Seasonal frost in a gully on Mars

Frost in a gully on Mars
Click for full image.

Cool image time! The photo on the right, cropped, reduced, and brightened slightly to post here, was part of the April image release from the high resolution camera on Mars Reconnaissance Orbiter (MRO). According to the titled of this release, it purports to show visible frost on what looks like an avalanche debris slope on the rim of a large crater. The frost is the bright streaks on the upper left of the slope.

I wonder. During last month’s 50th Lunar and Planetary Science Conference in Texas, there was one paper that I reported on that showed something very similar to this, and proposed that white streaks like this in a gully were actually exposed snow/ice. They proposed that the snow/ice was normally covered by dust, and the white streaks were where the dust had blown away to reveal the ice below. This in turn would then sublimate into gas, which in turn would cause the gully avalanches over time.

Below is a close-up of the white streaks on this rim.
» Read more

Data from Cassini’s last fly-by of Titan

Based on data from Cassini’s last fly-by of Titan, scientists have been able to estimate the depth of some of that planet’s northern lakes while also finding that they were filled mostly with methane.

The depths measured were as much as 300 feet. The data also shows that the geology of one hemisphere in the north was different from the other hemisphere.

On the eastern side of Titan, there are big seas with low elevation, canyons and islands. On the western side: small lakes. And the new measurements show the lakes perched atop big hills and plateaus. The new radar measurements confirm earlier findings that the lakes are far above sea level, but they conjure a new image of landforms – like mesas or buttes – sticking hundreds of feet above the surrounding landscape, with deep liquid lakes on top.

The fact that these western lakes are small – just tens of miles across – but very deep also tells scientists something new about their geology: It’s the best evidence yet that they likely formed when the surrounding bedrock of ice and solid organics chemically dissolved and collapsed. On Earth, similar water lakes are known as karstic lakes. Occurring in in areas like Germany, Croatia and the United States, they form when water dissolves limestone bedrock.

This data also suggests, as has previous data, that Titan could very well have extensive underground cave systems. Unlike the Moon or Mars, however, these are not going to be very hospitable to colonization, considering the presence of methane and the cold temperatures.

Video shows sudden satellite failure

Video of an Intelsat geosynchronous satellite that was having problems that suddenly worsened this week suggests the worsening was sudden and maybe catastrophic.

[N]ew data from ExoAnalytic Solutions, which has a network of 300 telescopes around the planet to track satellite movements in geostationary space, shows the situation has gotten markedly worse.

Since being alerted to the anomaly on Sunday, the company has been tracking Intelsat 29e with at least two telescopes at all time, the company’s chief executive, Doug Hendrix, told Ars. On Thursday, one of those telescopes captured the video embedded below, which shows a continued splintering of the satellite over a period of four hours. The ball of light at center is Intelsat 29e, and the streaks are background stars. First, there is a series of anomalous out-gassing events from the spacecraft, after which a persistent halo remains. As the halo dissipates, there are several pieces of debris that are continued to be tracked.

The video at the link is quite dramatic. Whether this failure was initially caused an internal failure or by an impact is presently unknown.

The story behind the computer that made IBM, and computers

Link here. The introduction:

A short list of the most transformative products of the past century and a half would include the lightbulb, Ford’s Model T—and the IBM System/360. This mainframe series forever changed the computer industry and revolutionized how businesses and governments worked, enhancing productivity and making countless new tasks possible.

In the years leading up to its 7 April 1964 launch, however, the 360 was one of the scariest dramas in American business. It took a nearly fanatical commitment at all levels of IBM to bring forth this remarkable collection of machines and software. While the technological innovations that went into the S/360 were important, how they were created and deployed bordered on disaster. The company experienced what science policy expert Keith Pavitt called “tribal warfare”: people clashing and collaborating in a rapidly growing company with unstable, and in some instances unknown, technologies, as uncertainty and ambiguity dogged all the protagonists.

