Astronomers discover a well-developed spiral galaxy too soon after the Big Bang

The early spiral galaxy
Click for original image.

Using the Webb Space Telescope, astronomers have discovered the earliest known well-developed spiral galaxy, dubbed Zhúlóng (meaning torch dragon in Chinese), that exists only about one billion years after the Big Bang and much too soon for such a spiral galaxy to have formed.

The false-color infrared Webb image to the right, cropped to post here, shows clearly the galaxy’s spiral structure.

Zhúlóng has a surprisingly mature structure that is unique among distant galaxies, which are typically clumpy and irregular. It resembles galaxies found in the nearby Universe and has a mass and size similar to those of the Milky Way. Its structure shows a compact bulge in the center with old stars, surrounded by a large disk of younger stars that concentrate in spiral arms.

This is a surprising discovery on several fronts. First, it shows that mature galaxies that resemble those in our neighborhood can develop much earlier in the Universe than was previously thought possible. Second, it has long been theorized that spiral arms in galaxies take many billions of years to form, but this galaxy demonstrates that spiral arms can also develop on shorter timescales. There is no other galaxy like Zhúlóng that astronomers know of during this early era of the Universe.

You can read the peer-review research paper here. The scientists posit a number of theories to explain this spiral galaxy, none of which have much merit at this time because so little data exists from that time period. That only one such spiral galaxy is presently known does not mean such galaxies were rare at that time. It merely means our census of galaxy populations in the early universe remains woefully incomplete.

Curiosity marches on

Curiosity looks down hill
Click for original image.

The science team for the Mars rover Curiosity has been moving the rover as fast as it can in order to get to the intriguing boxwork geology about a half mile to the west and slightly higher on Mount Sharp.

The image to the right, cropped, reduced, and sharpened to post here, was taken today by the rover’s left navigation camera, and looks downhill to the north from within the parallel canyon Curiosity entered earlier this week. Because the Martian atmosphere was especially clear at the time, the mountains that form the rim of Gale Crater are quite distinct, 20 to 30 miles away. The view down the canyon also provides a vista of the crater’s floor, more than 3,000 feet below.

In the past two Martian days the science team has had the rover climb uphill a total of 364 feet, a remarkably fast pace considering the rocky nature of the terrain. It appears the engineers have done a spectacular job refining the rover’s software so that it is possible for it to pick its way autonomously through this minefield of rocks, and do so without subjecting its already damaged wheels to more damage.
» Read more

First images ever of a live transparent colossal squid in its natural environment

Baby giant colossal squid
Click for original image.

Using an autonomous submersible, scientists have captured the first pictures and video ever of a live transparent colossal squid in its natural habitat.

This one was captured on film using a remotely operated vehicle at a depth of 1,968 feet (600 m) during the team’s 35-day expedition to uncover new marine life. It’s a juvenile squid, about 0.98 ft (30 cm) long, with a transparent body, iridescent eyes, trademark hooks on the middle of each of its eight arms, and clubs on its two long tentacles.

…If you’re looking at this and wondering why this colossal squid doesn’t resemble the hefty red one you saw being pulled aboard a fishing boat back in 2007, good eye! That’s because this species starts out transparent, and loses its see-through appearance as it ages. Dr Kat Bolstad, associate professor at the Auckland University of Technology Lab, noted that the red coloration seen in the arms suggests this creature could switch between looking transparent to opaque.

I have embedded the video below.
» Read more

China successfully tests a three-satellite constellation in lunar space

China/Russian Lunar base roadmap
The original Chinese-Russian lunar base plan, from June 2021.
Most of the Russian components are not expected to launch.

China’s state-run press today announced that it has successfully completed the first three-satellite communications test of a constellation in a Distant Retrograde Orbit (DRO) in lunar space.

DRO-A and DRO-B, two satellites developed by the Chinese Academy of Sciences (CAS) and deployed in the DRO, have established inter-satellite measurement and communication links with DRO-L, a previously launched near-Earth orbit satellite. The achievement was disclosed at a symposium on Earth-moon space DRO exploration in Beijing on Tuesday.

DRO is a unique type of orbit, and the Earth-moon space refers to the region extending outward from near-Earth and near-lunar orbits, reaching a distance of up to 2 million kilometers from Earth. In the Earth-moon space, DRO is characterized by a prograde motion around Earth and a retrograde motion around the moon, said Wang Wenbin, a researcher at the CAS’ Technology and Engineering Center for Space Utilization (CSU). Since DRO provides a highly stable orbit where spacecraft require little fuel to enter and stay, it serves as natural space hub connecting Earth, the moon and deep space, offering support for space science exploration, the deployment of space infrastructure, and crewed deep-space missions, Wang said.

