Polygons and scallops in the high mid-latitudes of the Martian lowland plains

Polygons and scallops in the high mid-latitudes of Mars
Click for original image.

Cool image time! Only yesterday I posted an image of polygons in the dry equatorial regions of Mars, where little evidence of near-surface ice is found and are thought to be the remnants from a long-dried lakebed.

Today we take a look at some polygons in the mid-latitudes of the icy northern lowland plains, where near-surface ice appears ubiquitous and as it sublimates away with the changing seasons causes all kinds of strange formations, including polygons.

The picture to the right, cropped, reduced, and sharpened to post here, is a good example, centered on a 0.6-mile-wide bright crater that appears to be filled with glacial ice. The image was taken on June 22, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and is located at 44 degrees north latitude on the western edge of Utopia Basin. As noted by the MRO science team in 2006 for a different MRO picture with similar features:
» Read more

The drying out of Mars’ tropics

The drying out of Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on June 26, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The science team calls the features surrounding these small 20 to 60 foot high hills “polygon features,” an apt description and a geological feature that is seen in many places on Mars.

When these features are found in the icy higher latitudes, it is believed they are formed in connection to the freeze-thaw cycle that causes cracks in the near surface ice. When found in the dry equatorial regions, where these polygons are located, they are usually thought to be ancient evidence of past standing water that left behind these cracks, much like the cracks seen in mud after the water has evaporated away on Earth.

The formation of these tiny hills is a bit more complex.
» Read more

Weird rocks on Mars

Weird rocks seen by Curiosity and Perseverance
For original images, go here and here.

Time for two cool images, this time from both of the American rovers on Mars.

The left picture above was taken on September 9, 2023 by the high resolution mast camera on Curiosity. It shows what appears to be a many-layered but rounded rock which appears typical of the many boulders that cover the terrain through which Curiosity is presently traveling. In the past the layered rocks that Curiosity has observed lower on the flanks of Mount Sharp have not been rounded. Instead, the delicate layers have often extended outward at the rock’s edges, almost like paper or threads. For some reason, the layers in the rocks here have been eroded smooth, suggesting they were once covered by flowing water or ice, able to round the rough edges in a way that Mars’ thin atmosphere can’t.

What is puzzling is the location, higher on Mount Sharp. One would expect the reverse, with such erosion more typical lower on the mountain and uneroded delicate layers more common higher on the mountain.

The right picture above was taken on September 8, 2023 by one of the high resolution mast cameras on the rover Perseverance in Jezero Crater, about 5,000 miles to west of Curiosity. It shows a rock whose shape is so strange it is hard to fathom a geological process that would result in this form. Possibly the rock was a surface layer on a larger round boulder, and the normal freeze-thaw cycle of Mars caused it crack off as one piece. The lump in the middle however makes this explanation questionable.

Also puzzling is the curved shape. On Mars almost no geological layers have been found that are curved. They are generally flat and horizontal, reflecting the lack of tectonic processes that on Earth often twist and squash layers.

Ingenuity completes 58th flight on Mars

Overview map
Click for interactive map.

Ingenuity yesterday successfully completed its 58th flight on Mars, flying 571 feet to the northwest for 107 seconds at a height of 33 feet.

The overview map above shows with the green line the approximate route of the helicopter. Though the Ingenuity engineering team has updated the flight log (at the link above), the route has not yet been added to the Perseverance interactive map. I am guessing at that route based upon the flight plan posted on September 7, 2023, which stated the rover would head northwest as well as image science targets. That suggests it was flown above Perseverance’s planned route, as indicated by the red dotted line.

This particular flight was different than recent flights, which have generally lasted slightly longer and covered a slightly longer distance, probably so the helicopter could find a safe landing spot. This time Ingenuity landed about 23 seconds early, though the distance traveled was still slightly longer. The difference once again was almost certainly caused by the helicopter’s software picking a good landing spot. It just got above its planned landing spot sooner than expected, found a good pad, and then landed.

The blue dot marks Perseverance’s present location. It is presently moving west to reach what the scientists consider an important geological contact between two layers.