Ultimately, IBM was big and diverse enough in talent, staffing, financing, and materiel to succeed. In an almost entrepreneurial fashion, it took advantage of emerging technologies, no matter where they were located within the enterprise. In hindsight, it seemed a sloppy and ill-advised endeavor, chaotic in execution and yet brilliantly successful. We live in an age that celebrates innovation, so examining cases of how innovation is done can only illuminate our understanding of the process.

Read it all. The story is fascinating, especially in how intellectual honesty made it a success. In one case two computer managers were competing directly against each other for the lead in how the product would be developed. The man that was picked immediately asked the loser to help him build his proposal, a level of honesty that certainly made this company work in the 1960s.

The story also has one bit of real irony. The 360 was a big success because it was compatible with IBM’s previous computer line, and was designed to be compatible across the board.

In the 1980s, IBM lost its entire dominance in the personal computer field when it introduced its second generation PC, the PS/2, which was NOT compatible with their first PC line. Customers fled to independent companies making computers compatible to IBMs first PC, and this loss of business ended up killing IBM entirely.

You would have thought they would have known better.

Hat tip Thomas Biggar.

Spanish company completes parachute drop test of reusable first stage

The new colonial movement: A Spanish company funded by the European Space Agency (ESA) has successfully completed a drop parachute test for recovering the first stage of their smallsat rocket from the ocean.

A Chinook CH-47 helicopter lifted the 15 m long 1.4 m diameter Miura 5 demonstration first stage to an altitude of 5 km then dropped it over a controlled area of the Atlantic Ocean, 6 km off the coast of Huelva in southern Spain.

During the descent, electronic systems inside the demonstrator controlled a carefully timed release of three parachutes to slow it down until its splashdown at a speed of about 10 m/s.

A team of divers recovered the demonstrator and hoisted it onto a tugboat, which returned to the port of Mazagón. The demonstrator looks to be in good shape and will now be transported to PLD Space, in Elche, for inspection and further analysis.

They next say they will develop a vertical landing system, similar to SpaceX’s.

Honestly, this seems like a waste of money and somewhat foolish. SpaceX made it very clear almost a decade ago when they tried to recover first stages out of the ocean after using parachutes to splash down softly that the salt water did too much damage to the engines and made such recovery impractical.

I can’t help asking, why is ESA spending time and money supporting engineering tests of a design that simply won’t work? They should be doing tests now of vertical landing technology, since it does work, and in fact is what they need to compete successfully.

Maybe I am being too harsh. Maybe they want to develop vertical landing technology that will work in conjunction with these parachutes, and this is merely their first step. Maybe. Based on past ESA development projects (which are often as dysfunctional as NASA’s), I think my doubts are not unreasonable.

UAE names astronaut to fly to ISS in September

The new colonial movement: The United Arab Emirates (UAE) has named the man who will fly on a Soyuz rocket in September to become that country’s first astronaut.

“The Emirati astronaut Hazzaa AlMansoori will fly for an eight-day space mission to ISS aboard a Soyuz-MS 15 spacecraft on 25 September 2019,” the organization said in a Twitter post late on Friday.

The UAE astronaut’s flight to the ISS is scheduled for September 25. He will spend about a week on board the ISS and will return back to the Earth with the Soyuz crew. Currently, there are two Emirati nationals prepping for the flight in the Yuri Gagarin Cosmonaut Training Center. The other astronaut, Sultan Al Neyadi, will serve as a backup.

No background was given on this man, but we will find out more with time.

SpaceX recovers Falcon Heavy fairings and will reuse them

Capitalism in space: In a tweet yesterday Elon Musk said that SpaceX had recovered both fairings from the Falcon Heavy launch and plans to reuse them later this year.

It seems that what the company has found is that catching the fairings is not necessary. Providing them parachutes and a guidance system so they land gently with the open half up, so they float literally like a boat, prevents any serious damage. The guidance system also gets them to land close enough for a quick pickup at sea.