On Feb. 3, 2024, the experimental DRO-L satellite was sent into a sun-synchronous orbit and began conducting experiments as planned. The DRO-A/B dual-satellite combination was launched from the Xichang Satellite Launch Center in southwest China’s Sichuan Province on March 13, 2024, but failed to enter its intended orbit due to an anomaly in the upper stage of the carrier rocket.

Facing this challenge, the satellite team performed a “life-or-death” rescue operation under extreme conditions, promptly executing multiple emergency orbit maneuvers to correct the trajectory of the two satellites. After a journey of 8.5 million kilometers, the DRO-A/B dual-satellite combination ultimately reached its designated orbit, according to Zhang Hao, a researcher at CSU who participated in the rescue operation.

On Aug. 28, 2024, the two satellites were successfully separated. Later, both DRO-A and DRO-B established K-band microwave inter-satellite measurement and communication links with DRO-L, testing the networking mode of the three-satellite constellation, Zhang said.

China’s government space program continues to follow a very rational and well-thought-out plan for establishing a manned base on the Moon, as shown in the 2021 graph to the right that China appears to be achieving as planned. While it is very likely it will not meet its 2030 goal for landing a human on the Moon, it is clearly establishing the technology for making that landing in a reasonable timeline with a later long-term permanent presence in a lunar base possible.

Myriad flows on mountainous inner crater wall on Mars

Myriad flows in a crater rim
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on February 27, 2025 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

That the science team labels this “Monitoring Slopes for Changes on Eastern Terraces of Mojave Crater” is quite understandable. The number of apparent dentritic channels suggests strongly the possibility of change over time, which is why MRO has been used repeatedly to monitor this location, beginning in 2006, when the science team noted this in a caption:

Aptly-named Mojave Crater in the Xanthe Terra region has alluvial fans that look remarkably similar to landforms in the Mojave Desert of southeastern California and portions of Nevada and Arizona.

Alluvial fans are fan-shaped deposits of water-transported material (alluvium). They typically form at the base of hills or mountains where there is a marked break, or flattening of slope. They typically deposit big rocks near their mouths (close to the mountains) and smaller rocks at greater distances. Alluvial fans form as a result of heavy desert downpours, typically thundershowers. Because deserts are poorly vegetated, heavy and short-lived downpours create a great deal of erosion and nearby deposition.

There are fans inside and around the outsides of Mojave crater on Mars that perfectly match the morphology of alluvial fans on Earth, with the exception of a few small impact craters dotting this Martian landscape.

» Read more

Lucy’s next asteroid fly-by on April 20, 2025

Lucy's future route through the solar system
Lucy’s route to the asteroids, with its first picture
of Donaldjohanson in lower right, taken in February.
Click for original blink animation.

The science team operating the probe Lucy are now preparing for the spacecraft’s second asteroid fly-by, set of April 20, 2025, and passing within 600 miles of the surface of asteroid Donaldjohanson.

Lucy’s closest approach to Donaldjohanson will occur at 1:51pm EDT on April 20, at a distance of 596 miles (960 km). About 30 minutes before closest approach, Lucy will orient itself to track the asteroid, during which its high-gain antenna will turn away from Earth, suspending communication. Guided by its terminal tracking system, Lucy will autonomously rotate to keep Donaldjohanson in view. As it does this, Lucy will carry out a more complicated observing sequence than was used at Dinkinesh [the first asteroid that Lucy saw up close in 2023]. All three science instruments – the high-resolution greyscale imager called L’LORRI, the color imager and infrared spectrometer called L’Ralph, and the far infrared spectrometer called L’TES – will carry out observation sequences very similar to the ones that will occur at the Trojan asteroids.

However, unlike with Dinkinesh, Lucy will stop tracking Donaldjohanson 40 seconds before the closest approach to protect its sensitive instruments from intense sunlight.

“If you were sitting on the asteroid watching the Lucy spacecraft approaching, you would have to shield your eyes staring at the Sun while waiting for Lucy to emerge from the glare. After Lucy passes the asteroid, the positions will be reversed, so we have to shield the instruments in the same way,” said encounter phase lead Michael Vincent of Southwest Research Institute (SwRI) in Boulder, Colorado. “These instruments are designed to photograph objects illuminated by sunlight 25 times dimmer than at Earth, so looking toward the Sun could damage our cameras.”

Unlike most of the Trojan asteroids Lucy will study, Donaldjohanson is a main belt asteroid. It is thought to be only 150 million years old, but its history would be expected to be very different than those Trojan asteroids.

Maybe it finally is time we actually made these major budget cuts at NASA

Chicken Little rules!

