Russia to do all-female simulated Moon mission

The competition heats up: The Institute of Biomedical Problems in Moscow has announced plans to do an all-female eight day simulated mission to the Moon.

Currently scheduled for October-November 2015, the experiment will differ from the Mars-500 venture not just in duration but most notably in crew composition. For Moon-2015, all the participants will be women, drawn from the staff at IBMP itself.

In their July announcement, IBMP named the ten volunteers from whom the actual crew will be chosen. All have strong scientific, medical or research backgrounds and many have worked in the space or aviation medicine sphere, working closely with cosmonauts before or after visits to the International Space Station (ISS).

The Institute’s focus is medical, so the goal is not to develop engineering to get to the Moon but to study the human body and how it reacts to living in a spacecraft environment. In this case, they can’t simulate weightlessness so the only thing they can study is how the crew interacts with each other in a confined space for a period of time.

New sharp images of Ceres from Dawn

The Lonely Mountain on Ceres/>

Cool image time! The Dawn science team has released new images of Ceres, including one of a single mountain they have dubbed the Lonely Mountain.

The mountain, located in the southern hemisphere, stands 4 miles (6 kilometers) high. Its perimeter is sharply defined, with almost no accumulated debris at the base of the brightly streaked slope with bright streaks. The image was taken on August 19, 2015. The resolution of the image is 450 feet (140 meters) per pixel.

I have cropped the image and posted it on the right. Be sure to look at the full resolution version. Not only does the mountain have no debris at its base, it truly is lonely. There are no similar features anywhere near it. It almost looks like someone took a shovel of material out of the ground to create the crater immediately to the south and then dumped that material to create the mountain.

Note that the mountain is more like a mesa, with a flat top, which suggests it is the remains of a higher elevation surface that eroded away in the distant past. The geological processes that could have done this however remain quite puzzling at this point.

The one climate prediction that has come true

Fraud at NOAA: Several years ago Steve Goddard predicted that, no matter what the temperature records told us, NOAA scientists would begin to declare every month the hottest on record. It turns out he was 100% right!

Be sure and look at the next to last graph at the link. It shows the increasing difference between the raw, unadjusted temperature data and the adjustments made by NOAA scientists. Not surprisingly, the adjustments all increase the trend towards warming, and have been doing so more and more with each year. Nothing can justify such adjustments, under any rational scientific argument. These guys are either incompetent, stooges for their political bosses, or political hacks. Or all three.

Posted on the outskirts of Phoenix.

Oldest message-in-a-bottle found after 108 years

A bottle launched to sea as part of a scientific experiment in the early 20th century has been found by a couple in Germany, 108 years after it was deployed.

When the couple unfurled the note inside, they found a message in English, German and Dutch. It asked the finder to fill in some information on where and when they had found the bottle, before returning it to the Marine Biological Association in Plymouth. It said whoever did so would be rewarded with one shilling.

Communications director of the Marine Biological Association, Guy Baker, told The Daily Telegraph: “It was quite a stir when we opened that envelope, as you can imagine.” Once at the association, staff recognised the bottle was one of 1,020 released into the North Sea between 1904 and 1906 as part of a project to test the strength of currents. Mr Baker told the paper: “It was a time when they were inventing ways to investigate what currents and fish did. Many of the bottles were found by fishermen trawling with deep sea nets. Others washed up on the shore, and some were never recovered. Most of the bottles were found within a relatively short time. We’re talking months rather than decades.”

True to their word, the association sent a shilling to the couple as the promised payment.

Whiskey in space!

An experiment to test how whiskey ages in weightlessness is about to begin on ISS.

H-II Transfer Vehicle No. 5, commonly known as “Kounotori5” or HTV5, was launched on Wednesday from JAXA’s Tanegashima Space Center carrying alcohol beverages produced by Suntory to the Japanese Experiment Module aboard the International Space Station, where experiments on the “development of mellowness” will be conducted for a period of about one year in Group 1 and for two or more years (undecided) in Group 2.

Don’t worry, the astronauts on ISS won’t be getting drunk. After the test period is complete the samples will then returned to Earth, untasted, where they will then be compared with control samples.