Based on this knowledge, recovering and reusing these fairings was probably always a simple and fairly easy thing to do. No one however had had the smarts or open-mindedness to think of doing it. Moreover, from the article:

Musk told reporters last year that the fairing costs around $6 million. He said the first stage of the Falcon 9 rocket comprises about 60 percent of the cost of a launch, with the upper stage responsible for 20 percent, and the fairing another 10 percent. The remaining 10 percent of the cost of a Falcon 9 mission come from charges stemming from launch operations, propellant and other processing expenses, Musk said last year.

In other words, by recovering both the first stage and the fairings, SpaceX makes their rockets about 70 percent reusable. That’s actually more reusable than the space shuttle ever was.

I must add that the section of the shuttle that was the most reusable was the section of SpaceX’s rockets that they as yet are not reusing, the upper stage. In other words, we have now tested and proven the technology for making an entire orbital rocket reusable, just never in the same vehicle. SpaceX is taking advantage of this knowledge and clearly applying it to their Super Heavy/Starship next generation rocket, which also means the likelihood of getting that to work is actually quite high and not as radical as many think.

April 25 set for Hayabusa-2’s first observations of artificial crater

The Hayabusa-2’s science team has scheduled their first observations of the artificial crater the spacecraft made on the surface of the asteroid Ryugu for April 25.

The probe will observe the crater, which was generated during an impact experiment on April 5, from a height of 1.7 kilometers. JAXA will collate the data with photographs of the surface taken near the impact point to measure the size and location of the crater. It will also examine the dispersion of rocks and judge whether Hayabusa2 can land to take samples.

This is only their first assessment. Once they feel comfortable about getting closer, they will then plan the spacecraft’s second touchdown and sample collection, this time hopefully from within that crater.

SpaceIL wins $1 million from X-Prize

Despite the failure of its Beresheet lunar lander to land softly on the Moon yesterday, the private company SpaceIL has been awarded a one million dollar prize by the X-Prize for its success in getting into lunar orbit and coming as close as it did to successfully landing.

“As a testament to the team’s passion and persistence, we are presenting this one million dollar Moonshot Award to the SpaceIL team at our annual Visioneering Summit in October 2019, with the hope that they will use these funds as seed money towards their education outreach or Beresheet 2.0, a second attempt to fulfill the mission,” said XPRIZE CEO Anousheh Ansari.

The article also outlines some details about the failure. The main engine cut off during descent, and though they were able to get it restarted, the spacecraft was now too close to the surface and traveling too fast to slow it down. They are now assessing their data to figure out why the engine cut off as it did.

Virgin Orbit gets another launch agreement

Capitalism in space: Virgin Orbit has signed an agreement with the European launch services provider Exolaunch to provide launches for it appears as many as 20 smallsats.

Exolaunch, a spinoff of the Technical University of Berlin formerly called ECM-Space, has arranged launches, managed missions and integrated small satellite rideshare clusters for customers in Europe and North America. Exolaunch customers include startups, universities, scientific institutions and space agencies. In 2019, Exolaunch is under contract to send more than 60 small satellites into orbit. Forty of those satellites are scheduled to fly together on a Russian Soyuz rocket this spring or summer.

It appears that this agreement covers those 20 additional satellites, but the announcement is vague, probably because Virgin Orbit has still not completed its first launch. Until it does so, many of its launch contracts will be somewhat tentative, with its customers keeping the option to withdraw.

SpaceX gets NASA launch contract

Capitalism in space: One week after dropping its protest for losing the bidding competition for the Lucy asteroid mission, SpaceX has been awarded by NASA the launch contract for its Double Asteroid Redirection Test (DART) mission, set for launch in June 2021.

The $61 million launch price is significantly lower than past NASA contracts for Falcon 9 launches. NASA awarded SpaceX a contract for the Sentinel-6A satellite in October 2017 for a November 2020 launch on a Falcon 9 from Vandenberg at a total cost of $97 million. The Surface Water and Ocean Topography (SWOT) satellite will launch on a Falcon 9 in April 2021 under a contract awarded in November 2016 at a value of $112 million.

