China launches science satellite to study Earth’s electromagnetic fields

China today successfully launched a science satellite built in partnership with Italy and designed to study the interaction of the Earth’s atmosphere with its electromagnetic fields, its Long March 2D rocket lifting off from its Jiuquan spaceport in northwest China.

No word on where the rocket’s lower stages crashed inside China. As for the satellite:

With a designed lifespan of six years, the satellite is equipped with nine payloads, including an electric field detector co-developed by China and Italy, as well as a high-energy particle detector developed by Italy. It will carry out quasi-real-time monitoring of global electromagnetic fields, electromagnetic waves, the ionosphere and the neutral atmosphere, detecting electromagnetic anomalies caused by geological and human activities, as well as monitoring thunderstorm and lightning activity, according to CNSA.

The leaders in the 2025 launch race:

74 SpaceX
34 China
8 Rocket Lab
6 Russia

SpaceX still leads the rest of the world in successful launches, 74 to 55.

The mad mountains of Mars

The mad mountains of Mars
Click for original image.

Overview map
Click for interactive map

Cool image time! The picture above, cropped to post here, was taken on June 10, 2025 by the high resolution camera on the Mars rover Curiosity, and shows some of the stranger terrain found higher up the flanks of Mount Sharp in Gale Crater.

The blue dot on the overview map to the right marks Curiosity’s present position, where it is doing another drilling campaign into the first boxwork geology it has encountered. The white line marks its past travels, while the green dotted line its planned route.

The yellow lines indicate the area seen in the picture above. The wild mountain peaks on the horizon are part of the sulfate-bearing unit that appears very bright in the overview map. The material that makes up this terrain appears to be very easily eroded, based on its features as seen from orbit, as well as Curiosity’s distant view. Whether that erosion was wind, water, or ice, remains undetermined, and is the main question Curiosity will attempt to answer once it gets there, likely in a year or so.

Regardless, the landscape appears almost like it soft sand being washed away.

Where the rover will go next the science team has not yet decided. It will definitely continue uphill, but they do not yet know the route they will take through that sulfate-bearing unit.

Europe’s Solar Orbiter takes first images of the Sun’s south pole

The south pole of the Sun
Click for original image.

Because its orbit has now dropped 17 degrees below the ecliptic plane of the solar system, the European Space Agency’s (ESA) Solar Orbiter probe has been able to snap the first images of the Sun’s south pole, as shown by the two pictures to the right.

The [two images show] the Sun’s south pole as recorded on 16–17 March 2025, when Solar Orbiter was viewing the Sun from an angle of 15° below the solar equator. This was the mission’s first high-angle observation campaign, a few days before reaching its current maximum viewing angle of 17°.

The instruments each observe the Sun in a different way. PHI images the Sun in visible light (left) and maps the Sun’s surface magnetic field (right).

The magnetic field data on the right has revealed that at present the field at the pole is “a mess,” because the Sun is presently at solar maximum.

While a normal magnet has a clear north and south pole, the PHI instrument’s magnetic field measurements show that both north and south polarity magnetic fields are present at the Sun’s south pole. This happens only for a short time during each solar cycle, at solar maximum, when the Sun’s magnetic field flips and is at its most active. After the field flip, a single polarity should slowly build up and take over at the Sun’s poles. In 5–6 years from now, the Sun will reach its next solar minimum, during which its magnetic field is at its most orderly and the Sun displays its lowest levels of activity.

Solar Orbiter is now well positioned to observe the expected changes in the Sun’s magnetic field as sunspot activity ramps down to solar minimum.

The dusky mountains of Mars

The dusky mountains of Mars
Click for high resolution. For the original images, go here, here, and here.

Overview map
Click for interactive map.

Cool image time! The panorama above, created from three images taken on June 7, 2025 (here, here, and here) by the high resolution camera on top of the Mars rover Curiosity, looks south and uphill into the Gediz Vallis canyon that the rover had been traveling previously.

The overview map to the right provides context. The blue dot Curiosity’s present position, where it is about to begin a drilling campaign into the first boxwork structures the rover has reached. The white dotted line marks its past travels, while the green dotted line its planned future route. The red dotted line marks a planned route that has been abandoned.

The yellow lines indicate approximately the area covered by the panorama. Because this used the rover’s high resolution camera, the view gives us a detailed look at the mountains on the distant horizon. Though we are looking uphill, the peaks in the distance are merely higher ridges and hills on the flanks of Mount Sharp. The mountain’s peak is out of view, about 25 miles away and about 15,000 feet higher up.

Note the dusty and what appears to be a softened nature of the terrain on these higher peaks. Since entering the foothills of Mount Sharp several years ago, the surface has been extremely rocky and rough, every inch covered in boulders of all sizes. This distant view suggests the ground might become easier to traverse at those higher altitudes. It also appears there will be a lot more dust, coating everything.

The lighting I think is close to natural. Because Mars is farther from the Sun, it doesn’t get as much light. Even during mid-day the light to our Earth-borne eyes would more resemble dusk on Earth.