This past weekend the pro-government propaganda press has been in an outraged uproar concerning unconfirmed rumors and anonymous reports that the Trump administration is considering major cuts to NASA’s many science divisions and projects, cuts so large that several space missions, such as Mars Sample Return and the Roman Space Telescope, would have to be canceled. Here are just a few examples, with the first few the ones that broke the story:

Of this list, the Politico story is the most amusing. Suddenly this leftwing news outlet loves Musk again, since he is expressing opposition to these cuts. Just days before he was the devil incarnate because of his partnership with Trump in cutting government waste. Now that he might oppose these NASA budget cuts will lefties start buying Teslas again? Who knows? The depth of their thinking is often quite shallow and divorced from rationality.

As is typical of the propaganda press, all these stories focused on quoting only those opposed to the cuts, from Democrats in Congress to leftist activist organizations. Very few offered any alternative points of view. These reports were thus typical of the propaganda press and the Washington swamp whenever anyone proposes any cuts to any government program: We are all gonna die! Civilization is going to end! Only evil people would dare propose such ideas!

The truth is that there are many ample and rational reasons to consider major budget cuts to most of NASA programs. Like the rest of our bloated federal government, NASA is no longer the trim efficient government agency it was in the 1960s.
» Read more

The structure of a ringed planetary nebula revealed in the infrared

A planetary nebula as seen by Webb
Click for original image.

Cool image time! Using the mid-infrared camera on the Webb Space Telescope, astronomers have been able to image in false colors the ringed structure surrounding a dying star about 1,500 light years away.

The nebula’s two rings are unevenly illuminated in Webb’s observations, appearing more diffuse at bottom left and top right. They also look fuzzy, or textured. “We think the rings are primarily made up of very small dust grains,” Ressler said. “When those grains are hit by ultraviolet light from the white dwarf star, they heat up ever so slightly, which we think makes them just warm enough to be detected by Webb in mid-infrared light.”

In addition to dust, the telescope also revealed oxygen in its clumpy pink center, particularly at the edges of the bubbles or holes.

NGC 1514 is also notable for what is absent. Carbon and more complex versions of it, smoke-like material known as polycyclic aromatic hydrocarbons, are common in planetary nebulae (expanding shells of glowing gas expelled by stars late in their lives). Neither were detected in NGC 1514. More complex molecules might not have had time to form due to the orbit of the two central stars, which mixed up the ejected material.

Though this false-color image of a planetary nebular is hardly ground-breaking (Hubble has been producing such pictures for decades), Webb’s better infrared data, in higher resolution, will help astronomers untangle the nebula’s complex geography. It remains however a question whether the improved capabilities of Webb were worth its $10 billion-plus cost. For that money NASA could have built and launched many different astronomical missions in the past two decades, many of which would have been able to match this data for far less.

Italy awards Italian company contract to design constellation of radio telescopes orbiting the Moon

Capitalism in space: The Italian Space Agency has awarded the Italian company Blue Skies Space a contract to design a constellation of radio telescopes orbiting the Moon and designed to map the universe’s earliest radio emissions.

The project, named RadioLuna, aims to uncover whether a fleet of small satellites in a lunar orbit could detect faint radio signals from the universe’s earliest days—signals that are nearly impossible to pick up on Earth due to man-made radio interference. These signals, in the FM radio range, come from a time before the first stars formed, when the universe was mostly hydrogen gas. By listening from the far side of the Moon, free from Earth’s radio noise, scientists could use the satellites to uncover a missing piece of the puzzle in our understanding of the cosmic “dark ages.”

The study will establish the viability of operating simple and cost-effective CubeSats equipped with commercial off-the-shelf (COTS) components orbiting the Moon and will be led by Blue Skies Space Italia S.r.l., a subsidiary of UK-based Blue Skies Space Ltd. Project partner OHB Italia will be responsible for the definition of a viable platform in a Moon orbit.

The contract is another example of Italy (and Europe) shifting to private enterprise in space. Rather than design this project in-house, its space agency is contracting it out to private companies.

Curiosity climbs into a new Martian canyon

Curiosity looking south
Click image for full resolution panorama. Click here, here, and here for original images.

Overview map
Click for interactive map.

Cool image time! The Curiosity science team has finally completed the rover’s climb up one canyon on the flanks of Mount Sharp and crossed over into a second, switch-backing up through a gap they have dubbed Devil’s Gate.

The panorama above, created from three pictures taken by Curiosity’s left navigation camera on April 9, 2025 (here, here, and here) looks south from that gap. On the horizon about 20-30 miles away can be seen the rim of Gale Crater. From this position the floor of the crater is almost out of side, blocked by the foothills on the lower flanks of Mount Sharp.

Though the ground in this new canyon (on the left of the panorama) continues to be amazingly rocky and boulder strewn, it is actually more benign that the canyon Curiosity has been climbing for the past six weeks.