This low cost technology test mission, costing a total of $9 million, was initially going to be launch as a secondary payload. That NASA is now going to pay SpaceX for a full launch is most intriguing. It seems to me that there might be a bit of quid pro quo here. NASA wanted that protest dropped, and offered this launch to convince SpaceX to do that, as long as the launch cost was kept low. $60 million is really SpaceX’s standard price for Falcon 9 launch, using new boosters, but for NASA that is the least they’ve paid. How much more this is than what NASA would have paid to launch DART as a secondary payload is the real question.

The second Falcon Heavy launch

I have embedded the live stream of Falcon Heavy launch below the fold. It does not go live until just before launch, which is now scheduled for 6;35 pm (Eastern).

The live stream is now live. I will post updates below, so refresh your screen to see them.

This is not a routine SpaceX launch, where we have become nonchalant about the company’s ability to vertically land a first stage. They admit getting the core stage back will be challenging. They also admit that this is essentially a countdown of three rockets, so they are going to be very conservative. If anything pops up during countdown, they will scrub and try another day.

They have launched.

The side boosters have successfully separated.

The center core stage has successfully separated.

Re-entry burns for the two side boosters has been completed.

Falcon Heavy core stage on drone ship

Re-entry burn on the core stage has been completed.

Both side boosters have landed.

The payload is in orbit.

The core stage has landed successfully on the drone ship.

Though the satellite has not yet been deployed, the rest of this mission is almost certainly going to go as planned, as it is essentially identical to a normal Falcon 9 launch. Update: payload successfully deployed!

Getting all three stages back is a notable achievement. They intend to recycle the two side cores and use them on the very next Falcon Heavy launch in June. The core stage will likely be reused as well but when has not yet been announced.

The leaders in the 2019 launch race:

4 SpaceX
4 China
4 Europe
3 Russia

The U.S. leads the pack 7 to 4 in the national rankings.

In the heavy lift launch race, SpaceX is by far in the lead in successful launches:

2 SpaceX
1 China
0 SLS (NASA)

I should add that I am being generous to include China’s Long March 5 in this heavy lift list. It really doesn’t qualify, but it remains the only other near competitor.
» Read more

Rover update: April 11, 2019

Summary: Curiosity successfully drills into the clay unit. Yutu-2 continues its exploration on the far side of the Moon.

For the updates in 2018 go here. For a full list of updates before February 8, 2018, go here.

Curiosity drill hole in clay unit on slopes of Mount Sharp

Curiosity

For the overall context of Curiosity’s travels, see my March 2016 post, Pinpointing Curiosity’s location in Gale Crater.

The news this week from Curiosity is that the rover has successfully drilled into the ground in the clay unit valley the rover is presently exploring betweent Vera Rubin Ridge and Mount Sharp’s higher slopes.

The image to the right shows is a close-up of that drill hole.

The rover’s drill chewed easily through the rock, unlike some of the tougher targets it faced nearby on Vera Rubin Ridge. It was so soft, in fact, that the drill didn’t need to use its percussive technique, which is helpful for snagging samples from harder rock. This was the mission’s first sample obtained using only rotation of the drill bit.

Since my last rover update on February 20, 2019, they have been traveling for several weeks to get to a spot where they can do this drilling. The clay unit seems very soft, and almost mudlike, which made finding a good surface to drill somewhat challenging. Most of the terrain seemed too soft to drill into. It almost would be better to have a scoop, as the Viking landers had. Curiosity doesn’t really have this however. It needs to use its drill, which really is a more efficient way to get down deeper into the ground anyway.

The map below shows their recent travels.
» Read more

Beresheet landing fails

Beresheet's last image

An engine problem during landing has caused Beresheet to crash onto the lunar surface.

The image on the right was the last image beamed back by the spacecraft during the landing sequence. It looks down at the lunar surface from several thousand meters.

As Netanyahu immediately noted, “If at first you don’t succeed, you try again.”

This failure definitely slows down the effort to transition from government-controlled space exploration to a free effort by the independent citizenry of all nations. It does not stop it however. There are other private lunar missions already scheduled, and of course, there is the effort by SpaceX to build its own heavy-lift rocket to make interplanetary space travel affordable for all.