Eight telescope protesters arrested on road to summit of Haleakala on Maui

Police arrested 8 protesters on Thursday attempting to block trucks delivering construction materials for the new Daniel K. Inouye Solar Telescope (DKIST) under construction since 2012 on the summit of Haleakala on the island of Maui in Hawaii.

One of those arrested has been a leader of the protests at Mauna Kea against the Thirty Meter Telescope.

The Hawaii state government continues to waffle on what it is going to do. Either they will make sure that construction of these telescopes can proceed, as per the agreements made after years of negotiation, or they are going to bow to a handful of protesters. Right now it appears that it can’t seem to make up its mind.

Meanwhile, if these protesters really have the support of a majority of Hawaiians, then astronomy in Hawaii is doomed.

Cassini’s last close-up images of Dionne

Dionne on August 17, 2015

Cool image time! NASA has released images from Cassini’s Monday close fly-by of Saturn’s moon Dionne.

The press release itself did not include any of the close-ups for some reasons. You have to dig for them at the site. Go here, here, here, and here to see a few of more interesting, the first of which is a global view taken just before the fly-by. The second is the highest resolution image, with a resolution 10 feet per pixel. The third shows the nighttime surface lit entirely by reflected light from Saturn. The fourth, shown on the right, was taken from an altitude of 470 miles with a resolution of 150 feet to the pixel. It shows the moon’s rolling, pock-marked, and cratered surface, to the horizon.

A calculator beats IPCC supercomputer models in predicting climate

IPCC computer models vs observations

The uncertainty of science: A simple climate model [pdf], designed to run on a calculator and not relying on the premise that man-made carbon dioxide is causing global warming, appears more accurate at predicting the climate than the high-powered supercomputer models of the IPCC.

The current climate models fueling belief in manmade global warming do have fairly good “fit” to the data on which they were tested. However, the predictivity isn’t that great – see the recent warming “pause” or have a look at the figure above. They’re also hella complex, requiring thousands of hours of supercomputer computations.

Early this year, Christopher Monckton of Brenchley, Willie Soon of the Harvard-Smithsonian Center for Astrophysics, David Legates of the University of Delaware, and Matt Briggs, “Statistician to the Stars” and sometimes PJM contributor, published a paper in Science Bulletin (the Chinese equivalent of Science) entitled “Why models run hot: results from an irreducibly simple climate model”.

They took a different approach. Observing the issues with the current climate models, they constructed a very simple model working from first principles. “Irreducibly” here means “it can’t get simpler and reflect basic physics.” … This model is about one step advanced from a “back of the envelope” calculation, since it requires taking a natural logarithm as well as some multiplication, but it’s easily done with a scientific calculator — or even a slide rule.

But it models actual temperature observations better than the complex models. [emphasis in original]

The figure on the right is from the new Monckton paper, and shows the utter failure of every complex global-warming climate model to predict the global climate for the past 35 years. Whether this new very simple model is more accurate than these supercomputer models, however, remains to be seen, but their work definitely points out the uncertainty and failure of the present theories to explain the climate. They simply don’t do so, and thus are not a useful tool for gauging what we should do about the climate, if anything. As the writers of the simple model conclude,

The general-circulation models now face a crisis of credibility. Not one of them predicted a stasis of as long as 18 years 6 months in global temperatures. Indeed, it is often stated that periods [greater than] 15 years without warming are inconsistent with models’ predictions. For instance, [two IPCC papers] state: ‘‘The simulations rule out (at the 95 % level) zero trends for intervals of 15 year or more, suggesting that an observed absence of warming of this duration is needed to create a discrepancy with the expected present-day warming rate’’.

The models relied upon in [the IPCC reports] predicted twice as much warming from 1990 to 2014 as has been observed. All models predicted a warming rate in the crucial tropical mid-troposphere considerably in excess of observation. It is no longer credible to ignore these ever-widening discrepancies between prediction and observation. IPCC itself has recognized that, at least as far as medium-term prediction is concerned, the models have failed, raising the legitimate question whether the longer-term predictions may also have been exaggerated, perhaps as greatly as the medium-term predictions.