Ispace confirms that its Resilience lunar lander has failed, apparently crashing on the Moon

According to an update issued several hours after the planned landing, the Japanese lunar lander startup confirmed that its Resilience lunar lander apparently crashed in its attempt to soft land on the Moon.

Ispace engineers at the HAKUTO-R Mission Control Center in Nihonbashi, Tokyo, transmitted commands to execute the landing sequence at 3:13 a.m. on June 6, 2025. The RESILIENCE lander then began the descent phase. The lander descended from an altitude of approximately 100 km to approximately 20 km, and then successfully fired its main engine as planned to begin deceleration. While the lander’s attitude was confirmed to be nearly vertical, telemetry was lost thereafter, and no data indicating a successful landing was received, even after the scheduled landing time had passed.

Based on the currently available data, the Mission Control Center has been able to confirm the following: The laser rangefinder used to measure the distance to the lunar surface experienced delays in obtaining valid measurement values. As a result, the lander was unable to decelerate sufficiently to reach the required speed for the planned lunar landing. Based on these circumstances, it is currently assumed that the lander likely performed a hard landing on the lunar surface.

After communication with the lander was lost, a command was sent to reboot the lander, but communication was unable to be re-established.

This explanation fits with the very high velocity numbers seen as the spacecraft approached the surface, much higher than intended.

Ispace has now attempted to land on the Moon twice, with both landers crashing upon approach. In this sense its record is not quite as good as the American startup Intuitive Machines, which had two landers touch down but immediately tip over, causing both to fail.

Ispace presently has three contracts to build landers with NASA, JAXA (Japan’s space agency), and the European Space Agency. The American lander is being built in partnership with the company Draper. Whether this second failure today will impact any of those contracts is uncertain at this time.

Landing of Ispace’s Resilience lander uncertain

Resilence landing

The landing of Ispace’s Resilience lander on the Moon at present appears uncertain, and could be a failure. Though the announcers of the live stream had warned beforehand that it might take awhile after the planned touchdown time to confirm a successful landing, the circumstances just before landing did not appear to go as expected.

At T-1:45 minutes, with the spacecraft at an altitude of 32 feet and still moving at a speed of 116 miles per minute, all telemetry disappeared from the broadcast. Mission controllers did then indicate the spacecraft was “pitching up”, which means it was re-orienting itself for landing. At that point however no further updates were provided. Moments later we could see the engineer in mission control in the lower left of the screen capture to the right, obviously disturbed by something.

In ending the live stream a few minutes later, with no further information, the announcers added that a full report will be made during a press conference later today.

Scientists discover another exoplanet that theories say should not exist

The uncertainty of science: Scientists using telescopes both in orbit and on the ground have discovered a small red dwarf star with only 20% the mass of our Sun with a gas giant exoplanet with about half the mass of Saturn but a bit larger in size.

The problem is that the theory for the formation of such gas giants predicts that they should not form around small red dwarfs such as this star.

The most widely held theory of planet formation is called the core accretion theory. A planetary core forms first through accretion (gradual accumulation of material) and as the core becomes more massive, it eventually attracts gases that form an atmosphere. It then gets massive enough to enter a runaway gas accretion process to become a gas giant.

In this theory, the formation of gas giants is harder around low-mass stars because the amount of gas and dust in a protoplanetary disc around the star (the raw material of planet formation) is too limited to allow a massive enough core to form, and the runaway process to occur.

Yet the existence of TOI-6894b (a giant planet orbiting an extremely low-mass star) suggests this model cannot be completely accurate and alternative theories are needed.

You can read the paper here. The exoplanet orbits the star every 3.37 days, and each transit across the face of the star has been easily detected by numerous telescopes. Further spectroscopic observations using the Webb Space Telescope will be able to characterize the exoplanet’s atmosphere more fully.

Scientists release the first year’s data from the Pace orbiter

Pace global data, August 2024
Click for original movie.

Launched in early 2024, the Pace orbiter was designed to track the evolution of the leaves of trees globally throughout the entire year. NASA has now released the data from the first twelve months, showing the seasonal changes of trees as the Earth rotates the Sun and the seasons change globally.

The map to the right is a screen capture from one of many videos showing these changes. The green indicates the global spread of tree cover in the middle of August in the northern hemisphere as well as in the equatorial regions of South America and Africa. Other movies focusing on North America, South America, Europe, India, etc, can be viewed here.

PACE measurements have allowed NASA scientists and visualizers to show a complete year of global vegetation data using three pigments: chlorophyll, anthocyanins, and carotenoids. That multicolor imagery tells a clearer story about the health of land vegetation by detecting the smallest of variations in leaf colors.

…Anthocyanins are the red pigments in leaves, while carotenoids are the yellow pigments – both of which we see when autumn changes the colors of trees. Plants use these pigments to protect themselves from fluctuations in the weather, adapting to the environment through chemical changes in their leaves. For example, leaves can turn more yellow when they have too much sunlight but not enough of the other necessities, like water and nutrients. If they didn’t adjust their color, it would damage the mechanisms they have to perform photosynthesis.

