Pointy rocks on Mars

Pointy rocks as seen by Curiosity
Click for full image.

Pointy rocks as seen by Perseverance
Click for full image.

We have two cool images today from both of America’s rovers on Mars, each of which illustrates the alien nature of the red planet.

First on the right, cropped, reduced, and sharpened to post here, is a close-up taken by Curiosity’s high resolution camera on May 14, 2022 of the rightmost jagged boulder in yesterday’s navigation panorama. The number of layers is astonishing, though hardly a unique phenomenon as seen by Curiosity in its travels. Each likely marks one of many climate and geological cycles, each laying down another unique stratum for a relatively short period of geological time. Some might be volcanic ash or lava layers. Some might be layers caused by climatic changes.

The ability of these thin layers to extend outward so much, almost like they were floating, illustrates the weak Martian gravity, as well as the thinness of its atmosphere. On Earth, if the wind and weather didn’t cause these flakes to break, the gravity would.

Second on the right, cropped and sharpened to post here, is a high resolution photo taken by Perseverance on May 15, 2022 of one of the cliff faces seen by the rover looking up into the delta in Jezero Crater. Here again we see many layers and jagged, pointy rocks, illustrating again the many cycles in the past that formed the delta as it flowed into the crater.

The smoothness on the surface of the leftmost pointy rock suggests that it has stood in this position for a long very time, allowing the wind of Mars’ very thin atmosphere to erode its rough surface.

Curiosity climbs on!

Curiosity's view to the southeast, May 15, 2022 (Sol 3474)
Click for full resolution. Original images can be found here, here, and here.

Overview map
Click for interactive map.

Cool image time! The panorama above, created from three photos taken on May 15, 2022 by the right navigation camera on Curiosity, shows the rocky and hilly terrain directly ahead of the rover’s present course. In the far distance in the center left can faintly be seen the lower flanks of Mount Sharp itself. The dust in the winter air acts to partly obscure those distant slopes.

The overview map to the right shows us what we are looking at. The yellow lines are my rough guess at the terrain covered by the panorama. The blue dot marks Curiosity’s present position. The red dotted line the rover’s original planned route. The white arrows indicate one of the more interesting upcoming geological features, dubbed by scientists the “marker horizon,” a distinct layer found in many places on the flanks of Mount Sharp.

The green dot marks the approximate location of a recurring slope lineae, a place where the cliff is seasonally darkened by a streak that appears each spring and then fades.

The navigation panorama taken on May 15th also included four more shots covering terrain to the southwest, so what we see above is not necessarily where the rover is heading. The eventual goal is to get back to that red dotted line, but how the rover does so is apparently still being discussed by the science team. It appears they are trying to decide whether to head west again to reach Gediz Vallis Ridge, or instead cut south heading directly for Gediz Vallis.

Either way, that teethlike row of boulders in the near foreground is certainly impressive.

Mountains, Mesas, and Box Canyons on the floor of Valles Marineris

Mountains, Mesas, and Box Canyons
Click for full image.

Overview map

Cool image time! The photo above, cropped, reduced, and rotated to post here, was taken on March 12, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a small section of the floor of the giant 2,550-mile-long and 400-mile-wide Valles Marineris canyon on Mars. In fact, this section, as indicated by the black rectangle in the overview map below, is practically in the center of the canyon, at its widest point.

The geology here hints at several Martian processes. The mesas and closed canyons in the north are typical of chaos terrain, where it erosion appears to form along fault lines to create the random intersecting canyons. In other places on Mars, in the mid-latitudes, that erosion appears mostly formed by glacial activity. Here, in Valles Marineris at only 7 degrees north latitude, little ice had been expected.

However, this spot is also in the dead center of a region where orbital data from Europe’s Trace Gas Orbiter (TGO) suggests there is a surprisingly large underground reservoir of hydrogen, which is assumed could only exist if it was locked in water molecules.

In fact, at this spot the data suggests up to 40% of the near-surface material might be composed of water (by weight). If so, that underground reservoir of ice could be causing the erosion that is creating this massive chaos terrain.

Meanwhile, the light-colored mountain in the south is the westernmost nose of a 50-mile-long ridgeline coming down from the canyon’s rim, about 30,000 feet higher. Its dendritic nature, like the hollows that form in the mountains of wet regions on Earth, suggest rainfall and water flowing downhill, wearing away these hollows over eons.