The blue dot on the overview map to the right marks Curiosity’s present position, with the yellow lines indicating the approximate direction of the panorama. The rover’s next major geological goal is the boxwork to the southwest. In order to get to it quickly the science team decided to abandon its original planned route, indicated by the dotted red line, and climb upward through these canyons.

Chinese scientists say the lunar far side appears drier than the near side

Map of water measurements of lunar samples
Click for original image.

Based on a comparison of samples brought back by two Chinese unmanned lunar landers, Chinese scientists believe the lunar far side contains far less water in its mantle than the near side.

…the research team focused on analyzing water content and hydrogen isotopes in melt inclusions and apatite within [Chang’e-6] mare basalts—the first samples returned from the farside SPA Basin.

The team’s results indicate that the parent magma of these basalts contain 15–168 μg.g⁻¹ of water. Additionally, the team estimated that the mantle source of the CE6 basalts has a water content of 1–1.5 μg.g⁻¹, significantly lower than that of the nearside mantle. This disparity points to a potential hemispheric dichotomy in the Moon’s internal water distribution, mirroring many of the asymmetrical features observed on the lunar surface.

The map to the right, figure 1 in the scientists’ paper, shows the water content from the samples that have so far been brought back from the Moon. Note how the Chang’e-6 sample shows far less water content than all the near side samples.

Note however also that this is just one data point from the far side. To confirm these conclusions will require many more samples.

Juno enters and then recovers from safe mode

During its most recent close fly-by of Jupiter on April 4, 2025 — its 71st — the orbiter Juno went into safe mode two different times, causing its science instruments to shut down.

The mission operations team has reestablished high-rate data transmission with Juno, and the spacecraft is currently conducting flight software diagnostics.The team will work in the ensuing days to transmit the engineering and science data collected before and after the safe-mode events to Earth.

Juno first entered safe mode at 5:17 a.m. EDT, about an hour before its 71st close passage of Jupiter — called perijove. It went into safe mode again 45 minutes after perijove. During both safe-mode events, the spacecraft performed exactly as designed, rebooting its computer, turning off nonessential functions, and pointing its antenna toward Earth for communication.

Since arrival in its present Jupiter orbit in 2016 Juno has operated almost perfectly, having experienced only two other safe mode events, once in 2016 and a second in 2022. The two recent events on this most recent fly-by suggest however that the harsh environment surrounding Jupiter might be beginning to impact the spacecraft.

Astronomers: Potentially dangerous asteroid 2024 YR4 originally came from main asteroid belt

Using new data from ground-based telescopes, astronomers now believe that the potentially dangerous asteroid 2024 YR4 originally came from main asteroid belt and is a stony solid body, not a rubble pile.

The study reveals YR4 is a solid, stony type that likely originated from an asteroid family in the central Main Belt between Mars and Jupiter, a region not previously known to produce Earth-crossing asteroids. “YR4 spins once every 20 minutes, rotates in a retrograde direction, has a flattened, irregular shape, and is the density of solid rock,” said Bryce Bolin, research scientist with Eureka Scientific and lead author of the study.

You can read the paper here [pdf].

At present calculations suggest it has an almost zero chance of hitting the Earth in 2032, though during that close approach the chances of it hitting the Moon range from 2% to 4%, depending on which scientist you ask.

The mighty scale of Mars’ geology

The mighty scale of Mars
Click for original image.

Today’s cool image is just one more example out of hundreds I have posted in the past decade of the difficult-to-imagine gigantic scale of the Martian landscape.

The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on March 1, 2025 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The image title is simple, “Steep Slopes of Olympus Mons Caldera,” and tells us that this cliff face, about 1,300 feet high, is part of the caldera that resides on top of Mars’ largest volcano, Olympus Mons.

The parallel cracks on the plateau above the cliff tell us that the cliff face is slowly separating outward from that plateau, and that at some point in the future the entire wall will collapse downward.

Sounds impressive and big, eh? What the picture doesn’t make clear however is how truly tiny this cliff is in the context of the entire mountain.
» Read more

Soil bacterium from Earth can both make and repair bricks made from Moon-materials

Researchers in India have now discovered that the same soil bacterium from Earth they used to manufacture bricks made from Moon-materials can also act to repair cracks in those bricks.

A few years ago, researchers at the Department of Mechanical Engineering (ME), IISc developed a technique that uses a soil bacterium called Sporosarcina pasteurii to build bricks out of lunar and Martian soil simulants. The bacterium converts urea and calcium into calcium carbonate crystals that, along with guar gum, glue the soil particles together to create brick-like materials. This process is an eco-friendly and low-cost alternative to using cement.