As I say over and over again, the science of climate is incredibly complex and uncertain. No one yet understands fully how the Earth’s climate functions, and anyone who claims they do is either an ignorant fool or an outright liar. Keep that in mind as this presidential election cycle unfolds and candidates are challenged by the mainstream press (made up mostly of ignorant fools and outright liars) to comment on man-made global warming.

Another slew of science papers retracted because of fraud

The uncertainty of peer-review: A major scientific publisher has retracted 64 articles in 10 journals after discovering that the so-called independent peer reviewers for these articles were fabricated by the authors themselves.

The cull comes after similar discoveries of ‘fake peer review’ by several other major publishers, including London-based BioMed Central, an arm of Springer, which began retracting 43 articles in March citing “reviews from fabricated reviewers”. The practice can occur when researchers submitting a paper for publication suggest reviewers, but supply contact details for them that actually route requests for review back to the researchers themselves.

Overall, this indicates an incredible amount of sloppiness and laziness in the peer-review field. In total, more than a 100 papers have been retracted, simply because the journals relied on the authors to provide them contact information for their reviewers, never bothering to contact them directly.

I suspect that these retractions are merely the tip of the iceberg. Based on the garbage papers I see published in the climate field, I will not be surprised if even more peer-review fraud is eventually discovered.

Comet 67P/C-G’s fractured surface

Rosetta scientists today published a paper describing the many different types of fractures they have identified on the surface of Comet 67P/C-G.

Ramy’s team identified three distinct settings in which the fractures occur: networks of long narrow fractures, fractures on cliffs and fractured boulders. In addition, several unique features were identified: the parallel fractures running across Hathor’s 900 m-high cliffs, an isolated 500 metre-long crevice in the Anuket region of the comet’s neck, and a 200 m-long complex crack system in Aker on the large lobe. “The fractures show a variety of morphologies and occur all over the surface and at all scales: they are found in the towering 900 m-high cliffs of Hathor right down to the surfaces of boulders a few metres across,” describes lead author M. Ramy El-Maarry from the University of Bern.

The most prevalent setting appears to be networks of narrow fractures that extend for a few metres to 250 m in length, typically on relatively flat surfaces. Interestingly, in some locations, the fractures appear to cross cut each other in polygonal patterns at angles of 90º – on Earth and Mars this is often an indicator of ice that has contracted below the surface.

While their focus is on the geology of the comet and its development as indicated by the fractures, what I see is the root cause of the comet’s eventual destruction. Its two-lobed shape is inherently unstable, and these fractures illustrate this. At some point, the comet will break apart. The fractures indicate where the first breaks might occur.

A detailed status update on Mars Reconnaissance Orbiter

Link here. The orbiter, which continues to send down spectacular images while acting as a workhorse communications relay for the rovers on the ground, appears to be in reasonable shape. It has enough fuel to operate into the late 2020s. The other known problems appear manageable.

Zurek said the most significant technical issue aboard MRO is in one of the spacecraft’s inertial measurement units used to determine the orbiter’s motion and orientation. Zurek said a laser inside one of the unit’s gyroscopes is showing signs of aging, and ground controllers are trying to coax the sensor along by switching to an identical backup unit.

In the meantime, engineers are working on changing the orbiter’s navigation logic to rely on star trackers in case both navigation sensors go down, Zurek said. One of the gimbals used to point MRO’s power-generating solar panels toward the sun is also sticky, a sign of age-related “arthritis” aboard the spacecraft, Zurek said.

MRO also abruptly switches to its backup “B side” computer on occasion, temporarily interrupting scientific observations for a few days each time. Zurek said the orbiter’s ground team has learned to deal with the problem, which has escaped diagnosis with a root cause.

Of course, there are always the unknown problems that haven’t yet popped up that could be devastating. Let us hope none appear soon, since NASA will not be able to send a replacement until 2022, at the earliest.

Lumbering the Redwoods

An evening pause: Tonight’s pause is a challenge. Can you watch this 1940s industrial, describing the lumbering and milling of California redwoods, without feeling outrage or indignation against the work being described? Can you watch it with an open mind, recognizing that trees are renewable?