Ridge in Martian lowland plains

Tiny ridge in Martian lowlands
Click for original image.

Today’s cool image is interesting not because it shows us some spectacular Martian terrain, but because the most distinct feature is a thin ridge only a few feet high that pokes up out of the northern lowland plains for apparently no reason.

The picture to the right, cropped, reduced, and sharpened to post here, was taken on July 1, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The ridge is about 1.8 miles long, and is only about five feet high on its western end, rising to about 25 feet on its eastern end.

The colors differences indicate that the ridge’s peak is likely bedrock, and the surrounding greenish/blue hue suggesting sand and rocks covered with dust. The ridge might be the top of a deeper buried topological feature but that is only a guess.
» Read more

Curiosity’s upcoming travels on Mount Sharp

Curiosity's view on September 6, 2023
Click for original image.

Overview map
Click for interactive map.

The panorama above, cropped, reduced, sharpened, and annotated to post here, was created on September 6, 2023 from eleven pictures taken by the right navigation camera on the Mars rover Curiosity.

This mosaic looks south, into the slot canyon dubbed Gediz Valles. The red dotted line on the panorama as well as the overview map to the right indicates the planned route the science team plans on traveling as it sends Curiosity higher and higher on Mount Sharp. On the overview map Curiosity’s present position is indicated by the blue dot. The yellow lines show the approximate area covered by the panorama above.

As noted in today’s update from the science team:

The rover is currently driving across bumpy terrain consisting of rounded bedrock sticking up between dark sand and drift as she drives south, and slightly uphill, along the Mt. Sharp Ascent Route. Due to the rugged ground, the rover sometimes ends her drive with a wheel or two perched on a rock.

When the rover’s placement prevents use of the arm, the scientists have it do other things, such as take more images of the many layers on Kukenan.

As rocky as this future route is, it appears it is less rocky than earlier terrain, which the science team found impossible to traverse requiring several route detours. Thus, the pace forward has been a bit faster lately.

Layered glaciers in two small Martian craters

Layered glaciers in two small Martian craters
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on April 7, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what planetary scientists label somewhat vaguely as “layered deposits,” because though the features inside both of these craters strongly resemble glacial ice features, until this is confirmed a good scientist remains skeptical.

I can be more bold, and call the layers glacial in both of these small and very shallow craters (less than a 100 feet deep). To explain this it is important to understand that the lighting and shadows make it hard to distinguish the high points of these layers. Based on the elevation data from MRO, the ground descends to the south, and the mesa in the southern half of each crater’s floor is actually far below the layers and material to the north.

This elevation data suggests that the layered material is surviving best against the crater’s northern interior wall, which at this latitude, about 36 degrees south, will be in shadow the most.
» Read more

Ingenuity flies on, completing its 57th flight

Overview map
Click for interactive map

On September 3, 2023 Ingenuity successfully completed its 57th flight on Mars, traveling 713 feet for two minutes and nine seconds. As noted at the tweet at the link, the helicopter has now accumulated more than 100 minutes of flight time.

As it has on almost all its recent flights, the helicopter flew a slightly longer distance for slightly longer that its flight plan, probably because it was taking time to find a safe landing spot.

The green dot on the overview map above shows Ingenuity’s new location. It has moved west and north of Perseverance, following the rover’s planned route as indicated by the red dotted line. The blue dot marks Perseverance’s present location. The yellow lines indicate the approximate area of the mosaic below, just released by the Perseverance science team, taken on July 8, 2023 by the rover’s high resolution camera and cropped and reduced to post here. It shows us the rover’s eventual path forward, into that mountain gap.

Mosaic looking west at the rim of Jezero Crater
Click for original, full resolution image (a large file).

MOXIE completes its last run on Mars, producing oxygen from the atmosphere

The MOXIE instrument on the rover Perseverance in Jezero Crater on Mars has completed its sixteenth and last operational run, once again demonstrating that oxygen can be extracted from the Martian atmosphere in sufficient quantities to supply a future colony of humans.