In the visualization, the data is highlighted in bright colors: magenta represents anthocyanins, green represents chlorophyll, and cyan represents carotenoids. The brighter the colors are, the more leaves there are in that area. The movement of these colors across the land areas show the seasonal changes over time.

You can read the full paper describing the first year’s data here.

The Trump budget presently funds Pace for two more years of observations, at about $26 million per year. This is an obvious example of a satellite whose life should be extended for as long as possible. This long term data would likely confirm other data that indicates the increase in CO2 in the atmosphere is greening the Earth, helping plant life that provides us oxygen to breath and food to eat.

To do so, however, other cuts in NASA will have to be found to pay for that extension. I once again wonder about the half a billion NASA spends for its “Mission Enabling Services”, which covers NASA’s human resources division, public relations department, and its equal opportunity division, as well as other more useful departments. Surely some money from these bureaucratic divisions could be found to finance this actual useful research.

Watch the landing attempt of Ispace’s Resilience lunar lander

Map of lunar landing sites
Landing sites for both Firefly’s Blue Ghost and
Ispace’s Resilience

I have embedded the live stream below of the landing of the Japanese startup Ispace’s Resilience lunar lander, presently scheduled to occur at 3:17 pm (Eastern) today (June 6, 2025 in Japan).

The live stream goes live at about 2:00 pm (Eastern).

Resilience will attempt to land on the near side of the Moon at 60.5 degrees north latitude and 4.6 degrees west longitude, in the region dubbed Mare Frigoris (Latin for “the Sea of Cold”), as shown on the map to the right. That map also shows a number of other landings on this quadrant of the Moon, including Ispace’s previous failed attempt with its first lander, Hakuto-R1, in Atlas Crater in 2023.

For Ispace, today’s landing is critical for its future. It has contracts for future three landers with NASA, with Japan’s space agency JAXA, and with the European Space Agency, but a failure today could impact whether those contracts proceed to completion.
» Read more

Two giant clusters of galaxies on target for second collision

Colliding galaxy clusters
Click for full image.

Using telescopes both on Earth and in space, astronomers now think two giant clusters of galaxies that had collided previously have now stopping flying from each other and are on target for second collision.

The annotated image to the right shows what we can see today. The two blue blobs near the center are the two galaxy clusters.

The galaxy cluster PSZ2 G181.06+48.47 (PSZ2 G181 for short) is about 2.8 billion light-years from Earth. Previously, radio observations from the LOw Frequency ARray (LOFAR), an antenna network in the Netherlands, spotted parentheses-shaped structures on the outside of the system. In this new composite image, X-rays from Chandra (represented in purple) and ESA’s XMM-Newton (blue) have been combined with LOFAR data (red) and an optical image from the Pan-STARRS telescope of the stars in the field of view.

These structures are probably shock fronts — similar to those created by jets that have broken the sound barrier — likely caused by disruption of gas from the initial collision about a billion years ago. Since the collision they have continued traveling outwards and are currently separated by about 11 million light-years, the largest separation of these kinds of structures that astronomers have ever seen.

Now, data from NASA’s Chandra and ESA’s XMM-Newton, a mission with NASA contributions, is providing evidence that PSZ2 G181 is poised for another collision. Having a first pass at ramming each other, the two clusters have slowed down and begun heading back toward a second crash.

When such giant object collide what really interacts the most is the gas and dust between the stars. The motions of the stars and galaxies of course get distorted by the pull of gravity, but there are almost never any crashes.

Sunspot update: The Sun confounds the predictions again!

It is time for my monthly update of the Sun’s ongoing sunspot activity, using the update that NOAA posts each month to its own graph of sunspot activity but annotated by me with extra information to illustrate the larger scientific context.

The activity in May was shocking in that it completely contradicted all expectations by everyone in the solar science community, with the Sun’s sunspot count changing in a way that was somewhat unprecedented. The graph below makes this very clear:

» Read more

New ground-based images of the Sun’s surface

The Sun's surface, as seen by Inouye Solar Telescope
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken using the Inouye Solar Telescope in Hawaii. It shows the granule surface of the Sun at very high resolution, resolving objects as small as 12 miles across.

The team used the Inouye’s Visible Broadband Imager (VBI) instrument operating in the G-band, a specific range of visible light especially useful for studying the Sun because it highlights areas with strong magnetic activity, making features like sunspots and fine-scale structures like the ones in the study easier to see. The setup allows researchers to observe the solar photosphere at an impressive spatial resolution better than 0.03 arcseconds (i.e., about 20 kilometers on the Sun). This is the sharpest ever achieved in solar astronomy.

The scientists then used computer simulations to confirm that the smallest features, curtains of plasma raising along the walls of the granules, are linked to fluctuations in the Sun’s magnetic field.

As interesting and cutting edge this research is, the language of the press release seems more aimed at touting this telescope then describing new science. Practically every sentence uses words like “unmatched,” “unparalleled,” “unique,” and “unprecedented” (multiple times), and then ended with this quote:

“This is just one of many firsts for the Inouye, demonstrating how it continues to push the of solar research,” says NSO [National Solar Observatory] Associate Director for the NSF [National Science Foundation’s] Inouye Solar Telescope, Dr. David Boboltz. “It also underscores Inouye’s vital role in understanding the small-scale physics that drive space weather events that impact our increasingly technological society here on Earth.”

