Giant ice pinnacles on Europa
In a new paper scientists note that getting the congressionally mandated Europa Clipper safely to the surface of Jupiter’s moon might be threatened by the existence there of forests of giant five-story high ice pinnacles.
Probes have shown that Europa’s ice-bound surface is riven with fractures and ridges, and new work published today in Nature Geosciences suggests any robotic lander could face a nasty surprise, in the form of vast fields of ice spikes, each standing as tall as a semitruck is long.
Such spikes are created on Earth in the frigid tropical peaks of the Andes Mountains, where they are called “pentinentes,” for their resemblance to devout white-clad monks. First described by Charles Darwin, pentinentes are sculpted by the sun in frozen regions that experience no melt; instead, the fixed patterns of light cause the ice to directly vaporize, amplifying minute surface variations that result in small hills and shadowed hollows. These dark hollows absorb more sunlight than the bright peaks around them, vaporizing down further in a feedback loop.
This work is based on computer models, so it has a lot of uncertainty. It also appears to assume that these pentinentes will be widespread across Europa’s equatorial regions, something so unlikely I find it embarrassing that they even imply it. I guarantee Europa’s surface will be more varied than that. If they are designing Europa Clipper properly, it will go into orbit first to scout out the best landing site, and will be able to avoid such hazards.
In a new paper scientists note that getting the congressionally mandated Europa Clipper safely to the surface of Jupiter’s moon might be threatened by the existence there of forests of giant five-story high ice pinnacles.
Probes have shown that Europa’s ice-bound surface is riven with fractures and ridges, and new work published today in Nature Geosciences suggests any robotic lander could face a nasty surprise, in the form of vast fields of ice spikes, each standing as tall as a semitruck is long.
Such spikes are created on Earth in the frigid tropical peaks of the Andes Mountains, where they are called “pentinentes,” for their resemblance to devout white-clad monks. First described by Charles Darwin, pentinentes are sculpted by the sun in frozen regions that experience no melt; instead, the fixed patterns of light cause the ice to directly vaporize, amplifying minute surface variations that result in small hills and shadowed hollows. These dark hollows absorb more sunlight than the bright peaks around them, vaporizing down further in a feedback loop.
This work is based on computer models, so it has a lot of uncertainty. It also appears to assume that these pentinentes will be widespread across Europa’s equatorial regions, something so unlikely I find it embarrassing that they even imply it. I guarantee Europa’s surface will be more varied than that. If they are designing Europa Clipper properly, it will go into orbit first to scout out the best landing site, and will be able to avoid such hazards.