The next decade will see this effort blossom. Beresheet’s failure is an example of those first baby steps, when the ability to stand is uncertain, and sometimes results in a fall. But babies turn into adults. The future is bright indeed.

Beresheet landing telecast live streaming now

They have begun the live stream of Beresheet’s landing on the moon, with the arrival of Benjamin Netanyahu in the viewer’s gallery. It is in Hebrew, and will likely mostly involve watching people sitting at computer consoles, and then standing and cheering when the spacecraft lands.

However, I have embedded it below the fold for your viewing pleasure.

UPDATE: They are including English commentary.
» Read more

DARPA picks three smallsat rocket companies for launch challenge

Capitalism in space: DARPA has chosen Vector Launch, Virgin Orbit, and a third unnamed company to compete for up to $10 million in prizes in its quick launch competition.

The Defense Advanced Research Projects Agency (DARPA) is giving $400,000 to each of three companies chosen to compete in the “DARPA Launch Challenge” to demonstrate rapid and responsive launch of small payloads. Tucson-based Vector Launch, Virgin Orbit, and a “stealth” startup will now have the opportunity to compete for prizes up to $10 million for successfully proving they can successfully launch twice in a row within a short timeframe from being provided mission parameters, DARPA told reporters here April 10.

First, I wonder why Rocket Lab was not picked. I suspect this is because it is already launching operational missions, and so does not need this developmental boost. Also, its rocket might not meet DARPA’s criteria. The launch systems of both Vector and Virgin Orbit are designed to allow them to quickly transport their rocket to any number of launch sites and go. Rocket Lab’s Electron appears to need a more established launchpad.

Second, I wonder what that third unnamed startup is. There are more than two dozen in development right now, but I can only think of one, Exos Aerospace, that has actually done any successful test flights, albeit suborbital. Whether its reusable SARGE suborbital rocket, being used to incrementally develop an orbital version, fits DARPA’s needs is not clear.

It could also very well be that DARPA has not actually chosen a third company, but has informed several that they can get that third slot, if they can achieve certain goals in a certain time frame. It could be that both DARPA and these companies would rather keep this private competition private. For the companies, they’d rather not advertise their failure to win it. For DARPA, the goal is to help, not hurt, the companies.

The central peaks of Compton Crater

Central peaks of Compton Crater

Cool image time! The Lunar Reconnaissance Orbiter (LRO) science team today released a beautiful oblique image looking of the central peaks of Compton Crater, a far side crater with a floor that is fractured and is one of about 200 hundred such craters.

Today’s Featured Image highlights an floor-fractured crater (FFC) that could tell us much about the lunar crust. An asteroid or comet impact is thought to have excavated 146.6-kilometer-wide Compton crater about 3.85 billion years ago. Igneous intrusion or viscous relaxation — or perhaps both processes — subsequently produced branching fractures and small basalt plains within Compton crater. The latter are darker than their surroundings.

Unlike Copernicus Crater, the surface appears smooth. Go to the link and zoom in to see what I mean. All the fractures appear very large and filled in. Of course, that could be because of the image’s resolution, and that other images might show more details and pits.

I find the central peaks more intriguing, however. It appears that, following their formation they were hit by several bolides, one of which carved a gigantic deep hole into those peaks.

Results from Europe’s Trace Gas Orbiter at Mars

The European Space Agency today released the results of more than a year of observations from its Trace Gas Orbiter (TGO), among which were two significant findings.

First, the orbiter detected no methane in Mars’s atmosphere, contradicting recent results from both Curiosity and Mars Express.

The new results from TGO provide the most detailed global analysis yet, finding an upper limit of 0.05 ppbv, that is, 10–100 times less methane than all previous reported detections. The most precise detection limit of 0.012 ppbv was achieved at 3 km altitude. As an upper limit, 0.05 ppbv still corresponds to up to 500 tons of methane emitted over a 300 year predicted lifetime of the molecule when considering atmospheric destruction processes alone, but dispersed over the entire atmosphere, this is extremely low.