Rain however is almost certainly not the cause. Instead, we could be seeing erosion from wind, or maybe dry ice snow that fell long ago when this region was at a higher latitude when Mars’ rotational tilt was different.

Either way, the massive geology here illustrates the monumental nature of this largest canyon in the solar system, as well as the difficulties of exploring it.

Scientists propose new theory to explain mysterious slope streaks on Mars

Slope streaks on Mars
Click for full image.

In a paper published earlier this month, scientists have proposed a new theory to explain the the origin of slope streaks on Mars, a unique Martian geological feature that at first glance look like a stainlike avalanches which also appear to do nothing to change the surface topography. (See earlier posts here and here for a description of this strange Martian phenomenon.)

Essentially, data from the orbiters suggests that carbon dioxide frost develops just under the surface during the night. In equatorial regions this frost mixes with dust (allowing it to exist even in these warmer climates). When the morning light hits the frost it causes it to sublimate away, which in turn causes the appearance of slope streaks as the dust is released from the frost.

From the paper’s abstract:

At sunrise, sublimation-driven winds within the regolith are occasionally strong enough to displace individual dust grains, initiating and sustaining dust avalanches on steep slopes, forming ground features known as slope streaks. This model suggests that the CO2 frost cycle is an active geomorphological agent at all latitudes and not just at high or polar latitudes, and possibly a key factor maintaining mobile dust reservoirs at the surface.

The cool image above, cropped and reduced to post here, was taken on October 28, 2020 by the high resolution camera on Mars Reconnaissance Orbiter (MRO) and shows an excellent example of two very spectacular large slope streaks, one long and narrow and another short and wide. Located at 23 degrees, this is an area where no ice has yet been found near the surface.

This new theory joins two other popular theories attempting to explain slope streaks. The others postulate that the streaks are either dust avalanches of a different type or the percolation of a brine of chloride and/or perchlorate in a thin layer several inches thick close to the surface.

None have been proven. None likely fit all the known data at this point.

InSight detects 5 magnitude Martian quake, the largest detected so far

The seismometer deployed by the Martian lander InSight has now detected its largest quake yet on Mars, with an estimated magnitude of 5.

NASA’s InSight Mars lander has detected the largest quake ever observed on another planet: an estimated magnitude 5 temblor that occurred on May 4, 2022, the 1,222nd Martian day, or sol, of the mission. This adds to the catalog of more than 1,313 quakes InSight has detected since landing on Mars in November 2018. The largest previously recorded quake was an estimated magnitude 4.2 detected Aug. 25, 2021.

The timing was very fortunate. Only three days later the power being generated by InSight’s dust-covered solar panels dropped too low, and the lander went into safe mode. Though its mission has been extended through the end of this year, the inability of the solar panels to produce energy because of dust has been predicted to shut down operations sooner. While it might be possible to restart science operations, this most recent safe mode situation could very well be that moment.

Meanwhile, scientists will analyze the data of this most recent large quake to attempt to pinpoint its location. They will also study it to gain a better understanding of the interior structure of Mars.

Curiosity climbing out of Gordon Notch hollow

Panorama showing the upcoming steep climb
Click for full image. For original images go here, here, here, here, and here.

Overview map
Click for interactive map.

Cool image time! The panorama above was created from five photos taken by Curiosity’s right navigation camera on May 4, 2022 as the rover worked its way upward out of Gordon Notch Hollow, the small valley it had left when it attempted to cross the Greenheugh Pediment to the west and was forced to retreat back into when engineers found the rough terrain on the pediment too much for the rover’s wheels.

The overview map to the right provides context. The blue dot marks Curiosity’s present position on Mars, on its 3,465 Sol since landing. The yellow lines mark the area viewed in the panorama, taken two Sols earlier. The red dotted line marks the original planned route, now abandoned. The white arrows indicate one of the more interesting upcoming geological features, dubbed by scientists the “marker horizon,” a distinct layer found in many places on the flanks of Mount Sharp.

On the panorama above the red dotted line is my guess as to the planned route out of Gordon Notch Hollow.
According to the science team’s most recent update on May 4th:
» Read more

Ingenuity in trouble

The engineering team yesterday revealed that several days earlier the Mars helicopter failed to communicate with the rover Perseverance as scheduled, now believed to have been caused by “a low-power state.”