Since Perseverance landed on Mars in 2021, MOXIE has generated a total of 122 grams of oxygen – about what a small dog breathes in 10 hours. At its most efficient, MOXIE was able to produce 12 grams of oxygen an hour – twice as much as NASA’s original goals for the instrument – at 98% purity or better. On its 16th run, on Aug. 7, the instrument made 9.8 grams of oxygen. MOXIE successfully completed all of its technical requirements and was operated at a variety of conditions throughout a full Mars year, allowing the instrument’s developers to learn a great deal about the technology.

Future MOXIEs will likely be larger in scale, even more efficient, and include methods for liquifying and storing any oxygen produced, though for producing a breathable atmosphere for Martian colonists all that would be needed would be an enclosed habitat. An operating MOXIE-type oxygen generator could fill it.

Martian ice islands amidst a Martian ice ocean

Glacier country on Mars
Glacier country on Mars

Martian ice islands in a Martian sea of ice
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on June 19, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The scientists simply labeled this “Deposit Layers,” but that description hardly covers the incredibly diverse and puzzling features within the picture. We see layers, swirls, and radiating groves, all suggesting glacial features. We see mesas apparently covered with ice, and a flat surrounding lower plain that appears to be also ice but acting more like an ocean or sea. If there is any visible bedrock at this location it is difficult to determine.

The dominance of ice features is not surprising however, considering the location. The red dot on the overview map above marks this location, in a large 80-by-56-mile-wide basin inside the 2,000-mile-long northern mid-latitude strip I dub glacier country, because almost every image from MRO shows distinct glacial features. This particular basin is considered part of the segmented and indistinct canyon dubbed Mamers Valles, that winds its way through this glacier country of chaos terrain to eventually drain into the northern lowland plains.

From a geologist’s perspective, however, the layers are the most significant feature in the picture, as those layers mark the innumerable climate cycles that have apparently shaped the Martian surface. Mapping those layers will likely involve decades of work, but when largely completed we shall have a very precise history of the red planet’s geological history, going back several billion years.

Martian mounds surrounded by moats

Martian mounds with moats
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on February 1, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the camera team labels “Circular Mounds Surrounded by Moats,” which when all the known data is considered are probably caused by a spray of small meteorites landing on a field of ice.

Why ice? The location is at 37 degrees south latitude, in the cratered southern highlands of Mars, where many images show glacial-type features inside many craters. In fact, all the nearby craters at this location appear to have such features, suggesting the presence of near-surface ice trapped in these craters.

The picture actually looks at the floor of another such crater, with the mounds in the image’s upper left the crater’s indistinct central peaks. Though only 8.5 miles wide, the crater is deep, with interior walls that quickly rise 2,800 feet to the rim. That depth further suggests ice, as any snow that fell here in the far past could easily become trapped, inside what could be thought of a cold trap.
» Read more

Bubbling but frozen terrain on Mars

Bubbling but frozen terrain on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on June 8, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows some of the more unusual terrain found at the higher latitudes in the Martian northern lowland plains.

How do we explain this strange landscape? Based on what little we presently know about Mars, at 40 degrees north latitude this bubbly-looking surface probably indicates the presence of a lot of near-surface ice that at some time in the past was heated for some reason and thus bubbled upward to form these mounds. Think of tomato soup simmering.

Unlike simmering tomato soup, this terrain is solid and no longer bubbling. We are looking at a soup that has frozen even as it bubbled. The process could have been like an ice volcano, the ice turning to thick slurry that froze quickly, like lava. Or it could have happened fast, and then froze to remain unchanging in the eons since.
» Read more

Petrified dunes on Mars?

Petrified dunes on Mars?
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on May 31, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

I think the many parallel ridges are likely hardened and petrified dunes of sand because of their craggy nature. Dunes of sand would have a smoother, softer look, and in fact, if you look at some of the dunes inside the depression at the bottom-right of the picture you will see ridges with exactly that look, smooth and curved.

Nor is it unreasonable to believe these ridges are petrified dunes, as orbital data over time has found that many of the dunes on Mars, even those that look active, are not and have likely been hardened for centuries.

As for the ridges running at right angles to each other in the picture’s middle left, I have no idea. Possible we are looking at ancient dykes of lava that pushed up through cracks and faults, but this is pure guess.
» Read more

Ingenuity completes 56th flight on Mars

Overview map
Click for interactive map.