…“The TGO’s high-precision measurements seem to be at odds with previous detections; to reconcile the various datasets and match the fast transition from previously reported plumes to the apparently very low background levels, we need to find a method that efficiently destroys methane close to the surface of the planet.”

It appears they think the Curiosity and Mars Express detections were very localized and occurred close to the surface, where TGO could not detect it.

The second significant finding is indicated by the map below, showing a global map of subsurface water distribution on Mars. I have also posted below this map a global elevation map from Mars Reconnaissance Orbiter (MRO), as the similarities and differences are important.
» Read more

Astronomers take highest resolution radio image of black hole

shadow of black hole

Using a network of ground-based radio telescopes astronomers today released the highest resolution radio image of black hole ever produced.

Before giving more details, I must correct every other news report, as well as all of the press releases about this image. It is not “The first image of a black hole!” as these releases are claiming breathlessly. Radio telescope arrays have taken such images in the past, but their resolution was poor, so the result was not very imagelike. Instead, it showed contour lines in a coarse manner. Moreover, the coarseness of the resolution prevented them from seeing the black hole’s shadow itself.

This image now produced has the highest resolution ever for such a radio image, but believe me, it is still coarse. Nonetheless, it represents a giant technological leap forward. The effort required upgrades to many of these telescopes, along with significantly improved computer analysis. Now for some details:

Black holes are extraordinary cosmic objects with enormous masses but extremely compact sizes. The presence of these objects affects their environment in extreme ways, warping spacetime and super-heating any surrounding material. “If immersed in a bright region, like a disc of glowing gas, we expect a black hole to create a dark region similar to a shadow — something predicted by Einstein’s general relativity that we’ve never seen before,” explained chair of the EHT Science Council Heino Falcke of Radboud University, the Netherlands. “This shadow, caused by the gravitational bending and capture of light by the event horizon, reveals a lot about the nature of these fascinating objects and allowed us to measure the enormous mass of M87’s black hole.”

The image reveals the black hole at the center of Messier 87, a massive galaxy in the nearby Virgo galaxy cluster. This black hole resides 55 million light-years from Earth and has a mass 6.5-billion times that of the Sun.

Multiple calibration and imaging methods have revealed a ring-like structure with a dark central region — the black hole’s shadow — that persisted over multiple independent EHT observations. “Once we were sure we had imaged the shadow, we could compare our observations to extensive computer models that include the physics of warped space, superheated matter and strong magnetic fields. Many of the features of the observed image match our theoretical understanding surprisingly well,” remarks Paul T.P. Ho, EHT Board member and Director of the East Asian Observatory. “This makes us confident about the interpretation of our observations, including our estimation of the black hole’s mass.” [emphasis mine]

Note the highlighted words. To create this image they needed to combine data from numerous radio telescopes. Such work requires extensive calibration. The resulting image is manufactured, though without doubt it is manufactured from real radio data accumulated by multiple telescopes. Because those telescopes are separated by distance, however, there will always be gaps between their images, and it is in the calibration and imaging methods that the gaps are extrapolated away.

I don’t wish to imply that this image is fake. It is not. That the features persisted over multiple observations confirms that they were actually seeing the black hole’s shadow. It also confirms that these new interferometry techniques work.

However, much of the press hyperbole today is an effort to justify the many millions in tax dollars spent on this effort. The effort was absolutely worthwhile scientifically, but government bureaucracies always feel a need to oversell their work. That is partly what is happening here.

A dance of dust devils

A dance of dust devils on Mars

Many of my image posts about Mars have emphasized how slowly things change there. This post will highlight the exact opposite. When it comes to dust devils, it appears they can leave their trace frequently and often, and for some reason they seem to also favor specific locations.

June 2011
Click for full image.