I have noticed this phenomenon recently in many government press releases. It appears that the releases issued in the past month have become less about real research and are more designed to lobby the public against any possible budget cuts proposed by the Trump administration.

New calculations suggest Andromeda might not collide with Milky Way

The uncertainty of science: Scientists using new data from the Hubble Space Telescope as well as Europe’s Gaia space telescope, combined with many computer models, have determined that the 2012 prediction that the Andromeda galaxy would collide with Milky Way in five billion years was much more uncertain. From the abstract of the paper:

[W]e consider the latest and most accurate observations by the Gaia and Hubble space telescopes, along with recent consensus mass estimates, to derive possible future scenarios and identify the main sources of uncertainty in the evolution of the Local Group over the next 10 billion years. We found that the next most massive Local Group member galaxies — namely, M33 and the Large Magellanic Cloud—distinctly and radically affect the Milky Way — Andromeda orbit. Although including M33 increases the merger probability, the orbit of the Large Magellanic Cloud runs perpendicular to the Milky Way–Andromeda orbit and makes their merger less probable.

In the full system, we found that uncertainties in the present positions, motions and masses of all galaxies leave room for drastically different outcomes and a probability of close to 50% that there will be no Milky Way–Andromeda merger during the next 10 billion years. Based on the best available data, the fate of our Galaxy is still completely open.

The press release at the first link above makes it sounds as the previous prediction of a collision had been fully accepted as certain by the entire astronomical community, and that is balder-dash. It was simply the best guess at the time, highly uncertain. This new prediction — that we really don’t know what will happen based on the data available — is simply the newest best guess.

This new analysis however is certainly more robust and honest.

Trump budget proposes putting a final end to the delayed and blocked Thirty Meter Telescope

There is a lot more to report, and I will do so in a day or so, but I thought it worthwhile to quickly note the the proposed science cuts in the proposed Trump budget for 2026 includes the elimination of all funds for Thirty Meter Telescope (TMT) in Hawaii.

In the budget request, NSF [National Science Foundation]… says it will back only one of the two $3 billion optical telescopes that the astrophysics community wants to build. That honor goes to the Giant Magellan Telescope already under construction in Chile. Its competitor, the Thirty Meter Telescope (TMT), “will not advance to the Final Design Phase and will not receive additional commitment of funds from NSF,” according to the budget request.

The NSF has never had enough money to finance both telescopes. The fact that TMT has been blocked for more than a decade by DEI protesters in Hawaii, with the aid of the state government (controlled entirely by Democrats), makes funding it pointless, and a waste of the taxpayers’ money. It long past time to pull the plug.

As I say, there is a lot more details to report in this budget proposal, including its effort to slash a lot of science government spending, but that will have to wait for later essays. I can promise you one thing, however: I will not do what the rest of the press does, and write a knee-jerk propaganda piece in support of that spending. The science mafia at NASA and the NSF and other agencies has funded a lot of junk in the last few decades. It is time for a reckoning.

Webb spots a new record-setting galaxy, only 280 million years after the Big Bang

MoM Z14
The galaxy MoM z14, as seen in the infrared
by Webb. Click for original image.

The uncertainty of science: Using the Webb Space Telescope, astronomers have now identified a galaxy that formed only 280 million years after the Big Bang, far earlier than their theories of the origins of the universe had predicted.

“The broader story here is that JWST was not expected to find any galaxies this early in the history of the universe, at least not at this stage of the mission,” van Dokkum said. “There are, very roughly, over 100 more relatively bright galaxies in the very early universe than were expected based on pre-JWST observations.”

The data suggests MoM z14 is 50 times smaller than the Milky Way, contains nitrogen and carbon, and appears to be forming stars. The data also found little neutral hydrogen surrounding the galaxy, which also contradicts those same cosmological theories. According to those theories, the early universe should be filled with neutral hydrogen.

The nitrogen and oxygen are also there earlier than expected, and suggest there will be more such galaxies, including some even closer to the Big Bang.

Hat tip BtB’s stringer Jay.

NASA unwittingly reveals its bankruptcy by its reliance on AI

Uranus as seen by Hubble in 2014 and 2022
Click for original image.

In what appeared to be a totally inexplicable press release today, NASA posted the two pictures of Uranus to the right. The accompanying text was truly puzzling, describing in a somewhat brainless and inaccurate manner what is in the pictures;

Two views of the planet Uranus appear side-by-side for comparison. At the top, left corner of the left image is a two-line label. The top line reads Uranus November 9, 2014. The bottoms line reads HST WFC3/UVIS. At the top, left corner of the right image is the label November 9, 2022. At the left, bottom corner of each image is a small, horizontal, white line. In both panels, over this line is the value 25,400 miles. Below the line is the value 40,800 kilometers. At the top, right corner of the right image are three, colored labels representing the color filters used to make these pictures. Located on three separate lines, these are F467M in blue, F547M in green, and F485M in red. On the bottom, right corner of the right image are compass arrows showing north toward the top and east toward the left. [emphasis mine]

First, the description doesn’t match the pictures precisely, as if whoever wrote it wasn’t looking at these pictures. Second, the description is ridiculously literal, and really provides no information at all. (Consider for example the highlighted sentence. All it is doing is describing a standard scale bar, in the strangest most stupid manner possible.)