Data downlinked indicates that the communications dropout on May 3, Sol 427 of the Perseverance rover’s mission at Mars, was a result of the solar-powered helicopter entering a low-power state, potentially due to the seasonal increase in the amount of dust in the Martian atmosphere and lower temperatures as winter approaches. The dust diminishes the amount of sunlight hitting the solar array, reducing Ingenuity’s ability to recharge its six lithium-ion batteries. When the battery pack’s state of charge dropped below a lower limit, the helicopter’s field-programmable gate array (FPGA) was powered down.

This state then caused the helicopter’s clock to get out of sync with the clock on Perseverance, so that when the rover tried to communicate the helicopter was not listening.

Engineers regained communications on May 5th, but the helicopter remains in trouble. Its batteries are no longer fully charged, which means it doesn’t have enough power to heat Ingenuity through the longer cold nights of winter that presently exist in Jezero crater.

The engineers have established a plan to get the batteries back up to full charge, but it means the heaters will no longer attempt to warm the helicopter as much. The result could be damaged parts not able to withstand those colder temperatures.

Why a big Earth mountain would hardly be noticed on Mars

A big mountain lost on Mars
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was taken on February 13, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a cliff escarpment that, based on a rough estimate of MRO’s elevation data, ranges from 10,000 to 13,000 feet high. Because the sun is only about 32 degrees above the western horizon, the shadows are long and distinct and bring out the features quite dramatically.

On Earth, a mountain 13,000 feet high would generally be named, because there are really not that many of them. If it was a cliff face dropping down into a canyon, which this Martian cliff is, it would be quite unique and probably be one of the most popular tourist spots on the globe. For comparison, the rim of the Grand Canyon in the national park, visited by millions, is only 4,000 to 6000 feet in elevation. This cliff on Mars is more than twice as deep, and yet, it is hardly the most spectacular canyon rim on the red planet.

The overview map below explains this.
» Read more

A quake south of Starship’s prime landing sites on Mars

The lowlands south of Starship's prime landing site
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on February 23, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Though it shows the largely featureless northern lowland plains of Mars, it is particularly interesting for two reasons.

First, according to the photo’s label this scarp/ridge is apparently near a quake detected by the seismometer placed on Mars by the lander InSight, located about a thousand miles to the southwest. Though no information of the strength of this quake is available, it is likely to have been a small and weak one, interesting mostly because it indicates some small underground instability or a recent small impact on the surface. The image favors the former, as it shows no obvious recent features of change. What it does show is one very intriguing flow feature draping the scarp. As the location is at 34 north latitude in a region where scientists have found a lot of evidence of water ice very close to the surface, the flow could very well be glacial in nature, though dismissing a lava origin would be a mistake.

The second reason this location is of interest is what lies relatively nearby, as shown in the overview map below.
» Read more

ESA: ExoMars will likely be delayed till ’28 at the soonest

An official of the European Space Agency (ESA) at a May 3rd science meeting announced that the launch of its ExoMars rover will likely be delayed until 2028 at the earliest because of the partnership breakup with Russia due to its invasion of the Ukraine.

Russia had been providing both the launch rocket as well as the lander on Mars.

Speaking at a May 3 meeting of NASA’s Mars Exploration Program Analysis Group (MEPAG), Jorge Vago, ExoMars project scientist at ESA, said he doubted a new lander could be ready by 2026. “It is theoretically possible, but in practice we think it would be very difficult to reconfigure ourselves and produce our own lander for 2026,” he said. “Realistically, we would be looking at a launch in 2028.”

Launching in 2028 could pose technical challenges for ExoMars. One trajectory would get the rover to Mars relatively quickly, but have it arrive just a month before dust storm seasons starts at the preferred landing site. An alternative trajectory would require traveling for more than two years to each Mars, but get the rover there six months before dust storms start.

“We have been trying very hard to convince the engineering team that the dust storm season is not death,” Vago said. “We should concentrate on making the rover more robust and able to weather a dust storm.”

There are other issues. The rover will need new radioisotope heating units, or RHUs, to provide power, since Russia will no longer providing them. If the U.S. provides, the launch for security reasons will have to take place in the U.S., which means the launch provider will have to be American.

The delay to ’28 also could cause the ExoMars rover mission to be completely changed, repurposed to become part of the sample return mission that the ESA and NASA are partnering to bring back the cached samples that Perseverance is gathering. If so, this repurposing might delay its launch to Mars even further.