Or will the environmental brainwashing that our society has undergone since the 1960s cause you to shut your mind and refuse to consider the other side of this story?

Hat tip Phill Oltmann.

Requiring scientists to document their methods caused positive results in medical trials to plunge

The uncertainty of science: The requirement that medical researchers register in detail the methods they intend to use in their clinical trials, both to record their data as well as document their outcomes, caused a significant drop in trials producing positive results.

A 1997 US law mandated the registry’s creation, requiring researchers from 2000 to record their trial methods and outcome measures before collecting data. The study found that in a sample of 55 large trials testing heart-disease treatments, 57% of those published before 2000 reported positive effects from the treatments. But that figure plunged to just 8% in studies that were conducted after 2000. Study author Veronica Irvin, a health scientist at Oregon State University in Corvallis, says this suggests that registering clinical studies is leading to more rigorous research. Writing on his NeuroLogica Blog, neurologist Steven Novella of Yale University in New Haven, Connecticut, called the study “encouraging” but also “a bit frightening” because it casts doubt on previous positive results.

In other words, before they were required to document their methods, research into new drugs or treatments would prove the success of those drugs or treatment more than half the time. Once they had to document their research methods, however, the drugs or treatments being tested almost never worked.

The article also reveals a failure of the medical research community to confirm their earlier positive results:

Following up on these positive-result studies would be interesting, says Brian Nosek, a psychologist at the University of Virginia in Charlottesville and the executive director of the Center for Open Science, who shared the study results on Twitter in a post that has been retweeted nearly 600 times. He said in an interview: “Have they all held up in subsequent research, or are they showing signs of low reproducibility?”

Well duh! It appears the medical research field has forgotten this basic tenet of science: A result has to be proven by a second independent study before you can take it seriously. Instead, they would do one study, get the results they wanted, and then declare success.

The lack of success once others could see their methods suggests strongly that much of the earlier research was simply junk, not to be taken seriously.

NOAA scientists predict developing El Niño could be strongest ever

The uncertainty of science: NOAA scientists yesterday predicted that the developing El Niño in the Pacific could be strongest ever recorded.

They appear to base this prediction on two factors:

It started unusually early — in March instead of June. This could be because warm waters left over from last year’s weak El Niño gave it a head start, says Anthony Barnston, chief forecaster at the International Research Institute for Climate and Society at Columbia University in Palisades, New York.

And this would be the second El Niño year in a row, following the weak El Niño that developed late last year, Barnston adds. A similar El Niño double-header happened between 1986 and 1988, but forecasters predict that the current El Niño will become stronger than either of those two events.

A strong El Niño would help end the drought in California. However, I wouldn’t bet the house on this prediction, considering how poorly last year’s prediction fared. Scientists really don’t yet understand all the factors behind this phenomenon, so their predictions are pretty much guesses at this point.

Astronomers photograph an exoplanet

51 Eridani b

Cool image time! Astronomers have used the Gemini Telescope on Mauna Kea to take the clearest image yet of a Jupiter-sized gas giant orbiting another star 96 light years away.

Once the astronomers zeroed in on the star, they blocked its light and spotted 51 Eri b orbiting a little farther away from its parent star than Saturn does from the sun. The light from the planet is very faint — more than one million times fainter than its star – but GPI can see it clearly. Observations revealed that it is roughly twice the mass of Jupiter. Other directly imaged planets are five times the mass of Jupiter or more. In addition to being the lowest-mass planet ever imaged, it’s also the coldest — about 800 degrees Fahrenheit — and features the strongest atmospheric methane signal on record. Previous Jupiter-like exoplanets have shown only faint traces of methane, far different from the heavy methane atmospheres of the gas giants in our solar system.

All of these characteristics, the researchers say, point to a planet that is very much what models suggest Jupiter was like in its infancy.

The exoplanet is the bright spot near the bottom of the image.

Cassini’s last fly-by of Dionne on Monday

Dionne

On Monday August 17 Cassini will make its last close fly-by of Saturn’s moon Dionne, dipping to within 295 miles of the surface.