According to a tweet yesterday by the Ingenuity engineering team, the helicopter successfully completed its 56th flight on Mars on August 25, 2023, flying 1,345 feet to the northwest at a height of 39 feet for 141 seconds, or two minutes and twenty-one seconds. The distance traveled and the flight time were slightly longer than planned, but that likely was because the helicopter used that extra time to determine a safe landing site.

The green line on the map above shows the approximate new position of Ingenuity, positioned close to the planned route of Perseverance as indicated by the red dotted line. Perseverance’s present location is marked by the blue dot.

Neretva Vallis is the gap in the western rim of Jezero crater through which the delta had flowed eons before, and is the rover’s eventual target in order to begin exploring the terrain beyond, known to be very rich in mineral content.

Meanwhile, the Ingenuity engineering team has already released its flight plan for the 57th flight, heading north about 670 feet and targeting tomorrow for flight.

The splatter surrounding a mid-latitude Martian crater

A channel in the splatter of a Martian crater
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on April 12, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists simply label as “Northern Mid-latitude Terrain”.

I have focused in on that meandering channel and the landscape around it. On Earth we would assume that channel marks the drainage of a river or stream, possibly also shaped by a glacier at some point because of its U-shaped profile. This guess is strengthened by the elevation data from MRO, which shows the channel descending to the southwest about 440 feet along its 2.2 mile length.

The channel and the eroded look of the surrounding terrain suggests strongly the presence of near-surface ice at this location, which is not unreasonable based on its 32 degree north latitude. The wider look below only adds further strength to this hypothesis, but also adds a lot more details explaining the genesis of this strange landscape.
» Read more

Buried ridges at the bottom of a Martian abyss

Buried ridges in a Martian abyss
Click for full image.

Today’s cool image could be labeled a “What the heck?!” photo, as the origin of its most distinct feature is utterly baffling. The picture to the right, cropped, reduced, and sharpened to post here, was taken on June 18, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows what look like a collection of meandering ridges peeking out from a terrain covered by thick dust.

The scientists label this dust-covered ground, as well as the ripple dunes to the south in the full image, “sand sheets.” Without question, the ground here seems to resemble a Sahara-like terrain. It is utterly featureless, other than the few bedrock features that poke up out of that sand. In the full image some peaks stick out, but it the meandering ridges in this section that are most intriguing. They are reminiscent of rimstone dams in caves, but what formed them remains baffling, since cave rimstone dams are formed by the interaction of limestone and water, and there is absolutely no evidence of any near surface ice at this location in the dry equatorial regions of Mars.

All the ridges signify is a buried terrain formed in some inexplicable way.
» Read more

The prevailing winds in Mars’ volcano country

The prevailing winds in Mars' volcano country
Click for original image.

Today’s cool image is actual one new picture and four past images, which taken together reveal something about the larger wind patterns on Mars. The picture to the right, cropped, reduced, and sharpened to post here, was taken on June 27, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO) and shows a tiny wind-swept section of the giant volcanic ash field dubbed the Medusae Fossae Formation, about the size of the subcontinent of India and thought to be source of most of the dust on Mars.

The innumerable parallel thin ridges here all suggest that the prevailing winds blow from the southeast to the northwest. As they blow, the scour the surface ash out, and sometimes reveal the underlying bedrock, which here shows up as those small peaks and a handful of northeast-to-southwest trending larger ridges. Note too that the picture shown is only a small section of the full image, which shows that this landscape continues for a considerable distance in all directions.
» Read more

InSight team releases a global map of Mars’ seismic zones

Global map of quakes on Mars
Click for original image.

In a new paper that reviewed the entire archive of Mars quakes detected by the seismometer on InSight during its four years of operation on the Martian surface from 2018 to 2022, scientists have now released an updated global map showing the regions on Mars where seismic activity is most common. From the abstract:

Seismicity on Mars occurs mostly along or north of the boundary between the southern highlands and northern lowlands. Valles Marineris is seismically more active than previous catalogs of located events imply. Further, we show evidence that two events likely originate from the Olympus Mons region.