Zhurong travels another 1,300 feet

Overview map

UPDATE: After emailing this post to Alfred McEwen of the Lunar & Planetary Laboratory in Arizona, he responded to correct an error in my image. The MRO photo was taken when Zhurong had already traveled about half the 1,300 feet listed in the Chinese article below, thus making my original circle about two times too large.

I have corrected its size. It now shows the correct maximum distance Zhurong could have driven since that MRO picture was taken on March 11th.

Original post:
——————–
According to a short report yesterday in China’s state-run press, Zhurong has traveled another 1,300 feet on Mars since it was photographed from orbit on March 11, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The report provided no information at all about the rover’s path. The map to the right shows Zhurong’s position as of March 11th, with the blue circle marking the maximum distance it could have moved since then according to this report. Based on China’s earlier vague statements, it is likely the rover has moved to the south, though even that covers a lot of possibilities.

The report did say this however:

Mars is about to enter the winter season, during which night temperatures will drop below minus 100 degrees Celsius, with a high probability of sandstorms. Martian winters last an equivalent of six Earth months.

Because Zhurong uses solar panels, it relies on the Sun for power. With coming of winter and more sandstorms, it thus faces the risk of limited solar power. As its nominal mission was only supposed to last three months, not a Martian year of 24 months that includes a winter, it will be interesting to see if it can survive that season.

The story also added that Yutu-2 has now traveled about 3,875 feet on the Moon, but added nothing else.

Navigating a rover on Mars

16 photos taken by Perseverance's right navigation camera on May 2, 2022

Overview map
Click for interactive map.

Cool image time! The photo to the right is actually a screen capture of 16 consecutive photos taken on May 2, 2022 by the right navigation camera on the Mars rover Perseverance.

The overview map below gives the context. The red dot marks Perseverance’s position when the photos were taken. The green dot marks Ingenuity’s position. The small white dot marks the spot where the rover’s parachute landed. The yellow lines indicate I think the area covered by the sixteen navigation images.

There is a reason for showing this panorama in this somewhat crude form. The engineers who run Perseverance have programmed its navigation cameras to send back its pictures so that they immediately line up in this coherent pattern. There is no need to rearrange them upon arrival. The engineers thus can instantly see how each picture relates to the others, and thus get an immediate sense of the nearby terrain in which they must plot the rover’s next move.

Perseverance is now in its second science campaign, focused on studying the base of the delta. As the science team studies the delta’s cliff face, they are also studying the best route to continue uphill. To do both, they have begun slowly moving along that face, going from west to east.

The rough panorama above thus shows them the ground ahead as they continue that traverse. I expect the rover’s next move will be to the northeast, once again moving along the base of the nearest cliff. The panorama shows that while the ground in this area has a few ridges, none are so high as to cause Perseverance any problems.

Brain terrain in Mars’ glacier country

Brain terrain in glacier country
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was taken on February 10, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

It shows what planetary scientists have dubbed “brain terrain”, a truly unique Martian geological feature that is not found on Earth and also remains as yet unexplained. Specifically, the brain terrain is the speckled areas between the larger flow features, all of which are probably ice or glacier related.

What especially drew me to this MRO image however was the particular flow feature in the center left that looks like either a giant squid or something out of Lovecraft horror short story. Talk about a cool image!

The downward grade here is likely to the north, as this spot is inside a north-south canyon, cutting into the southern cratered highlands. The general north-south trend of the depression here reinforce this supposition.

The overview image below provides context.
» Read more

As Curiosity retreats from rough country, scientists look at the future geology it will see

Overview map
Click for interactive map.

Cool image time! For the past two weeks the Curiosity science team has been gingerly and slowing backing the rover off from the very rough terrain of the Greenheugh pediment, as shown on the overview map to the right. The blue dot indicates Curiosity’s present position, with the red dotted line marking its original planned route, now abandoned.

The main question remains: Where to go next? At this point the science team is still debating their exact path forward. As Catherine Weitz of the Planetary Science Institute explained to me in an email today,

The Curiosity team is still working out the details. Maybe in another month or so the new route will be finalized so stay tuned.

No matter what route they eventually choose, the white arrows mark one of the more interesting upcoming geological features that the scientists very much intend Curiosity to reach. In a paper published at the end of March in which Weitz was the lead author, they describe this “marker horizon” as follows:
» Read more

Ingenuity photographs Perseverance’s abandoned parachute on 26th flight

Perseverance's parachute, as photographed by Ingenuity
Click for full image.

