicable large atmospheric structures linked somehow to the gas giant’s north pole aurora.

The two images to the right, cropped, reduced, and annotated to post here, show both types of newly discovered features.

The international team of researchers, comprising 23 scientists from institutions across the UK, US and France, made the discoveries during a continuous 10-hour observation period on 29 November 2024, as Saturn rotated beneath JWST’s view. The team focused on detecting infrared emissions by a positively charged molecular form of hydrogen, H3+, which plays a key role in reactions in Saturn’s atmosphere and so can provide valuable insights into the chemical and physical processes at work. JWST’s Near Infrared Spectrograph allowed the team to simultaneously observe H₃⁺ ions from the ionosphere, 1,100 kilometres above Saturn’s nominal surface, and methane molecules in the underlying stratosphere, at an altitude of 600 kilometres.

In the electrically-charged plasma of the ionosphere, the team observed a series of dark, bead-like features embedded in bright auroral halos. [top picture] These structures remained stable over hours but appeared to drift slowly over longer periods.

Around 500 kilometres lower, in Saturn’s stratosphere, the team discovered an asymmetric star-shaped feature [bottom picture]. This unusual structure extended out from Saturn’s north pole towards the equator. Only four of the star’s six arms were visible, with two mysteriously missing, creating a lopsided pattern.

A more accurate word for the “beads” I think would be “patches”, as they are not small but major dark regions that appear to rotate with the planet, as do the arms. Both also seem to be related to each other as their rotations match, though one sits about 300 miles lower in the atmosphere. As noted in the press release, “the processes that are driving the patterns may influence a column stretching right through Saturn’s atmosphere.”

All guesses. All we have at this point is a truly intriguing observation.

Japan closes down its Akatsuki Venus orbiter mission

japan’s space agency JAXA today announced that it has shut down down operations on its Akatsuki orbiter, in orbit around Venus since 2015.

Communication with “Akatsuki” was lost during operations near the end of April 2024, triggered by an incident in a control mode of lower-precision attitude maintenance for a prolonged period. Although recovery operations were conducted to restore communication, there has been no luck so far. Considering the fact that the spacecraft has aged, well exceeding its designed lifetime, and was already in the late-stage operation phase, it has been decided to terminate operations.

Akatsuki has a interesting history. Launched in 2010, it failed to enter Venus orbit as planned in two attempts in 2010 and 2011 because of a failure in its main engine. Engineers then improvised and — after orbiting the Sun for several years — were able to get it into Venus orbit in 2015 using only its attitude thrusters. Its primary mission ended in 2018, but it continued to study Venus’ atmosphere since.

Russia’s Bion-2 capsule returns to Earth after a month in space

After a month in space carrying a cargo of biological samples, including 1,500 fruit flies and 75 mice, Russia’s Bion-2 capsule was successfully recovered today after landing in southern Russia.

Following the landing, some mice was [sic] to be dissected at the site, followed by further dissections on the 1st, 5th, 15th and 30th days after landing to study the effects of space conditions on live organisms.

While resembling the commercial private returnable capsules, such as Varda’s, that are being developed, the difference is significant. Russia has been flying these capsules for decades, which is actually an upgrade from the very first Vostok capsule which it flew Yuri Gagarin in 1961. However, the research has always been focused not on producing a product for sale on Earth but related to Russia’s manned program. Thus, the results has always been somewhat dead end. Expect the same here.

1 2 3 283