The string of images above are all of the same location in the southern highlands of Mars. All were taken by the high resolution camera of Mars Reconnaissance Orbiter (MRO) and can be found in the camera’s archive. I have cropped them to show the same approximate matching area. The first image in that strip above, shown at higher resolution to the right, was taken in June 2011 and titled “Possible Gully Features” by the MRO science team. This is not surprising, as the rounded hills in this image are actually the southwest rim of a large crater, and the slopes of craters have been found one of the best places to find the gullies where seasonal changes occur, all possibly caused by underground water.

From the title, it appears that the science team might have first hoped to spot either slope streaks or recurring slope lineae, the two most intriguing of these changing features. Instead, that 2011 image showed them a very eroded crater rim with a small scattering of dust devil tracks.

November 2018
Click for full image.

This lack of gullies probably reduced interest in this location. It wasn’t until seven years later, in November 2018, that the MRO team decided to take another image of this location (the second image in the strip above and shown to the right at higher resolution). This time they found a significant increase in the number of dust devil tracks.

At this point the decision must have been made to take another image of this location a month later in December 2018. I assume the scientists were curious to see if they would spot any additional changes in that one month period. This was dust devil season, so the likelihood of seeing more tracks was not unreasonable.

How many tracks appeared, and whether they were concentrated in any particular place, such as the ridge lines, would help researchers better understand what generates them, which in turn will give them a better understanding of the Martian atmosphere.

The result was astonishing.
» Read more

ULA to fly Vulcan components on Atlas 5 flights

Capitalism in space: In order to speed the development of its next generation commercial rocket, the Vulcan Centaur, ULA will fly Vulcan components as they are developed on its Atlas 5 rocket.

The first Vulcan technology to fly on Atlas 5 will be new payload fairings from Swiss supplier Ruag built using an “out-of-autoclave” production process that enables fairing halves to be produced as one piece, a process Ruag says lowers production time and costs. “The out-of-autoclave fairings, which are manufactured by Ruag, and now in the U.S. — they are in a factory next to ours in Decatur — that’s going to fly on Atlas 5 this year,” Louradour said.

Sometime in 2020 they will then fly an Atlas 5 launch using the solid rocket boosters Northrop Grumman is building for Vulcan.

This is not really news. When ULA announced their plans to build Vulcan in 2015, they said then that they intended to transition from Atlas 5 to Vulcan over time, slowly introducing components on Atlas 5 until it was entirely replaced.

Nonetheless, it shows that ULA is adopting some of the the same common sense development procedures used by SpaceX. By taking advantage of launches as they happen, they can speed development. And they need to do this in order to keep pace with SpaceX.

Isn’t competition wonderful?

Chandrayaan-2 likely delayed to July

The new colonial movement: The launch of India’s first lunar lander/rover, Chandrayaan-2, will likely be delayed again, from May until July.

This further delay is not confirmed by ISRO, India’s space agency. Nor is any clear reason given in the article above to explain this additional delay.

It would not surprise me however. The head of ISRO, K. Sivan, is a trained engineer. He has shown himself to be very willing to impose delays if he has any doubts about the success of the mission.

Rocket Lab now building smallsats also

Capitalism in space: Rocket Lab announced this week that it is now offering satellite manufacture in addition to its launch services.

The “Photon” satellite platform was developed so that customers would not have to build their own satellite hardware. “Small satellite operators want to focus on providing data or services from space, but building satellite hardware is a significant barrier to achieving this,” said Rocket Lab founder and chief executive Peter Beck, in a statement. “The time, resources and expertise required to build hardware can draw small satellite operators away from their core purpose, delaying their path to orbit and revenue. As the turn-key solution for complete small satellite missions, Rocket Lab brings space within easy reach. We enable our customers to focus on their payload and mission – we look after the rest.”

The satellites are designed for a range of Low Earth Orbit missions including technology demonstrations, risk reduction pathfinders, constellations, and hosted payloads, the company said in a statement.

This is not surprising. With their Electron rocket now operational, and about to begin monthly launches, they have the profits and margin to offer a complete launch package to smallsat customers.

1 273 274 275 276 277 517