… In a new study, they created different types of artificial defects in sintered bricks and poured a slurry made from S. pasteurii, guar gum, and lunar soil simulant into them. Over a few days, the slurry penetrated into the defects and the bacterium produced calcium carbonate, which filled them up. The bacterium also produced biopolymers which acted as adhesives that strongly bound the soil particles together with the residual brick structure, thereby recovering much of the brick’s lost strength. This process can stave off the need to replace damaged bricks with new ones, extending the lifespan of built structures.

These results are encouraging but not necessarily for space exploration. This research can likely be applied with great profit here on Earth to repair damaged materials already in place.

As for using it in space or on the Moon, great uncertainties remain, such is whether the bacteria could even survive or function in a different gravity environment. The team hopes to test this on one of India’s planned Gangayaan manned missions.

Another “What the heck?!” image on Mars

Another
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on March 2, 2025 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The scientists label this “Monitoring Irregular Terrains in Western Arabia Terra.” I label it more bluntly as another one of MRO’s “What the heck?!” images. For all I know, this is nothing more than a discarded Vincent Van Gogh painting, thrown out because even he couldn’t figure out what he was painting.

The best guess I can make, just from the picture alone, is that some of the dark spots are vents from which the white stuff vented at some point, either as small lava or mud volcanoes. As the location is close to the equator, near surface ice is almost certainly not a factor in what we see.

In any case there is no way to reasonably decipher this picture, just by looking at the picture. It is necessary to take a wider view.
» Read more

White dwarf binary discovered only 150 light years away is a major supernova candidate in about 23 billion years

Astronomers have discovered only 150 light years away the most massive white dwarf binary system yet detected, that they believe is a major candidate for producing one type of supernova many billions of years in the future.

White dwarf stars in binary systems are thought to produce Type 1a supernova. The dwarf sucks material from the companion star, which eventually piles up on the surface of the dwarf until the extra mass, more than 1.4 times the mass of the Sun (dubbed the Chandrasekhar mass limit), causes the supernova explosion.

That’s the theory at least. Up to now astronomers have not yet observed this process, prior to the supernova. This newly discovered binary system however is a prime candidate, because its combined mass is already 1.55 the mass of the Sun. According to the researchers’ computer models, when these stars come close to merging the result will be a Type 1a supernova. From the peer reviewed paper:

The interaction of the accretion stream with the surface of the primary white dwarf ignites a helium detonation close to the point of interaction. The helium detonation then wraps around the primary white dwarf and sends a shock wave into its core that converges at a single point. This ignites a second detonation that completely destroys the primary white dwarf. When the shock wave of its explosion hits the secondary white dwarf, the double detonation mechanism repeats itself. The shock wave from the detonation of the primary ignites a helium detonation near the surface of the secondary which drives a shock wave into its core. It is sufficient to ignite the core detonation, destroying the secondary white dwarf as well.

These events won’t occur tomorrow however. The two stars orbit each other every 14 hours, but their high mass is causing gravitational waves to ripple outward from the system, robbing it of energy. The orbits of the stars are thus spiraling inward. In about 23 billion years they will be about to merge, which will be the moment when the above explosive events are predicted to occur.

If at that moment the binary system was still only 150 light years away, the explosion would do great harm to the Earth and likely cause a major extinction. In 23 billion years however the binary will no longer be so close, and could in fact be on the other side of the Milky Way.

Engineers use simulated moon dust to make glass

Engineers have successfully manufactured glass using simulated moon dust, and found this “moonglass” works better than Earth glass in solar panels.

To test the idea, the researchers melted a substance designed to simulate Moon dust into moonglass and used it to build a new kind of solar cell. They crafted the cells by pairing moonglass with perovskite—a class of crystals that are cheaper, easier to make, and very efficient in turning sunlight into electricity. For every gram of material sent to space, the new panels produced up to 100 times more energy than traditional solar panels.

…When the team zapped the solar cells with space-grade radiation, the moonglass versions outperformed the Earth-made ones. Standard glass slowly browns in space, blocking sunlight and reducing efficiency. But moonglass has a natural brown tint from impurities in the Moon dust, which stabilizes the glass, prevents it from further darkening, and makes the cells more resistant to radiation.

Though encouraging, they are many unknowns that could become show stoppers. For one, this research was all done in Earth gravity. In the Moon’s 1/6th gravity the results might be very different. For another, all they have done is demonstrate a way to make glass using Moon dust. That is a far cry from building solar panels, as implied by the press release.

Nonetheless, the results demonstrate one more way in which a lunar base can eventually become self-sufficient, the inevitable goal.

China: samples from the near and far sides of the Moon are different

Scientists studying the lunar samples brought back from China’s Chang’e-6 mission to the far side of the Moon have determined that the different environments create differences in the surface material.