During the flyby, Cassini’s cameras and spectrometers will get a high-resolution peek at Dione’s north pole at a resolution of only a few feet (or meters). In addition, Cassini’s Composite Infrared Spectrometer instrument will map areas on the icy moon that have unusual thermal anomalies — those regions are especially good at trapping heat. Meanwhile, the mission’s Cosmic Dust Analyzer continues its search for dust particles emitted from Dione.

The image of Dionne above is from a June 16, 2015 fly-by, The diagonal line at the top is Saturn’s rings.

After more than a decade, Cassini’s mission is in its final stages. When completed, we will have no way for decades to get close-up images of this gas giant, its spectacular rings, or its many very different moons.

The wild Martian terrain

Yardangs on Mars

This week’s image release from the high resolution camera on Mars Reconnaissance Orbiter illustrate well the wild and mysterious geology of the Martian surface. I include cropped sections from two images here, just to give you a taste. Go to the link to do your own exploring.

The image to the right is a cropped and scaled down version of the original image, so the details are not easily seen. Make sure you look at the original. The strange yardang ridges, all aligned alike, rise up out of a relatively smooth plain.

Yardangs are formed when a surface that is composed of materials of differing strengths (i.e., of both harder and softer materials) is shaped by the abrasive action of sand and dust carried by the wind. In this case, and given the proximity of the Apollonaris Patera volcanic center, we think that these wind-carved deposits are comprised of volcanic ash and pyroclastics that erupted from Apollonaris when it was last active in the not-too-distant geologic past. Over time, the softer materials (likely volcanic ash) were eroded away, leaving behind the harder materials in the form of elongated ridges that are parallel to the direction of the prevailing wind. The end result is a stunning, out-of-this-world display of yardangs, sculpted with the artistic chisel of the Martian wind.

That’s the theory, anyway. The actual geological process that formed these ridges is probably a lot more complicated.

The image below the fold illustrates the on-going surface activity on Mars.
» Read more

Where is Pluto’s nitrogen coming from?

As New Horizons’ engineers download data and plan future maneuvers to fly past one of two candidate Kuiper Belt objects, the science team today outlined the background mystery of Pluto’s nitrogen.

Pluto’s atmosphere is similar to Earth’s in that it is predominantly composed of nitrogen (N). But Pluto’s atmosphere is ~98% N, while Earth’s is only ~78% N. Pluto’s atmosphere is also considerably thinner than Earth’s with ~10,000 times lower pressure at the surface.

The nitrogen in Pluto’s atmosphere (in the form of N2 gas) is actually flowing away and escaping the planet at an estimated rate of hundreds of tons per hour. We also see what looks like flowing ice on Pluto’s surface in high resolution images made by New Horizons. The water ice (H2O) that we are familiar with on Earth would be completely rigid and stiff at Pluto’s surface temperatures, but ice made out of N2 would be able to flow like a glacier. So where does all of this nitrogen come from?

They have rejected comets as a source, and have predicted that geologic activity on Pluto itself could dredge the nitrogen up from the planet’s interior. (This prediction by the way was made before the New Horizons’ flyby, which has proved it likely.)

If their theory ends up the answer, then they will also prove that Pluto is losing mass, albeit slowly. Nitrogen from within is being processed out of the interior, into the atmosphere as gas, and then into space because Pluto’s gravity is too small to hold it.

Sudden outburst activity on Comet 67P/C-G

jet on Comet 67P/C-G

Cool image time! As Comet 67P/C-G approaches perihelion, Rosetta is detecting and imaging more and more activity coming from the nucleus, including a power outburst lasting less than a half hour.

In the approach to perihelion over the past few weeks, Rosetta has been witnessing growing activity from Comet 67P/Churyumov–Gerasimenko, with one dramatic outburst event proving so powerful that it even pushed away the incoming solar wind.

The comet reaches perihelion on Thursday, the moment in its 6.5-year orbit when it is closest to the Sun. In recent months, the increasing solar energy has been warming the comet’s frozen ices, turning them to gas, which pours out into space, dragging dust along with it.

The three pictures above were taken 18 minutes apart. The first shows nothing, and in the last the jet has almost completed dissipated. In the middle image, however, the jet is well defined, and data from the spacecraft indicated that it was so strong that it “had pushed away the solar wind magnetic field from around the nucleus.”

