The seasonal cloud over Arsia Mons on Mars

The cloud as seen in 2018.
Scientists have now documented the seasonal nature of the strangely elongated cloud that was first spotted in 2018 above the giant volcano Arsia Mons (the southernmost volcano of the three volcanoes east of Olympus Mons).
From their abstract:
We find that the AMEC [Arsia Mons Elongated Cloud] repeated regularly each morning for a number of months, and that it is an annually‐repeating phenomenon that takes place every Martian Year around the southern hemisphere spring and summer. The AMEC follows a rapid daily cycle: it starts to expand from Arsia Mons at dawn at an altitude of about ∼45 km, and for ∼2.5 hours it expands westward as fast as 170 m/s (around 600 km/h). The cloud then detaches from Arsia Mons and evaporates before noon. In previous Martian Years, few observations of this phenomenon are available because most cameras orbiting Mars are placed in orbits where they can only observe during the afternoon, whereas this cloud takes place in the early morning, when observational coverage is much lower.
They also state that they will outline their theories as to the cause of the cloud in a follow-up paper.
I can’t help wondering if it is related to other evidence that suggested past glacial activity on the western flanks of Arsia Mons. There are many pits surrounding this volcano, and many might contain residue ice. One wonders if, during the warm spring and summer months at dawn the arrival of the sun might cause this cloud to form, and then vanish as the day passes, just like the dew does on Earth.
That is my uneducated guess, and likely wrong. We shall have to wait for their theoretical paper for a more educated guess.
The cloud as seen in 2018.
Scientists have now documented the seasonal nature of the strangely elongated cloud that was first spotted in 2018 above the giant volcano Arsia Mons (the southernmost volcano of the three volcanoes east of Olympus Mons).
From their abstract:
We find that the AMEC [Arsia Mons Elongated Cloud] repeated regularly each morning for a number of months, and that it is an annually‐repeating phenomenon that takes place every Martian Year around the southern hemisphere spring and summer. The AMEC follows a rapid daily cycle: it starts to expand from Arsia Mons at dawn at an altitude of about ∼45 km, and for ∼2.5 hours it expands westward as fast as 170 m/s (around 600 km/h). The cloud then detaches from Arsia Mons and evaporates before noon. In previous Martian Years, few observations of this phenomenon are available because most cameras orbiting Mars are placed in orbits where they can only observe during the afternoon, whereas this cloud takes place in the early morning, when observational coverage is much lower.
They also state that they will outline their theories as to the cause of the cloud in a follow-up paper.
I can’t help wondering if it is related to other evidence that suggested past glacial activity on the western flanks of Arsia Mons. There are many pits surrounding this volcano, and many might contain residue ice. One wonders if, during the warm spring and summer months at dawn the arrival of the sun might cause this cloud to form, and then vanish as the day passes, just like the dew does on Earth.
That is my uneducated guess, and likely wrong. We shall have to wait for their theoretical paper for a more educated guess.