The map to the right is figure 6 from the paper, and shows clearly the sum total of InSight’s data. The yellow triangle marks InSight’s landing spot. The red line delineates the distant quakes from the nearby quakes detected by InSight. The green line is what the scientists identify as the border between the northern lowland plains and the southern cratered highlands. The data suggests that transition point could be linked geologically in some manner to the quakes themselves.

Though the majority of the detected quakes were in the Cerberus Fossae region, the data also suggests two other seismic active regions, one under the giant canyon Valles Marineris and the other south of Mars’ largest volcano, Olympus Mons.

NASA reveals three year delay in its New Frontiers planetary mission program

NASA last week revealed that because of “budget uncertainty” it will not begin accepting project proposals in its New Frontiers planetary mission program this fall as planned, and will in fact not begin accepting new proposals until 2026.

At a NASA SMD town hall meeting July 27, Lori Glaze, director of NASA’s planetary science division, warned a potential extended delay in the release of the New Frontiers AO. “If the planetary science funding levels that are anticipated as a result of this tight budget environment are actually realized over the next two or so years,” she said, “it is unlikely we’ll be able to solicit New Frontiers perhaps not before 2026.” That delay was made official with the release of the community announcement.

The draft AO sought proposals for missions on six topics, as recommended by the planetary science decadal survey in 2011: a comet surface sample return, a mission to Jupiter’s volcanic moon Io, a lunar geophysical network, a sample return mission to the moon’s South Pole-Aitken Basin, a mission to characterize the potential habitability of Saturn’s icy moon Enceladus and a probe of Saturn’s atmosphere.

The New Frontiers program previously funded the New Horizons mission to Pluto, the Juno mission to Jupiter, and the OSIRIS-REx asteroid mission to Bennu.

The article at the first link above as well as the NASA officials quoted attempt falsely to blame the budget problems on the Republican House leadership, which insisted that the committee which reviews the NASA budget as well as the budgets of Justice and Commerce cut 28.8% from among those agencies in its 2024 budget review. That committee (as well as the Senate) however was very generous to NASA, essentially giving it the same budget as previously, with only a 1% cut, while slashing budgets for departments in Justice and Commerce to make up the difference.

The real blame for this delay in NASA’s planetary program almost certainly falls on the Mars Sample Return mission, which has seen gigantic budget overruns that are apparently swallowing the entire future planetary program. NASA’s planetary budget can’t pay for any other new planetary missions as long as it must pay for the cost overruns for the sample return mission.

This is no surprise, as we’ve seen this movie before. When Webb’s budget ballooned 20x, from its proposed $500 million to $10 billion, it essentially shut down the rest of NASA’s astrophysics program, delaying or cancelling all other space telescope projects for more than a decade. Now the planetary program is experiencing its own version of this same pain.

The problem is the Mars Sample Return mission itself. Its design has been haphazard and sloppy and constantly changing. It is also reliant on older technology ideas that will soon be made obsolete by Starship/Superheavy. NASA would be wiser to delay that project to await the development of the launch capabilities that will make it cost effective, and let a fleet of other missions happen instead.

I guarantee however that NASA won’t do that, because it will require some boldness. The philosophy in Washington remains the same: Do the same failed thing over and over again in the vain hope it might work next time.

Residue ice in southern mid-latitude Martian crater?

Residue ice in the southern mid-latitudes of Mars?
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on April 10, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows an unnamed 1.2-mile-wide crater at about 35 degrees south latitude with what appears to be residual glacial ice hugging its north interior wall.

As this is in the southern hemisphere, the ground immediately below the south-facing interior wall of the crater is going to be in shadow the most, and thus it will also be the place where any surface or near-surface ice will survive the longest. In this case it appears that from the bumpy nature of that residual ice it has also been sublimating away. Within it however remains the faint hint of multiple layers, suggesting about a dozen past climate cycles with each new cycle producing a new but smaller layer with less ice.

The material in the southern half of the crater floor appears to be dust formed into ripple dunes.
» Read more

Flow channels on Mars

Flow channels on Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on May 13, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists call a “channel and depression”, though to my eye everything looks like flow channels, descending to the east.