The study found that the solar wind exposure time of the Chang’e-6 samples was close to the minimum observed in the Apollo 11 samples, lower than that of the other Apollo samples, and slightly shorter than that of the Chang’e-5 samples. However, surprisingly, the npFe⁰ grain sizes in the Chang’e-6 samples were larger. “This might suggest that solar wind radiation in this region leads to more pronounced segregation and aggregation of iron,” she noted. These exciting new results add to the growing evidence that space weathering on the lunar farside may differ from that on the nearside, and, contrary to previous findings from Apollo and Chang’e-5 samples, solar wind radiation plays a more dominant role in the space weathering process on the lunar farside.

There are differences in the solar wind’s influence on different regions of the Moon. During each synodic month, the near side of the Moon enters Earth’s magnetotail, where the protection afforded by Earth’s magnetic field reduces its exposure to the solar wind; in contrast, the farside is continuously exposed to direct solar wind radiation. Moreover, due to orbital dynamics, different locations on the Moon experience varying impact velocities from cometary and asteroidal meteoroids. The relative velocity between the Moon’s surface and impacting meteoroids changes with the lunar phase: during a full moon, when the Moon and meteoroids move in the same orbital direction, the relative velocity increases; the opposite occurs during a new moon.

That there are differences between samples from the Moon’s two hemisphere should not a surprise. Confirming and characterizing those differences however is good.

Terraces within one of Mars’ giant enclosed chasms

Overview map

Terraces within Hebes Chasma

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on January 27, 2025 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the terraced layers descending down a 7,000-foot-high ridgeline within Hebes Chasma, one of several enclosed chasms that are found to the north of Mars’s largest canyon system, Valles Marineris.

The white dot on the overview map above marks this location, inside Hebes. The rectangle in the inset indicates the area covered by the picture, which only covers the lower 5,000 feet of this ridge’s southern flank.

The ridgeline might be 7,000 feet high and sixteen miles long, but it is dwarfed by the scale of the chasm within which it sits. From the rim to the floor of Hebes is a 23,000 foot drop, comparable to the general heights of the Himalaya Mountains. Furthermore, this ridge is not the highest peak within Hebes. To the west is the much larger mesa dubbed Hebes Mensa, 11,000 feet high and 55 miles long.

The terraces indicate the cyclical and complex geological history of Mars. Each probably represents a major volcanic eruption, laying down a new bed of flood lava. With time, something caused Hebes Chasm to get excavated, exposing this ridge and these layers.

The excavation process itself remains unclear. Some scientists think the entire Valles Marineris canyon was created by catastrophic floods of liquid water. Others posit the possibility of underground ice aquifers that sublimated away, causing the surface to sink, eroded further by wind. Neither theory is proven, though the former is generally favored by scientists.

Webb infrared data increases odds asteroid 2024 YR4 will impact Moon in 2032

Asteroid 2024 YR4 as seen by Webb in the mid-infrared
Asteroid 2024 YR4 as seen by Webb in the
mid-infrared. Click for original image.

Using new infrared images and data from the Webb Space Telescope, astronomers have further refined the orbit and size of the potentially dangerous asteroid 2024 YR4.

The image of 2024 YR4 to the right was taken by Webb’s mid-infrared camera, and provides information on its thermal surface characteristics.

First, the Webb data narrowed the uncertainty about the asteroid’s size, suggesting it is about 200 feet in diameter. You can read the paper outlining this result here. The data also suggested nature of the asteroid’s surface, which is important in determining its future path. The pressure from sunlight can change the orbits of small asteroids, but figuring out how much is extremely difficult without knowing the rotation of the asteroid and the reflective qualities of its entire surface.

Second, based on this new data, other astronomers are increasingly certain 2024 YR4 will not hit the Earth in 2032, but the odds of it impacting the Moon have now increased to 4%.

Another example of the weird taffy terrain in Mars’ death valley

More taffy terrain

Cool image time! The picture to the right, rotated, cropped, reduced, and enhanced to post here, was taken on January 30, 2025 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The scientists label it dimply as “layers in Helles Planitia.” Other scientists have given this strange landscape a much more interesting label, “taffy terrain.” It is found only in the Hellas Basin, the basement of Mars, having the lowest elevation found anywhere on the red planet. According to a 2014 paper, the scientists posit that this material must be some sort of “a viscous fluid,” naturally flowing downward into “localized depressions.” Because of its weird nature I have posted many cool images of it in the past (see here, here, here, here, and here).

Is taffy terrain still viscous, or has it become solidified? That question I think remains unanswered, though pictures taken of the same spot over time do not yet appear to show changes.
» Read more

Sunspot update: NOAA scientists try to hide how wrong they have gotten things

My monthly sunspot update today will have less to do with the Sun’s sunspot activity itself — which continues to show a very very slow decline from a peak in August 2024 — and more to do with more games-playing by NOAA solar scientists to fool the public into believing they know more than they do.

