Both methane and oxygen fluctuate in unison seasonally in Gale Crater
The uncertainty of science: According to a new science paper, data from Curiosity on Mars has now found that both methane and oxygen fluctuate in unison seasonally in Gale Crater.
From the paper’s abstract:
[T]he annual average composition in Gale Crater was measured as 95.1% carbon dioxide, 2.59% nitrogen, 1.94% argon, 0.161% oxygen, and 0.058% carbon monoxide. However, the abundances of some of these gases were observed to vary up to 40% throughout the year due to the seasonal cycle. Nitrogen and argon follow the pressure changes, but with a delay, indicating that transport of the atmosphere from pole to pole occurs on faster timescales than mixing of the components. Oxygen has been observed to show significant seasonal and year‐to‐year variability, suggesting an unknown atmospheric or surface process at work. These data can be used to better understand how the surface and atmosphere interact as we search for signs of habitability.
The data shows that the unexpected and so far unexplained seasonal oxygen fluctuation appears to track the same seasonal methane fluctuations. While biology could cause this signature, so could geological processes, though neither can produce these fluctuations easily.
Meanwhile, adding to the uncertainty were results from the two European orbiters, Mars Express and Trace Gas Orbiter. Both have failed to detect a June 19, 2019 dramatic spike in methane that had been measured by Curiosity.
The uncertainty of science: According to a new science paper, data from Curiosity on Mars has now found that both methane and oxygen fluctuate in unison seasonally in Gale Crater.
From the paper’s abstract:
[T]he annual average composition in Gale Crater was measured as 95.1% carbon dioxide, 2.59% nitrogen, 1.94% argon, 0.161% oxygen, and 0.058% carbon monoxide. However, the abundances of some of these gases were observed to vary up to 40% throughout the year due to the seasonal cycle. Nitrogen and argon follow the pressure changes, but with a delay, indicating that transport of the atmosphere from pole to pole occurs on faster timescales than mixing of the components. Oxygen has been observed to show significant seasonal and year‐to‐year variability, suggesting an unknown atmospheric or surface process at work. These data can be used to better understand how the surface and atmosphere interact as we search for signs of habitability.
The data shows that the unexpected and so far unexplained seasonal oxygen fluctuation appears to track the same seasonal methane fluctuations. While biology could cause this signature, so could geological processes, though neither can produce these fluctuations easily.
Meanwhile, adding to the uncertainty were results from the two European orbiters, Mars Express and Trace Gas Orbiter. Both have failed to detect a June 19, 2019 dramatic spike in methane that had been measured by Curiosity.