I immediately surmised that someone at NASA has decided to use AI to do this work, and AI (in its typical stupid brilliance) provided this worthless text. The unnamed NASA employee — equally as stupid — then posted it without reading it, assuming AI had done his or her job perfectly.

What makes this display of stupidity even worse is that these pictures, and a real press release, were issued back in 2023, when I posted these pictures initially. Does no one at NASA ever bother to read their own press releases?

Apparently not. The advent of AI has now produced human employees at the space agency who read nothing, know nothing, and do nothing. They instead plug stuff into AI and pump it out to the public mindlessly.

No wonder Trump wants to slash NASA’s budget. We certainly ain’t getting our money’s worth from the people that are there.

I also fully expect NASA management to soon deep-six this press release, or to fix it quickly once they read this post.

Scientists believe they have detected the actual process in which Mars loses its atmosphere

The uncertainty of science: Scientists using three different instruments on the Mars orbiter MAVEN now believe they have detected evidence of the actual process in which Mars loses its atmosphere, dubbed “sputtering”.

To observe sputtering, the team needed simultaneous measurements in the right place at the right time from three instruments aboard the MAVEN spacecraft: the Solar Wind Ion Analyzer, the Magnetometer, and the Neutral Gas and Ion Mass Spectrometer. Additionally, the team needed measurements across the dayside and the nightside of the planet at low altitudes, which takes years to observe.

The combination of data from these instruments allowed scientists to make a new kind of map of sputtered argon in relation to the solar wind. This map revealed the presence of argon at high altitudes in the exact locations that the energetic particles crashed into the atmosphere and splashed out argon, showing sputtering in real time. The researchers also found that this process is happening at a rate four times higher than previously predicted and that this rate increases during solar storms.

This sputtering is believed to be the process in which Mars lost the thick atmosphere that scientists believe must have existed in the past so that liquid water could exist on the planet’s surface. When MAVEN arrived in Mars orbit ten years ago the scientists actually thought the spacecraft would detect it relatively quickly. That it took ten years to finally find some evidence it is occurring suggests something is not quite right with their theories.

New data suggests Europa’s surface is constantly changing

Webb data showing variations on Europa's surface
Click for original graphic.

The uncertainty of science: Using data collected by the Webb Space Telescope combined with modeling and lab experiments, scientists now think they have found evidence that Europa’s surface is constantly changing, with materials from its interior being brought to the surface.

This new study found crystalline ice on the surface as well as at depth in some areas on Europa, especially an area known as Tara Regio. “We think that the surface is fairly porous and warm enough in some areas to allow the ice to recrystallize rapidly,” said Dr. Richard Cartwright, lead author of the paper and a spectroscopist at Johns Hopkins University’s Applied Physics Laboratory. “Also, in this same region, generally referred to as a chaos region, we see a lot of other unusual things, including the best evidence for sodium chloride, like table salt, probably originating from its interior ocean. We also see some of the strongest evidence for CO2 and hydrogen peroxide on Europa.”

…“Our data showed strong indications that what we are seeing must be sourced from the interior, perhaps from a subsurface ocean nearly 20 miles (30 kilometers) beneath Europa’s thick icy shell,” said [Dr. Ujjwal Raut of the Southwest Research Institute and co-author of the paper]. “This region of fractured surface materials could point to geologic processes pushing subsurface materials up from below. When we see evidence of CO2 at the surface, we think it must have come from an ocean below the surface.”

The graphic to the right shows the detected variations across the surface of Europa, based on the Webb spectroscopic data. It also illustrates nicely the coarseness of this data, its lack of resolution, and the uncertainties involved. The scientists have found evidence that suggests the surface is changing, but the key word here is “suggests”. They have not yet directly seen any actual changes, such as changes between two images taken at different times.

Nonetheless, the data does point in the right direction. Moreover, it would be far more unlikely if nothing on Europa changed. The fundamental question that remains unanswered is how fast things change there. And we won’t have any chance to answer this question until Europa Clipper enters Jupiter orbit in 2030 and begins multiply fly-bys of Europa.

China launches its first asteroid sample return mission

China today successfully launched Tianwen-2, its first mission attempting to return a sample from a near Earth asteroid, its Long March 3B rocket lifting off from its Xichang spaceport in southwest China.

Video of the launch can be found here. The probe will take about a year to reach asteroid Kamo’oalewa, where it will fly in formation studying it for another year, during which time it will attempt to grab samples by two methods. One method is a copy of the touch-and-go technique used by OSIRIS-REx on Bennu. The second method, dubbed “anchor and attach,” is untried, and involves using four robot arms, each with their own drill.

Some data suggests Kamo’oalewa is possibly a fragment from the Moon, but that is not confirmed.