Scientists narrow the next Mars rover candidate landing sites to 8

Jezero Crater

For the next Mars rover, scheduled to launch in 2020, scientists have now narrowed their candidate landing sites to eight, with Jezero Crater (pictured on the right) the favorite choice.

The top vote getter was Jezero crater, which contains a relic river delta that could have concentrated and preserved organic molecules. “The appeal is twofold,” says Bethany Ehlmann, a planetary scientist at the California Institute of Technology (Caltech) in Pasadena. “Not only is there a delta, but the rocks upstream are varied and diverse.”

The image clearly shows the scientific attraction of Jezero Crater, with an obvious meandering river canyon opening out into an obvious river delta. The crater in the delta will also give them an opportunity to do some dating research, since that crater had to have been put there after the delta was formed.

The choice however illustrates the difference in goals between scientists and future colonists. Scientists are looking for the most interesting locations for understanding the geological history of Mars. Future colonists want to find the best places to establish a home. Jezero Crater, as well as the other eight candidate sites, do not necessarily fit that settlement need. For a colonist it might be better to put a rover down on the flanks of Arsia Mons, one of Mars’ giant craters where scientists have evidence of both water-ice and caves. None of the candidate sites, however, are aimed anywhere close to this volcanic region, because scientifically it is not as interesting.

This is not to say that the candidate sites might not be good settlement sites. It is only to note that the focus of these scientists is research only. Furthermore, it is probably premature anyway to look for settlement sites. We need to know more about Mars itself.

The bog bodies of Europe

Link here. The peat bogs preserve the bodies, providing scientists a window into the past. However, the bodies exhibit one mysterious tendency: violent death.

Since the 18th century, the peat bogs of Northern Europe have yielded hundreds of human corpses dating from as far back as 8,000 B.C. Like Tollund Man, many of these so-called bog bodies are exquisitely preserved—their skin, intestines, internal organs, nails, hair, and even the contents of their stomachs and some of their clothes left in remarkable condition. Despite their great diversity—they comprise men and women, adults and children, kings and commoners—a surprising number seem to have been violently dispatched and deliberately placed in bogs, leading some experts to conclude that the bogs served as mass graves for offed outcasts and religious sacrifices. Tollund Man, for example, had evidently been hanged.

Read it all. It is a fascinating combination of history, archeology, and forensics.

The sunspot decline continues

On Monday NOAA posted its monthly update of the solar cycle, showing the Sun’s sunspot activity in July. As I have done every month since 2010, I am posting it here, below the fold, with annotations to give it context.

Sunspot counts continue to decline at a rate faster than predicted or is usual during ramp down from solar maximum. Normally the ramp down is slow and steady. This time it has so far been more precipitous. While the 2009 prediction of the solar science community (indicated by the red curve) suggests minimum will occur sometime after 2020, the actual counts suggest it will occur much sooner.

» Read more

Curiosity looks ahead at its future travels

The future terrain at Mt Sharp

Cool image time! The above image is a cropped version of a full resolution image taken by Curiosity of the terrain the rover will be traveling in the coming years.

I have also enhanced the contrast slightly to bring out the details. The terrain is rugged and very diverse, from rounded buttes to rocky outcrops.

Gravel and sand ripples fill the foreground [not shown in my cropped version above], typical of terrains that Curiosity traversed to reach Mount Sharp from its landing site. Outcrops in the midfield are of two types: dust-covered, smooth bedrock that forms the base of the mountain, and sandstone ridges that shed boulders as they erode. Rounded buttes in the distance contain sulfate minerals, perhaps indicating a change in the availability of water when they formed. Some of the layering patterns on higher levels of Mount Sharp in the background are tilted at different angles than others, evidence of complicated relationships still to be deciphered.

Traversing this rugged terrain will be a challenge but it is necessary to obtain data that will help decipher its origins. The immediate goal will be to reach the light brown terrain in the distance. In the full image, that region gently slopes upward to the left to the mountain summit, providing a route to the rover’s eventual goal.

1 150 151 152 153 154 260