Google Lunar X Prize

The private race to the Moon, led by the Google Lunar X Prize. Key quote:

The Google Lunar X PRIZE offers a total of $30 million in prize money to the first privately funded teams to land robots on the Moon that explore the lunar surface by moving at least 500 meters and by sending back two packages of high definition video and photos we call Mooncasts. Unlike our first competition, the $10 million Ansari X PRIZE, the Google Lunar X PRIZE isn’t a ‘winner take all’ proposition: instead, we have a $20 million Grand Prize, a Second Place Prize that will award $5 million to the second team to meet all of the requirements, a series of technical bonus missions that can allow teams to earn as much as an additional $4 million, and a $1 million award that will go to teams that make the greatest contribution to stimulating diversity in space exploration and, more generally, in science, technology, engineering, and mathematics.

The competition operates on a “payment on delivery” model: the prize money is only given to teams after they complete a successful mission, meaning that each team needs to raise all the capital needed to design, develop and conduct their missions on their own. We’re now three years into a fairly long effort: the prize is available until all of the prize purses are claimed or until the end of the year 2015. Last week, we accepted our 24th team into the competition.

The once and future Moon

Paul Spudis provides a very detailed analysis of the recently released LCROSS lunar results. Key quote:

The Near-IR spectrometers on the LCROSS shepherding satellite detected abundant water (H2O) but also hydrogen sulfide (H2S), ammonia (NH3), methanol (CH3OH), methane (CH4), ethylene (C2H4) and sulfur dioxide (SO2). The uv-vis spectrometer found carbon dioxide (CO2), sodium, silver, and cyanide (CN). Aboard the distant LRO spacecraft, the ultraviolet LAMP imager detected hydrogen (H2), nitrogen, carbon monoxide (CO), sodium, mercury, zinc, gold (!), and calcium. But water, present in quantities between 5 and 10 weight percent, is the most abundant volatile substance present.

More caves on the Moon

Check out these newly posted images of lunar cave pits, taken by Lunar Reconnaissance Orbiter. The depth estimates range from 100 to 300 plus feet.

[Ed. I should note that some of these images have already been posted on behindtheblack. For example, the center image found here) was first discovered by reader James Fincannon and posted by me on July 15 and July 26, when I discussed the challenges of accessing the bottom of these pits. I also posted an image of the Mare Ingenii pit on July 13.]

The United States, as seen from the Moon

On August 9, 2010 the camera on Lunar Reconnaissance Orbiter took some routine calibration images and captured the Earth from lunar orbit, showing the western hemisphere with relatively little cloud cover. The picture below is a tiny piece from that global image, cropped to show the United States. The details are pretty remarkable, considering the distance. You can explore the full global image in detail here.

The U.S. from the Moon

Global topography of the Moon

New results from Lunar Reconnaissance Orbiter, including a new global topographic map.

Global topography of the Moon

From the caption: A lunar topographic map showing the Moon from the vantage point of the eastern limb. On the left side of the Moon seen in this view is part of the familiar part of the Moon observed from Earth (the eastern part of the nearside). In the middle left-most part of the globe is Mare Tranquillitatis (light blue) the site of the Apollo 11 landing, and above this an oval-appearing region (Mare Serenitatis; dark blue) the site of the Apollo 17 landing. Most of the dark blue areas are lunar maria, low lying regions composed of volcanic lava flows that formed after the heavily cratered lunar highlands (and are thus much less cratered).

Natural Bridge, on the Moon

The Lunar Reconnaissance Orbiter has released another lunar cave image, this time showing a double pit entrance with a natural bridge between them. [Thanks to reader James Fincannon for the tip.]

Natural bridge

From the caption: “The bridge is approximately 7 meters wide on top and perhaps 9 meters on the bottom side, and is a 20 meter walk for an astronaut to cross from one side to the other.”

Mapping daylight at the Moon’s South Pole

Using data from the Japanese lunar orbiter Kaguya, scientists have identified several locations near the Moon’s south pole that are in daylight from 86 to 94 percent of the time. Key quote from abstract:

The place receiving the most illumination (86% of the year) is located close to the rim of Shackleton crater at 88.74°S 124.5°E. However two other areas, less than 10 km apart from each other, are collectively lit for 94% of the year. We found that sites exist near the south pole that are continuously lit for several months during summer. We were also able to map the locations and durations of eclipse periods for these areas. Finally we analyzed the seasonal variations in lighting conditions, from summer to winter, for key areas near the south pole. We conclude that areas exist near the south pole that have illumination conditions that make them ideal candidates as future outpost sites. [emphasis mine]

Below is a composite close-up image of the rim of Shackleten crator that I assembled using this Lunar Reconnaissance image. The key quote from the full caption :

The full [Narrow Angle Camera] mosaic reveals a shelf on the southeast flank of the crater that is more than two kilometers across and perfectly suitable for a future landing. The extreme Sun angle gives the surface an exaggerated rough appearance, but if you look closely at this scale any area that is between the small craters might make a good landing site.

Rim of Shackleton Crater

1 23 24 25 26