Overview map
Click for interactive map.

In the past week the Mars helicopter Ingenuity successfully completed its 26th and 27th flights, with the first specifically planned to fly over the parachute that had been used by Perseverance when it landed on Mars on February 18, 2021. The first photo to the right, enhanced, cropped, and reduced to post here, is the color photo of that parachute that Ingenuity took during that flight on April 20th. Near the top of the frame you can also see the equipment used to attach the chute to the rover. The photo looks to the southwest.

The map to the right indicates the flight paths for both hops, both slightly more than 1,000 feet total. The green dot marks Ingenuity’s position yesterday, the red dot Perseverance’s position. The small white dot indicates the parachute’s location.

On April 8th Perseverance had snapped a picture of the parachute, from the position indicated by the black dot. Since that photo was taken from a distance, it could not show much. Ingenuity’s more recent photo from overhead however captures the chute quite clearly, and suggests that in the year since landing the weak Martian wind has shifted its edges slightly while depositing some dust on its surface.

You can see the changes at the edges by comparing Ingenuity’s picture with a photo taken on February 19, 2021 by Mars Reconnaissance Orbiter (MRO). In Ingenuity’s picture the near edge of the parachute especially appears to have become bunched up over time, suggesting the prevailing and strongest winds have come from the south.

InSight scientists publish paper describing last year’s big Martian quakes

Figure 5: global map of located Martian quakes

The InSight science team has now published a paper [pdf] describing in detail what they gleaned from the two large earthquakes the lander detected on Mars last year, measuring 4.1 and 4.2 magnitudes.

The map above, figure 5 of their paper, marks their best estimate of the quakes’ locations, dubbed S0976a and S1000a. From the caption:

Mars surface relief map showing InSight’s location (orange triangle), the location of other located mars-quakes (magenta dots) that cluster around 30° distance, close to Cerberus Fossae, and S0976a, located within Valles Marineris just north of Sollis Planum. Because no back azimuth can be determined for S1000a, its location is predicted to be somewhere within the shaded region between 107° and 147° from InSight. The event’s preferred distance (116°) is marked with the white dashed line. The black dotted lines mark radii around InSight up to 80°.

A review of Mars Reconnaissance Orbiter (MRO) high resolution images of that part of Valles Marineris where S096a occurred will likely uncover a whole bunch taken since last August, all attempting to detect any actual surface changes produced by quake. I think I’ll do that review, and see if I can spot something.

The paper also notes the uniqueness of S1000a, which lasted 94 minutes, the longest so far detected on Mars. The complexity of its signal also makes locating it difficult, though the most likely possible locations — indicated by the white dashed line in the map above — crosses through the Tharsis Bulge where Mars’ biggest volcanoes are found.

Sadly, InSight will likely shut down before the end of this year due to loss of power, so until another seismometer is sent there no further Martian quakes will be detected.

The icy Reull Valley of Mars

Eroded ice in crater near Reull Valles
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was taken on February 20, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the eroded floor of a 10-mile-wide very obscured unnamed crater that sits above the northern wall of a canyon dubbed Reull Valles.

For reference the interior slope of the crater’s southern rim is labelled. The crater sits at 40 degrees south latitude. Thus, this crater is inside the 30 to 60 degree mid-latitude bands where scientists have found many glaciers on Mars. The eroded floor of this crater appears to confirm this conclusion. In the full photo the erosion is even more pronounced, as well as more chaotic, farther from that rim to the north.

Because Reull Valles sits inside that southern glacial band, it is home to much evidence of ice. The overview map below provides the context.
» Read more

The gigantic lava flows off of the solar system’s biggest known volcano

Olympus Mons' gigantic lava flow
Click for full image.

Cool image time! The photo to the right, cropped, reduced, and annotated to post here, was taken on October 30, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The picture covers a very tiny section of the southeast flank of Olympus Mons, the largest known volcano in the solar system. The arrow indicates the direction of the downward slope.

Olympus Mons itself is about 400 miles wide with an actual height relative to Mars’ “sea level” of just under 70,000 feet, more than twice as high as Mount Everest on Earth. The mountain’s flanks, almost 200 miles long from caldera edge to base, drop about 54,000 feet. That average drop of about 270 feet every mile is not particular steep, but its continuous nature over such a very very long distance makes its quite daunting.