The drop from the narrow northern channel to wider southern channel is about 200 feet, with the small crater on the left sitting about halfway between. To our Earthbound eyes, something clearly flowed downhill from that northern channel into the wider channel. What we don’t know now is what the material was that did the flowing?

Was it liquid water? Glaciers? The overview map below provides some context, though it doesn’t actually provide an answer.
» Read more

August 24, 2023 Quick space links

Courtesy of BtB’s stringer Jay.

 

  • Perseverance science team touts rover’s 19th core sample
  • If you listen closely to the two scientists in the video, they really can only guess about much of this geology, since Perseverance does not have the same geological capabilites as Curiosity. They can make some superficial analysis of the rocks, but the more detailed work will have to wait until those core samples are returned to Earth. Curiosity however can not only drill, but it has equipment to analyze those drill samples itself, there. While Curiosity can’t do what an Earth lab would do, it does it now. With Perseverance we will have to wait a decade or more to get to the samples.

Big mountains everywhere inside Valles Marineris

Big mountains in Valles Marineris
Click for original image.

While the giant canyon Valles Marineris on Mars is known best as the biggest known canyon in the solar system — large enough to cover the continental United States several times over — that size tends to diminish the mountainous nature of its interior. Today’s cool image attempts once again (see for example these earlier posts here, here, here, here, and here) to illustrate that stupendous and mountainous nature.

The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on May 15, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The goal of the picture was to get a better view of the numerous layers of this terraced cliff wall. What I see, however from my tourist’s perspective, is a steep wall that descends almost 4,500 feet from the high to the low point in just over three miles. This is as steep if not steeper than the walls of the Grand Canyon.
» Read more

Where the Martian landscape begins to dry out

Where Mars begins to dry out
Click for original image.

Today’s cool image to the right, cropped, reduced, and sharpened to post here, provides us a glimpse at the lower mid-latitudes of Mars where the terrain is beginning to dry out as we move south. The picture was taken on April 29, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows what the scientists label “large linear features.”

The main north-south ridge is only about 20-25 feet high, and its meandering nature (which can be seen more clearly in the full image) suggests it is possibly an inverted channel, formed when the bed of a former canyon gets compressed by the water or ice that flows through it, and when the surrounding terrain gets eroded away that channel bed becomes a ridge.

These ridges however could also possibly be volcanic dikes, where magma had pushed up through fractures and faults to form these more resistant ridges.
» Read more

The very tip of a thousand-mile-long crack on Mars

The very tip of a 1000-mile-long Martian crack
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on June 22, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label as “The tip of Cerberus Fossae,” a thousand-mile-long crack in the surface of Mars formed when the ground was pulled apart by underground forces.

If you look closely at the picture’s right edge, you can see that beyond the end of the fissure it actually continues but appears filled with material. In the full picture this however is the end of the crack. Beyond this point the ground is as smooth and as generally featureless as seen within the picture itself, and as also shown in this MRO context camera view of the same area.

Cerberus Fossae is actually three parallel cracks, with this the northernmost one. The eastern tip of the middle crack was previously highlighted in a cool image in July 2022.
» Read more

A Martian wedding cake surrounded by brain terrain

Brain terrain surrounding a Martian wedding cake
Click for original image.

Of all many cool images I’ve posted, today might take the cake (pun intended) for the best illustration of the alien nature of Mars. The picture to the right, cropped, reduced, and sharpened to post here, was taken on June 28, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows what the scientists simply label as “flow features.”

I personally don’t see any obvious flow features in the full image, unless one wants to call the brain terrain that covers this entire plain a flow feature. Brain terrain is a feature unique to Mars whose origin remains a mystery to geologists. As noted by scientists in captioned MRO image in 2019:

You are staring at one of the unsolved mysteries on Mars. This surface texture of interconnected ridges and troughs, referred to as “brain terrain” is found throughout the mid-latitude regions of Mars.

