Grease in space
Based on observed data and lab recreations, astronomers have found that much of the galaxy’s interstellar dust is made of grease-like carbon molecules.
Organic matter of different kinds contains carbon, an element considered essential for life. There is though real uncertainty over its abundance, and only half the carbon expected is found between the stars in its pure form. The rest is chemically bound in two main forms, grease-like (aliphatic) and mothball-like (aromatic).
The UNSW / Ege team used a laboratory to create material with the same properties as interstellar dust. They mimicked the process by which organic molecules are synthesised in the outflows of carbon stars, by expanding a carbon-containing plasma into a vacuum at low temperature. The material was collected and then analysed by a combination of techniques. Using magnetic resonance and spectroscopy (splitting light into its constituent wavelengths) they were able to determine how strongly the material absorbed light with a certain infrared wavelength, a marker for aliphatic carbon.
“Combining our lab results with observations from astronomical observatories allows us to measure the amount of aliphatic carbon between us and the stars”, explained Professor Tim Schmidt, from the Australian Research Council Centre of Excellence in Exciton Science in the School of Chemistry at UNSW Sydney.
The researchers found that there are about 100 greasy carbon atoms for every million hydrogen atoms, accounting for between a quarter and a half of the available carbon. In the Milky Way Galaxy, this amounts to about 10 billion trillion trillion tonnes of greasy matter, or enough for 40 trillion trillion trillion packs of butter.
I guarantee that these results have a large margin of error. I also guarantee that they contain a significant element of truth.
Based on observed data and lab recreations, astronomers have found that much of the galaxy’s interstellar dust is made of grease-like carbon molecules.
Organic matter of different kinds contains carbon, an element considered essential for life. There is though real uncertainty over its abundance, and only half the carbon expected is found between the stars in its pure form. The rest is chemically bound in two main forms, grease-like (aliphatic) and mothball-like (aromatic).
The UNSW / Ege team used a laboratory to create material with the same properties as interstellar dust. They mimicked the process by which organic molecules are synthesised in the outflows of carbon stars, by expanding a carbon-containing plasma into a vacuum at low temperature. The material was collected and then analysed by a combination of techniques. Using magnetic resonance and spectroscopy (splitting light into its constituent wavelengths) they were able to determine how strongly the material absorbed light with a certain infrared wavelength, a marker for aliphatic carbon.
“Combining our lab results with observations from astronomical observatories allows us to measure the amount of aliphatic carbon between us and the stars”, explained Professor Tim Schmidt, from the Australian Research Council Centre of Excellence in Exciton Science in the School of Chemistry at UNSW Sydney.
The researchers found that there are about 100 greasy carbon atoms for every million hydrogen atoms, accounting for between a quarter and a half of the available carbon. In the Milky Way Galaxy, this amounts to about 10 billion trillion trillion tonnes of greasy matter, or enough for 40 trillion trillion trillion packs of butter.
I guarantee that these results have a large margin of error. I also guarantee that they contain a significant element of truth.