You can see evidence of that slope in the photo. The downward pointing lobes each indicate the volcano’s last separate lava flows that ceased moving when each froze in place, probably several tens of millions of years ago. These lobes were also placed on top of many earlier flows from the volcano’s past eruptions that probably continued for several billion years, beginning 3.5 billion years ago.

The overview map helps provide a sense of scale by placing this image on that mountain flank.
» Read more

Perseverance captures solar eclipse by Phobos

Phobos eclipse the Sun
Click for full image.

Cool movie time! The photo to the right, cropped to post here, shows the Sun partly blocked by the Mars’ moon Phobos, taken by the high resolution camera on Perseverance on the surface of Mars. Below I have embedded the full movie compiled from the images taken as Phobos moved across the Sun’s face. From the caption:

It’s long been known that Phobos is drifting toward the Martian surface year by year; tens of millions of years from now, it is expected to crash into the planet or fragment into chunks that will impact the planet. Studying Phobos’ orbit also allows scientists to refine predictions of when the doomed moon will crash into Mars.

Unfortunately, the website does not say when this solar eclipse occurred. The spots on the lower left of the Sun’s face are sunspots.
» Read more

Perseverance spots its parachute

Perseverance spots its parachute
Click for full resolution. Original images found here and here.

Overview map
Click for interactive map.

Cool image time! Today the Perseverance science team released two photos taken on April 6th that captured the parachute that the rover had used to land on Mars on February 18, 2021. The enhanced panorama above is from those images. The white feature near the center is the parachute. The mountains in the distance are the southern rim of Jezero Crater, about 40 miles away.

The overview map to the right gives the context. The red dot is Perserverance’s location as of yesterday, on sol 413. The black dot marks its location on April 6th, when it took the pictures. The green dot marks Ingenuity’s present position. The yellow lines indicate the approximate area covered by the panorama.

Ingenuity had not completed its 25th flight until April 8th, two days after these photos were taken, so it isn’t actually just off the edge of these photos, it is beyond the near ridgeline out of sight.

White sediment in Martian slot canyon

White sediment in Martian slot canyon
Click for full image.

Yesterday’s Picture of the Day from the high resolution camera on Mars Reconnaissance Orbiter (MRO) revisited a captioned image first posted in February 2014 by the science team. That picture, cropped and enhanced, is to the right. From the 2014 caption:

There is a large channel system that flows into the basin, called Ladon Valles, and scientists think that the basin may have once filled with water before another channel to the north formed and drained it. These exposures of light-toned layered sediments provide clues about the environment that existed within Ladon Basin when water may have ponded and deposited these sediments.

Later research has generally concluded that these white sediments are iron and magnesium smectites, often appearing as white tuff material whose deposition is generally associated with precipitation of water or snow and its subsequent evaporation or sublimation.
» Read more

Ingenuity completes 25th flight, the longest yet

Overview map
Click for interactive map.

On April 8th the Mars helicopter Ingenuity successfully completed its 25th flight on Mars, traveling 2,310 feet at 18 feet per second while flying for 161.3 seconds.

The long distance was designed to take it out from the rough region dubbed Seitah and near the delta that is the prime geological target of the rover Perseverance.

The overview map shows the location of both rover and helicopter as of today. The red dot is Perseverance, the green dot is Ingenuity. The rover has now completed its entire planned travels, as announced in June 2021. Where it goes next has not as yet not been announced. According to the team, they plan to use Ingenuity to scout out possibly routes up onto the delta. This likely means the rover will likely spend some time at the base of the delta, getting as much data as it can, while Ingenuity does this scouting work.

Frozen lava in Mars’ volcano country

The frozen lava of the Athabasca flood plain
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was taken on January 28, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what appears to be at first glance a relatively featureless plain with a lighter material covered by a patchwork of darker material.

Note however the lack of craters. Except for several faint depressions near the image’s center, there are none. And those depressions look like the expression of craters that have been covered by material. Is the two-toned surface here an expression of past lava flows? Or are we seeing an ice-sheeted plain, with the patches representing higher terrain above that plain?

The overview map below answers the question somewhat clearly.
» Read more

MAVEN and Al-Amal scientists sign agreement to collaborate

Scientists running the Mars orbiters MAVEN (from NASA) and Al-Amal (from the United Arab Emirates [UAE]) have signed an agreement to share data and — more importantly — coordinate their observations of the Martian atmosphere.