…This bizarrely textured terrain may be directly related to the water-ice that lies beneath the surface. One hypothesis is that when the buried water-ice sublimates (changes from a solid to a gas), it forms the troughs in the ice. The formation of these features might be an active process that is slowly occurring since HiRISE [MRO’s high resolution camera] has yet to detect significant changes in these terrains.

The wedding cake inside the small crater to the upper right only adds to the alienness of this terrain.
» Read more

Mars’ endless cycles of glacial activity

Overview map

Mars' endless cycles of glacial activity
Click for original image.

While the images being sent to us from Mars Reconnaissance Orbiter (MRO) repeatedly show features that appear convincingly like glaciers, the data is also beginning to tantalize us with evidence of the endless glacial cycles that have occurred on Mars.

The picture to the right, cropped, reduced, and sharpened to post here, was taken on June 27, 2023 by MRO’s high resolution camera. The red dot in the inset of the overview map above shows the location, the western flanks of an apron that surrounds a 3,800-foot-high mesa in the chaos region Deuteronilus Mensae, the western end of the 2,000-mile-long mid-latitude strip of chaos regions I dub glacier country, because every image seems to show some form of glacial feature.

Today’s picture is no different. The apron shown here drops the last 1,000 feet of the mesa’s total 3,800-foot height, during which it shows dozens of what the scientists label “parallel lines.” These lines likely reveal the layers of glacial ice in this apron, with the older layers larger and more extensive. Apparently, with each growth cycle the glacier obtained less snow from the atmosphere, so the more recent layers grew less.

In other words, the amount of water on Mars has been declining with time.

Untangling these numerous layers will undoubtedly give us a remarkably detailed history of Mars entire geological history. Unfortunately, that untangling cannot happen until we have boots on the ground, on Mars, able to drill core samples from many different places.

The inexplicable behavior of Martian dust devils

The inexpicable behavior of Martian dust devils
Click for original image.

Today’s cool image illustrates the puzzling inclination of Martian dust devils to strongly favor specific regions on the Martian surface, for reasons that at present no one can confidently explain.

The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on June 28, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a plethora of dust devil tracks, almost all of which have an east-west orientation. Moreover, the tracks seem uninfluenced by the surface topography, continuing on their path without deviation, even as they cross cliffs, craters, and mounds. The orientation tells us the direction of the prevailing winds, though I don’t know if those winds blow to the east or to the west.

What makes this image revealing is that a gathering of such dust devil tracks is seen so rarely in other MRO high resolution photographs. I look at a lot of MRO pictures, and though dust devil tracks are not rare, most images don’t show this many. Apparently, there are specific conditions on Mars that cause a lot of tracks to appear in specific locations, either because atmospheric conditions create a lot more dust devils, or the ground conditions allow the tracks to become more visible.
» Read more

An avalanche in the West Virginia of Mars

An avalanche in the West Virginia of Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, and reduced to post here, was taken on June 27, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

I have cropped it to focus on this one hill, about 900 feet high (though the elevation data from MRO is somewhat uncertain at this resolution), because of that major landslide on its northern slopes. At some point in the past a major piece of the exposed bedrock at the top broke off and slide about halfway down the mountain, almost as a unit, settling on the alluvial fill that comprises the bottom half of the hill’s flanks.

The bedrock surrounding the peak is also of interest because of its gullies, all of which were created by downward flowing material. Was it ice? Water? Sand? Or maybe a combination of two or three? If water or ice was involved it was a very long time ago, as this location is in the dry equatorial regions of Mars. There is little known near-surface ice here.
» Read more

Ingenuity’s 55th flight completed

Overview map
Click for interactive map.

The Ingenuity engineering team today updated the helicopter’s flight log, showing that the 55th flight occurred on August 12, 2023, one day later than originally planned, and flew 881 feet for 143 seconds, 61 feet and 9 seconds longer than planned.

The overview map above shows the present locations of both Perseverance and Ingenuity. The green dot marks Ingenuity’s new position, while the blue dot marks where Perseverance presently sits in Jezero Crater. Based on this map, the main goal of the flight was apparently to fly Ingenuity over a route that Perseverance will likely use to return to its planned route, as indicated by the red dotted line.

1 10 11 12 13 14 80