After a year studying Kamo-oalewa, Tienwen-2 will then return past the Earth where it will release its sample capsule. The spacecraft will then travel to Comet 311P/PANSTARRS, reaching it in 2034. This comet is puzzling because it has an asteroid-like orbit but exhibits activity similar to a comet.

As for the launch, there is no word where the Long March 3B’s lower stages and four strap-on boosters, all using very toxic hypergolic fuels, crashed inside China. It should be noted that the video I link to above was taken by an ordinary citizen watching from a hill nearby, bringing with him a group of children as well. Considering the nature of the rocket’s fuel (which can dissolve your skin if it touches you), China’s attitude is remarkably sanguine to not only drop these stages on its people, but to allow tourists to get so close to launches.

The leaders in the 2025 launch race:

65 SpaceX
31 China (with one more launch scheduled later today)
6 Rocket Lab (with one launch scheduled for today SCRUBBED)
6 Russia

SpaceX now leads the rest of the world in successful launches, 65 to 50.

The canyon that Curiosity will eventually climb

The canyon that Curiosity will eventually climb
Click for full resolution. For original images go here and here.

Overview map
Click for interactive map.

Cool image time! The panorama above, created from two photographs taken on May 23, 2025 by the left navigation camera (here and here) on the Mars rover Curiosity, looks south uphill into the canyon that Curiosity is eventually going to climb.

The overview map to the right provides the context. The blue dot marks Curiosity’s present position, the white dotted line its past travels, the red dotted line its initial planned route, and the green dotted line its future route. The yellow lines indicate the approximate area seen in the panorama above.

If you look on the horizon to the left, you can see very bright terrain higher up the mountain. This is the pure sulfate-bearing unit that is Curiosity’s next major geological goal. It won’t reach that terrain for quite some time however because first the scientists want to spend some time studying the boxwork geology that Curiosity is now approaching. That boxwork suggests two past geological processes, as yet unconfirmed. First it suggests the ground dried like mud, forming a polygon pattern of cracks that then hardened into rock. Second, lava seeped up from below and filled those cracks. The lava, being more resistant to erosion, ended up becoming the boxwork of ridges as the material around eroded away.

This proposed history however is not proven. They hope to find out when Curiosity gets there.

Meanwhile, despite having traveled almost 22 miles, the rover is more than 25 miles from the peak of Mount Sharp, which remains out of sight. That peak is also about 15,000 feet higher.

Scientists: Jezero Crater’s theorized lake overflowed intermittently four times in the past

The inlet and outlet valleys of Jezero Crater
Click for original image.

Scientists analyzing the Martian geology of the meandering outflow canyon from Jezero Crater, now think it was formed by four different very short-lived events when the theorized lake inside the crater overflowed the crater rim.

The map to the right, figure 1 of the paper (cropped and annotated to post here), provides the context. Two canyons, Sava Vallis and Neretva Vallis feed into Jezero Crater, and one canyon, Pliva Vallis, flows out. From the abstract:

By examining the shape of the valley, we noticed that Pliva Vallis was not like valleys carved by continuous rivers on Earth and propose instead that the valley was carved by at least four episodes of lake overflow. To give a minimum estimate of the duration of these events, we use a numerical model to simulate the overflow of a lake and the incision of a valley. Modeling suggests that the four (or more) episodes identified each incised part of the valley and that each episode lasted a few weeks at maximum.

The researchers also considered whether Pliva Vallis could have been carved by glacial flows, but rejected that possibility partly because “the general morphology of the valley shows a decrease in depth and width downstream, while subglacial channels [on Earth] tend to remain of similar width or become larger, as the flow regime does not decrease downstream.”

These conclusions of course carry a great deal of uncertainty. For one, they are based solely on orbital data. No ground truth exists as yet. Secondly, they assume the geology on Mars behaves in the same manner as on Earth. It could very well be for example that the reason the valley shrinks in size is because its Martian glacier sublimated away as flowed downhill, something that doesn’t happen on Earth.

Regardless, the data strongly suggests that water shaped Jezero in some manner.

Astronomers discover a star radiating in X-rays and radio in ways that fit no known explanation

ASKAP J1832 circled. Note the red arc denoting the supernovae remnant
ASKAP J1832 circled. Note the red arc denoting
the supernovae remnant. Click for original image.

Using both the Chandra X-Ray Observatory and the Square Kilometer Array in Australia, astronomers have discovered a star that pulses in both X-rays and and radio frequencies in a manner previously unseen and that fit no known theory.

ASKAP J1832 belongs to a class of objects called “long period radio transients,” discovered in 2022, that vary in radio wave intensity in a regular way over tens of minutes. This is thousands of times longer than the length of the repeated variations seen in pulsars, which are rapidly spinning neutron stars that have repeated variations multiple times a second. ASKAP J1832 cycles in radio wave intensity every 44 minutes, placing it into this category of long period radio transients.

Using Chandra, the team discovered that ASKAP J1832 is also regularly varying in X-rays every 44 minutes. This is the first time that such an X-ray signal has been found in a long period radio transient.