Below is my annotated version of NOAA’s monthly graph showing the amount of sunspot activity on the Earth-facing hemisphere of the Sun. This graph is significantly different from the graph that NOAA’s scientists have issued for the past few years, with all the changes designed to make it seem as if these scientists’ predictions are on the money, when they have been entirely wrong now for two solar cycles in a row.
» Read more

Twenty years of Hubble data map one long season on Uranus

Uranus over twenty years
Click for original image.

Astronomers using the Hubble Space Telescope multiple times since 2002 have now tracked the changes in its atmosphere during one quarter of its 84 year orbit around the Sun.

The image to the right, reduced and sharpened to post here, shows Hubble’s views across several electromagnetic wavelengths. Uranus’s rotational tilt or inclination is almost 90 degrees, so that it literally rolls on its side as it orbits the Sun. You can see this especially in the bottom two rows. From 2012 to 2022 one pole slowly shifted westward. From the press release:

The Hubble team observed Uranus four times in the 20-year period: in 2002, 2012, 2015, and 2022. They found that, unlike conditions on the gas giants Saturn and Jupiter, methane is not uniformly distributed across Uranus. Instead, it is strongly depleted near the poles. This depletion remained relatively constant over the two decades. However, the aerosol and haze structure changed dramatically, brightening significantly in the northern polar region as the planet approaches its northern summer solstice in 2030.

Since we have not yet observed Uranus over one full year, there are a lot of uncertainties in any conclusions the scientists propose. For one, we don’t know the general atmospheric patterns across all four seasons. For another, any changes seen now might simply be the planet’s weather, random events not directly related to long term climate patterns.

Airbus wins contract to build lander for Europe’s long delayed ExoMars Franklin rover

Low resolution cropped section of map
Geology map for Franklin landing site. Click for
original image. Click here for original article.

The European Space Agency (ESA) late yesterday announced that it has awarded Airbus a $194 million contract to build the lander that will place Europe’s long delayed ExoMars Franklin rover on the Martian surface, replacing the Russian lander that became unavailable when the ESA/Russian partnership ended after Russia invaded the Ukraine in 2022.

Airbus announced late March 28 (Eastern time) that it was selected by ESA and Thales Alenia Space, the prime contractor for the mission, to build the landing platform for that rover mission, scheduled to launch in 2028.

The landing platform is the part of the ExoMars spacecraft that handles the final phases of its descent to the Martian surface in 2030, including performing the final landing burn. After landing, the platform will deploy ramps to allow the ExoMars rover, named Rosalind Franklin, to roll onto the Martian surface.

This project was first begun in the early 2010s, with a launch date targeting 2018. Initially a partnership between ESA and NASA, Obama canceled all American participation in 2012. Russia picked up the slack, but then the mission had numerous technical problems that caused it to miss first that 2018 launch window, and then 2020 window as well. Then, just months before launch in 2022, Russia invaded the Ukraine, resulting in Europe ending all its partnership deals with Russia.

The mission is now working to launch in the 2028 window. We shall see if it can meet that date.

NASA experiment on Blue Ghost demonstrates the ability to repel the Moon’s abrasive dust

Before and after
Click for original blink movie.

In a press release yesterday, NASA revealed that one of its technology experiments on Firefly’s Blue Ghost lunar lander successfully demonstrated the ability to repel the Moon’s abrasive dust from the surfaces of various materials.

Lunar dust is extremely abrasive and electrostatic, which means it clings to anything that carries a charge. It can damage everything from spacesuits and hardware to human lungs, making lunar dust one of the most challenging features of living and working on the lunar surface. The EDS technology uses electrodynamic forces to lift and remove the lunar dust from its surfaces. The “before” image highlights the glass and thermal radiator surfaces covered in a layer of regolith, while the “after” image reveals the results following EDS activation. Dust was removed from both surfaces, proving the technology’s effectiveness in mitigating dust accumulation.

The images to the right, taken from a blink movie showing the change after the EDS technology was used, suggest that though this technology does work, it is not yet wholly successful in some cases. The thermal radiator was not cleared entirely of dust. More engineering research will be necessary, both on the Moon and here on Earth.

Nonetheless, this success is important and a major step forward for future exploration of the Moon, Mars, and the asteroids. In all these places dust is going to pose a major problem for equipment and spacesuits. New techniques must be developed to clean the dust away, since traditional Earth-based cleaning methods using water will not be available.

Webb finds more elements not possible so soon after the Big Bang

A galaxy that shouldn't be there
Click for original image.

The uncertainty of science: Using the Webb Space Telescope, astronomers have now detected emissions of hydrogen from a galaxy that exists only 330 million years after the Big Bang that simply shouldn’t be possible, based on present cosmological theory.