A new partnership that encourages the sharing of data between NASA’s MAVEN (Mars Atmosphere and Volatile Evolution) project and the Emirates Mars Mission’s (EMM) Hope Probe (Al-Amal in Arabic) will enhance scientific returns from both spacecraft, which are currently orbiting Mars and collecting data on the Red Planet’s atmosphere. The arrangement is expected to add value to both MAVEN and EMM, as well as the scientific communities involved in analyzing the data the missions collect.

MAVEN went into orbit around Mars in 2014. Its mission is to investigate the upper atmosphere and ionosphere of Mars, offering an insight into how the planet’s climate has changed over time. “MAVEN and EMM are each exploring different aspects of the Martian atmosphere and upper-atmosphere system,” said Shannon Curry, MAVEN principal investigator from the University of California, Berkeley. “Combined, we will have a much better understanding of the coupling between the two, and the influence of the lower atmosphere on the escape to space of gas from the upper atmosphere.”

The EMM Hope Probe, which went into Mars orbit in 2021, is studying the relationship between the upper layer and lower regions of the Martian atmosphere, giving insight into the planet’s atmosphere at different times of the day and seasons.

What this agreement means is that the two science teams can more quickly match up the data from both orbiters, and figure out the relationships between both.

Curiosity retreating from Greenheugh Pediment

Overview map
Click for interactive map.

Because of the incredible roughness of the ground on the Greenheugh Pediment, the science team for the rover Curiosity has decided to make a major change in their route. Rather than continue their traverse across this terrain, as planned for years, they have decided to back off in order to protect Curiosity’s dinged wheels, and find a more friendly route up Mount Sharp.

“It was obvious from Curiosity’s photos that this would not be good for our wheels,” said Curiosity Project Manager Megan Lin of NASA’s Jet Propulsion Laboratory in Southern California, which leads the mission. “It would be slow going, and we wouldn’t have been able to implement rover-driving best practices.”

The gator-back rocks aren’t impassable – they just wouldn’t have been worth crossing, considering how difficult the path would be and how much they would age the rover’s wheels.

So the mission is mapping out a new course for the rover as it continues to explore Mount Sharp, a 3.4-mile-tall (5.5-kilometer-tall) mountain that Curiosity has been ascending since 2014. As it climbs, Curiosity is able to study different sedimentary layers that were shaped by water billions of years ago. These layers help scientists understand whether microscopic life could have survived in the ancient Martian environment.

The plan is to retrace the rover’s path back through Gordon Notch and then head uphill though another gap that will take it directly onto the next sedimentary layer, dubbed the sulfate unit. On the overview map above, the red dotted line shows the long-planned route. The yellow lines indicate the area seen in the panorama I posted on April 6th, when Curiosity was at its farthest into the pediment. The blue dot marks Curiosity’s position two days ago. You can see that it has retreated backwards.

This change means the scientists will likely not get a close look at Gediz Vallis Ridge. However, it also means the rover will likely reach Gediz Vallis much sooner that previously planned.

Perseverance arrives at Three Forks at the base of Jezero Crater’s delta

Panorama of delta in Jezero Crater
Original images found here, here, here, and here. Click for full resolution.

Overview map
Click for interactive map.

Cool image time! The panorama above was created from four navigation camera images taken by the Mars rover Perseverance on April 10th. Because the lens on Perseverance’s navigation cameras produce slightly curved images which are taken in pairs, the panorama is made of two parts, each a pair perfectly matched images looking from a different angle. I have overlapped the pairs but as you can see, the match at the center is imperfect. While this does not produce a single smooth image, the two paired panoramas show the foot of the entire delta that had flowed into Jezero crater in the past and is the prime geological target of the rover. What is it made of? What caused it to flow into the crater? When did it do it? How was Mars different when it did so? Was the crater wet? Was the delta mud when it flowed, or was it sediment under water, pushed out by that flowing water?

The location map to the right is taken from the “Where is Perseverance?” webpage but annotated to show the planned routes of both Perseverance and Ingenuity, as shown by the tan dashed lines. The red dot marks Perseverance present location, the green dot Ingenuty’s. The yellow lines the approximate area covered by the panorama.

What next? Expect Perseverance to move as close to the base of the delta’s cliff as possible and spend at least several months studying it. Ingenuity meanwhile will be flown to the west to scout the various hollows that are potential routes for Perseverance to climb up onto the delta.

Splonk went the crater!