…However, that is not all ASKAP J1832 does. Using Chandra and the SKA Pathfinder, the team found that ASKAP J1832 also dropped off in X-rays and radio waves dramatically over the course of six months. This combination of the 44-minute cycle in X-rays and radio waves in addition to the months-long changes is unlike anything astronomers have seen in the Milky Way galaxy.

The false-color X-ray/radio image to the right shows the star (circled). Based on the data, it is unlikely that the star is a neutron star or a pulsar. Its properties also do not fit with a magnetar (a pulsar with a very strong magnetic field). Though located within a supernova remnant, the astronomers determined this to be a coincidence, the star unrelated to the remnant.

The best explanation so far is that this is a white dwarf with a companion and the strongest magnetic field ever conceived. The astronomers however do not appear enthused by that explanation either.

Engineers pinpoint and bypass fuel line problem on Psyche

Psyche's flight path to the asteroid Psyche
Psyche’s flight path to the asteroid Psyche.
Click for original image.

In troubleshooting a significant drop in pressure in the xenon gas fuel lines to the ion engines of the Psyche asteroid probe, engineers have now pinpointed the problem to a failed valve and have switched to a back-up fuel line.

Powered by two large solar arrays, Psyche’s thrusters ionize and expel xenon gas to gently propel the spacecraft, which gradually picks up speed during its journey. The team paused the four electric thrusters in early April to investigate an unexpected drop in pressure. They determined that a mechanical issue in one of the valves, which open and close to manage the flow of propellant, caused the decrease. Through extensive testing and diagnostic work, the team concluded that a part inside one of the valves is no longer functioning as expected and is obstructing the flow of xenon to the thrusters.

Now that the swap to the backup fuel line is completed, engineers will command the spacecraft’s thrusters to resume firing by mid-June.

This issue had to be resolved before that scheduled firing in June or else Psyche would have fallen off its course to reach the metal asteroid Psyche by August 2029.

The Sun’s surface, in high resolution

The Sun's surface in high resolution
Click for movie (though not of this image)

Cool image time! The picture to the right, reduced and sharpened to post here, was one of a number of pictures released today by the science team operating the new adaptive optics at the 60 inch Goode Solar Telescope (GST) at the Big Bear Solar Observatory (BBSO) in California. It shows the fluffy surface of the Sun, made of many needle-like threads called spicules, with larger bits of plasma (in the center) flung upward and back along the Sun’s magnetic field lines.

If you click on the image, you can watch a 42-second movie produced by many images of a different plasma blob as it changes and evolves. Other short movies produced show bits of this material falling back quickly along those field lines as well as that fluffy surface of needles waving almost like tall prairie grass. The width of the image covers approximately 25,000 miles, which means you could fit about three Earth’s in this space.

To create these images from a ground-based telescope required new technology:

The GST system Cona uses a mirror that continuously reshapes itself 2,200 times per second to counteract the image degradation caused by turbulent air. “Adaptive optics is like a pumped-up autofocus and optical image stabilization in your smartphone camera, but correcting for the errors in the atmosphere rather than the user’s shaky hands,” says BBSO Optical Engineer and Chief Observer, Nicolas Gorceix.

Using this refined imagery, solar scientists will be better able to track and observe the Sun’s small scale behavior (actually quite large on human scales).

A galactic pinwheel

A galactic pinwheel
Click for original image.

It’s cool image time, partly because we have a cool image and partly because there is little news today due to the holiday. The picture to the right, cropped, reduced, and sharpened to post here, was taken by the Hubble Space Telescope and was released today as the science team’s picture of the week. It shows us a classic pinwheel galaxy located approximately 46 million light years away. From the caption:

A spiral galaxy seen face-on. Its centre is crossed by a broad bar of light. A glowing spiral arm extends from each end of this bar, both making almost a full turn through the galaxy’s disc before fading out.

The bright object with the four spikes of light is a foreground star inside the Milky Way and only 436 light years away. The bright orange specks inside the spiral arms are likely star forming regions, with the blue indicating gas clouds.

As for the holiday, I’ll have more to say about Memorial Day later today.

Astronomers discover a perfect sphere in radio

Radio object Teleios

Using the array of radio dishes dubbed the Australian Square Kilometre Array, astronomers have made the serendipitous discovery of what appears to be a perfect sphere of radio emissions tens of light years in diameter and tens of thousands of light years away and near the galactic center.

The scientists have dubbed the object Teleios, Greek for ‘complete’ or ‘perfect’. The image to the right is that radio image. Though the astronomers posit that it must have been formed from a supernova explosion, there are problems with that conclusion. From their paper [pdf]:

Unfortunately, all examined scenarios have their challenges, and no definitive Supernova origin type can be established at this stage. Remarkably, Teleios has retained its symmetrical shape as it aged even to such a diameter, suggesting expansion into a rarefied and isotropic ambient medium. The low radio surface brightness and the lack of pronounced polarisation can be explained by a high level of ambient rotation measure (RM), with the largest RM being observed at Teleios’s centre.