The false-color infrared image of that galaxy is to the right, cropped to post here. At that distance, 13.5 billion light years away, all Webb can really see is this blurry spot. From the press release:

In the resulting spectrum, the redshift was confirmed to be 13.0. This equates to a galaxy seen just 330 million years after the big bang, a small fraction of the universe’s present age of 13.8 billion years old. But an unexpected feature stood out as well: one specific, distinctly bright wavelength of light, known as Lyman-alpha emission, radiated by hydrogen atoms. This emission was far stronger than astronomers thought possible at this early stage in the universe’s development.

“The early universe was bathed in a thick fog of neutral hydrogen,” explained Roberto Maiolino, a team member from the University of Cambridge and University College London. “Most of this haze was lifted in a process called reionization, which was completed about one billion years after the big bang. GS-z13-1 is seen when the universe was only 330 million years old, yet it shows a surprisingly clear, telltale signature of Lyman-alpha emission that can only be seen once the surrounding fog has fully lifted. This result was totally unexpected by theories of early galaxy formation and has caught astronomers by surprise.”

In more blunt terms, the theory that the haze would clear only one billion years after the Big Bang appears very wrong. This result is also similar to the story earlier this week about the detection of oxygen in a similarly early galaxy, oxygen that could not possibly be there only a few hundred million years after the Big Bang. Not enough time had passed for the number of star generations needed to produce it.

You can read the peer-reviewed paper here. While the Big Bang theory is hardly dead, the data from Webb continues to suggest it either needs a major rethinking, or there is something fundamentally wrong with it.

Parker completes 23rd close fly-by of Sun, matching record set by its previous fly-by

The Parker Solar Probe on March 22, 2025 successfully completed its 23rd close fly-by of Sun, matching the distant and speed records set by its previous fly-by in December 2024.

NASA’s Parker Solar Probe completed its 23rd close approach to the Sun on March 22, equaling its own distance record by coming within about 3.8 million miles (6.1 million kilometers) of the solar surface. The close approach (known as perihelion) occurred at 22:42 UTC — or 6:42 p.m. EDT — with Parker Solar Probe moving 430,000 miles per hour (692,000 kilometers per hour) around the Sun, again matching its own record.

Actual science data won’t be downloaded from the spacecraft for several weeks, but it has sent back a signal that it is in good shape and operating as expected.

Webb images in the infrared the aurora of Neptune

The aurora of Neptune
Click for original image.

Astronomers using the Webb Space Telescope have captured the first infrared images of the aurora of Neptune, confirming that the gas giant produces this phenomenon.

The picture to the right combines infrared data from Webb and optical imagery from the Hubble Space Telescope. The white splotches near the bottom of the globe are clouds seen by Hubble. The additional white areas in the center and near the top are clouds detected by Webb, while the greenish regions to the right are aurora activity detected by Webb.

The auroral activity seen on Neptune is also noticeably different from what we are accustomed to seeing here on Earth, or even Jupiter or Saturn. Instead of being confined to the planet’s northern and southern poles, Neptune’s auroras are located at the planet’s geographic mid-latitudes — think where South America is located on Earth.

This is due to the strange nature of Neptune’s magnetic field, originally discovered by Voyager 2 in 1989, which is tilted by 47 degrees from the planet’s rotation axis. Since auroral activity is based where the magnetic fields converge into the planet’s atmosphere, Neptune’s auroras are far from its rotational poles.

The data also found that the temperature of Neptune’s upper atmosphere has cooled significantly since it was first measured by Voyager 2 in 1989, dropping by several hundred degrees.

Survey of protoplanetary disks finds their size varies significantly

Proto-planetary disks of all sizes
Click for original image.

A survey of the protoplanetary disks in a star-forming region about 400 light years from Earth has found that the size of the disks can vary considerably, with many much smaller than our own solar system.

Using ALMA [Atacama Large Millimeter/submillimeter Array in Chile], the researchers imaged all known protoplanetary discs around young stars in Lupus, a star forming region located about 400 light years from Earth in the southern constellation Lupus. The survey reveals that two-thirds of the 73 discs are small, with an average radius of six astronomical units, this is about the orbit of Jupiter. The smallest disc found was only 0.6 astronomical units in radius, smaller than the orbit of Earth.

…The small discs were primarily found around low-mass stars, with a mass between 10 and 50 percent of the mass of our Sun. This is the most common type of star found in the universe.

You can read the research paper here [pdf]. The image to the right, figure 1 from the paper, shows 71 of those disks, with two-thirds clearly much smaller than our solar system.

Because exoplanet surveys have found many small exoplanets around low-mass stars, this new data suggests that planets can also form from these small accretion disks, and that planet formation is also ubiquitous throughout the universe.

1 2 3 276