Splonk went the crater!
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was taken on February 18, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label as a “degraded crater in Utopia Planitia.”

There is a lot of intriguing geology in this one image. First of course is the crater itself. We have to ask, is it from an impact or from some volcanic process? The location, at 44 degrees north latitude, argues that some form of ice or mud process was involved. Maybe we are looking at a frozen eruption from an underground ice layer. If this was instead caused by an impact, the crater’s ringlike structure could have been created by the ripples of melted ice and mud emanating away but then quickly refreezing.

Surrounding the crater are many small fissures, the largest ones all oriented in a north-south direction. If there is an ice layer near the surface, these cracks might be caused by that ice sublimating away. Why the largest cracks orient in the same direction however is a mystery.

The color variations suggest [pdf] dust (red-orange) as well as a variety of minerals (green). Since no blue appears visible in this version of the photo, if this crater was shaped by melting or erupting ice, that ice is well covered by that layer of dust and debris.

The location map below as always provides context.
» Read more

Curiosity’s upcoming rough terrain

Curiosity's view looking west on April 5, 2022 (Sol 3435)Click for high resolution. For original images go here, here, here, and here.

Overview map
Click for interactive map.

Cool image time! The panorama above, created by me from four photos taken by Curiosity’s right navigation camera on April 5, 2022, reveal much about the alien world of Mars that the rover is exploring. The red dotted line indicates approximately the rover’s upcoming route.

First there is the rough surface of the Greenheugh Pediment, the sloping plateau that Curiosity is presently traversing. Called “gater-back terrain” by the science team, this broken surface apparently is sandstone that was originally a dune field that in the past was periodically washed by water runoff and later hardened into this structurally weak rock.

Second, I have orientated the images so that the rim of Gale Crater, approximately 25 miles away, is horizontal. By doing so, we can see the upward slope of the Greenheugh Pediment. Curiosity is on a tilted surface, and while it will be traversing along a contour line as it heads west towards Gediz Vallis Ridge about 1,000 feet away, when it turns left and heads uphill, the climb will be steady and steep, as it has now been for the past year since the rover entered the mountains at the foot of Mount Sharp.

Taken together, these details indicate why Curiosity has moved very slowly in recent weeks, as shown by the white dots in the overview map to the right. The blue dot marks Curiosity’s present location, with the yellow lines indicate the approximate view in the panorama above.

Traversing the pediment carries real risk to the rover. Though its somewhat dinged wheels have held up well during this last year of traveling in these rough mountains, at any point the severe roughness here could damage one or more wheels significantly, even putting one or more out of commission. The rover team is traveling carefully to avoid this, but these factors illustrate a possible end for the rover, though hopefully still years away.

Ingenuity completes its 24th flight on Mars

Overview map
Click for interactive map.

Ingenuity today completed its 24th flight on Mars, traveling a short 33 feet for 69.5 seconds in order to place it in a good position for an upcoming record-setting 25th flight.

With Flight 24 in our log book, it is now time to look forward to our upcoming effort that charts a course out of Séítah. Flight 25 – which was uplinked yesterday – will send Ingenuity 704 meters to the northwest (almost 80 meters longer than the current record – Flight 9). The helicopter’s ground speed will be about 5.5 meters per second (another record) and we expect to be in the rarefied Martian air for about 161.5 seconds.

The red dot on the map to the right indicates Perseverance’s present position. The green dot shows where Ingenuity landed today. The tan dashed lines indicate the planned routes for both. Ingenuity’s next flight will take it out of the rough terrain of Seitah and much closer to Three Forks.

Strange terrain at the Martian equator

Strange terrain at the Martian equator
Click for full image.

Cool image time! The photo to the right, cropped to post here, was taken on January 29, 2022 by the high resolution camera of Mars Reconnaissance Orbiter (MRO). It shows a small portion of the floor of 41-mile-wide Tuskegee Crater, sitting at the Martian equator on the rim of the outlet to the giant canyon Valles Marineris.

I have purposely focused on a section of the color strip, because of its strange green color. Most MRO images are reddish (indicating dust) or blue (indicating coarse rocks or ice). Green seems to me to be rare, and in fact is not even mentioned in the MRO science’s team explanation [pdf] of the colors the instrument produces. Since green is neither dust nor ice, this suggests some form of hard bedrock, with a mineralogy that produces that color.

The overview map below gives some context.
» Read more

1 22 23 24 25 26 78