In other words, this object only emits in radio waves, is not visible in optical or other wavelengths as expected, and thus doesn’t really fit with any theories describing the evolution of supernova explosions. Yet its nature fits all other possible known space objects even less, such as planetary nebulae, nova remnants, Wolf-Rayet stars, or even super-bubbles of empty space (such as the Local Bubble the solar system is presently in).

Baffled, the scientists even considered the possibility that they had discovered an artificially built Dyson Sphere, but dismissed that idea because Teleios emits no infrared near its boundaries, as such a sphere is expected to do.

At present the best theory remains a supernova remnant, though this remains a poor solution at best.

Hat tip to reader (and my former editor at UPI) Phil Berardelli.

Astronomers discover another object in an orbit so extreme it reaches the outskirts of the theorized Oort Cloud

Orbits of known Trans-Neptunian Objects

Astronomers analyzing a dark energy survey by a ground-based telescope have discovered what might be another dwarf planet orbiting the Sun, but doing so in an orbit so extreme that it reaches the outskirts of the theorized Oort Cloud more than 151 billion miles out.

This object, dubbed, 2017 OF201, was found in 19 different observations from 2011 to 2018, allowing the scientists to determine its orbit. The map to the right is figure 2 from their paper [pdf], with the calculated orbit of 2017 OF201 indicated in red. As you can see, this new object — presently estimated to be about 450 miles in diameter — is not the first such object found in the outer solar system with such a wide eccentric orbit. However, the object also travels in a very different region than all those other similar discoveries, suggesting strongly that there are a lot more such objects in the distant outer solar system.

Its existence also contradicts a model that proposed the existence of a larger Planet X. That theory posited that this as-yet undetected Planet X was clustering the orbits of those other distant Trans-Neptunian objects shown on the map.

As shown in Figure 2, the longitude of perihelion of 2017 OF201 lies outside the clustering region near π ≈ 60◦ observed among other extreme TNOs [Trans-Nepturnian Objects]. This distinction raises the question of whether 2017 OF201 is dynamically consistent with the Planet X hypothesis, which suggests that a distant massive planet shepherds TNOs into clustered orbital configurations. Siraj et al. (2025) computed the most probable orbit for a hypothetical Planet X by requiring that it both reproduces the observed clustering in the orbits of extreme TNOs.

…These results suggest that the existence of 2017 OF201 may be difficult to reconcile with this particular instantiation of the Planet X hypothesis. While not definitive, 2017 OF201 provides an additional constraint that complements other challenges to the Planet X scenario, such as observational selection effects and the statistical robustness of the observed clustering.

Planet X might exist, but if so it is likely simple one of many such objects in the outer solar system. It is also likely to be comparable in size to these other objects, which range from Pluto-sized and smaller, making it less unique and less distinct.

In other words, our solar system has almost certainly far more planets than nine (including Pluto).

Hat tip to BtB’s stringer Jay.

Perseverance moves across the barren outer rim of Jezero Crater

Looking back at the rim of Jezero Crater
Click for full resolution. For original images go here and here.

Overview map
Click for interactive map.

Cool image time! While most of the mainstream press will be focusing today on the 360 degree selfie that the Perseverance science team released yesterday, I found the more natural view created above by two pictures taken by the rover’s right navigation camera today (here and here) to be more immediately informative, as well as more evocative.

After spending several months collecting data at a location dubbed Witch Hazel Hill on the outer slopes of the rim of Jezero Crater, the science team has finally had the rover move south along its planned route. The overview map to the right provides the contest. The blue dot marks Perseverance’s present location, the red dotted line its planned route, and the white dotted line its actual travels. The yellow lines mark what I think is the approximate area viewed in the panorama above.

That panorama once again illustrates the stark alienness of Mars. It also shows the startling contrast between the rocky terrain that the rover Curiosity is seeing as it climbs Mount Sharp versus this somewhat featureless terrain traveled so far by Perseverance. Though Perseverance is exploring the ejecta blanket thrown out when the impact occurred that formed Jezero Crater, that event occurred so long ago that subsequent geological processes along with the red planet’s thin atmosphere have been able to smooth this terrain into the barren landscape we now see.

And barren it truly is. There is practically no place on Earth where you could find the surface so completely devoid of life.

Some would view this as a reason not to go to Mars. I see it as the very reason to go, to make this terrain bloom with life, using our fundamental human ability to manufacture tools to adapt the environment to our needs.

Meanwhile, the science team operating Perseverance plans to do more drilling, as this ejecta blanket probably contains material thrown out from the impact that is likely quite old and thus capable of telling us a great deal about far past of Mars’ geological history.

Terraced Martian butte

Terraced Martian butte
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on April 1, 2025, by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The scientists label this as a “Layered Butte.” Seems like a good description. From top to bottom there appear to at a minimum about a dozen terraces, each of which represents a specific geological era on Mars.

I post this mostly because I think it shows us another example of the alien beauty of the Martian landscape. The scientific question of course is what do these layers represent. In a general sense, they indicate that over a long time period one by one these layers were laid down, and then over a likely equally long time period the top layers were worn away, one by one. The mesa is just a random spot where that erosion process was not complete, leaving behind this terraced 400-foot-high tower.
» Read more

1 2 3 278