OSIRIS-REx flies over Bennu’s north pole

Bennu's north pole

Cool movie time! OSIRIS-REx has completed its first planned fly-over of Bennu, this time above its north pole, and the science team has released a short movie showing part of that fly-over. I have embedded the movie below the fold.

This series of MapCam images was taken over the course of about four hours and 19 minutes on Dec. 4, 2018, as OSIRIS-REx made its first pass over Bennu’s north pole. The images were captured as the spacecraft was inbound toward Bennu, shortly before its closest approach of the asteroid’s pole. As the asteroid rotates and grows larger in the field of view, the range to the center of Bennu shrinks from about 7.1 to 5.8 miles (11.4 to 9.3 km).

They have four more fly-overs of the asteroid’s poles and equator as they assemble a detailed map of its surface.
» Read more

New asteroid radar images

near-Earth asteroid 2003 SD220

Cool radar images! The set of radar images above of near-Earth asteroid 2003 SD220 were created by combining radar data from three different radar telescopes on Earth, Arecibo in Puerto Rico, Green Bank in West Virginia, and Goldstone in California. As the press release notes:

The asteroid will fly safely past Earth on Saturday, Dec. 22, at a distance of about 1.8 million miles (2.9 million kilometers). This will be the asteroid’s closest approach in more than 400 years and the closest until 2070, when the asteroid will safely approach Earth slightly closer.

The radar images reveal an asteroid with a length of at least one mile (1.6 kilometers) and a shape similar to that of the exposed portion of a hippopotamus wading in a river.

The images have a resolution of 12 feet per pixel, so a close look should be able to reveal any large boulders, should they exist. Instead, I see a soft surface that to me resembles the surface of a sand dune, floating unattached to anything in space.

No rotational light curve from Ultima Thule?

Data from New Horizons as it is quickly approaching Ultima Thule has found that even though the object is expected to be oblong or even two objects it has shown absolutely no variation in light as it rotates.

Even though scientists determined in 2017 that the Kuiper Belt object isn’t shaped like a sphere – that it is probably elongated or maybe even two objects – they haven’t seen the repeated pulsations in brightness that they’d expect from a rotating object of that shape. The periodic variation in brightness during every rotation produces what scientists refer to as a light curve.

“It’s really a puzzle,” said New Horizons Principal Investigator Alan Stern, of the Southwest Research Institute. “I call this Ultima’s first puzzle – why does it have such a tiny light curve that we can’t even detect it? I expect the detailed flyby images coming soon to give us many more mysteries, but I did not expect this, and so soon.”

They have several theories, all implausible, to explain this. It could be they are looking at the object’s pole. Or maybe a dust cloud or numerous tumbling moons surround the object and hide the light variation.

Fortunately, we shall have an answer to this mystery in less than two weeks, when New Horizons zips past.

Comparing Ryugu and Bennu

Link here. As much as they are alike, which is not surprising as they both come from the same asteroid family, the article notes the surprising differences.



Both asteroids are also liberally strewn with boulders – a challenge to mission planners on each team, who hope to descend close enough to scoop up samples for return to Earth. “It’s certainly more rugged than we had expected,” Lauretta says. 

But while boulders on Ryugu look to be unpleasantly ubiquitous, Bennu’s terrain is more varied, with more-obvious places where a safe touchdown might be possible. And, Lauretta notes, the OSIRIS-REx spacecraft is only recently arrived.

“We have a long time to explore and make the crucial decisions about where to go,” he says.

The biggest difference has to do with water. Even though scientists believe them to be portions of the same parent body, which broke apart between 800 million and one billion years ago, Bennu appears to be water rich, while Ryugu is less so. Within a week of arrival, infrared spectrometers on OSIRIS-REx were finding evidence of water-bearing minerals, and not just in localised patches. “We saw this in every single one of the spectra we have taken to date,” says Amy Simon, of NASA’s Goddard Space Flight Centre in Greenbelt, Maryland. 

One of the reasons Bennu was chosen as OSIRIS-REx’s target, Lauretta says, was the hope it would be rich in water, and possibly in organic compounds.

The similarities and differences in the samples both spacecraft will bring back will be most revealing.

New Horizons sees no hazards, will do closest fly-by of Ultima Thule

After three weeks of intense observations and seeing no significant objects orbiting close to the Kuiper Belt object Ultima Thule, the New Horizons team has decided to go for the closest fly-by on January 1, 2019.

After almost three weeks of sensitive searches for rings, small moons and other potential hazards around the object, New Horizons Principal Investigator Alan Stern gave the “all clear” for the spacecraft to remain on a path that takes it about 2,200 miles (3,500 kilometers) from Ultima, instead of a hazard-avoiding detour that would have pushed it three times farther out. With New Horizons blazing though space at some 31,500 miles (50,700 kilometers) per hour, a particle as small as a grain of rice could be lethal to the piano-sized probe.

We should begin to see more detailed images soon. Because of the speed in which New Horizons is traveling, it will not get very close until it is almost on top of Ultima Thule, so the best images will all occur over a very short span of time.

Saturn’s rings are dying

Using new ground-based observations, scientists now predict that Saturn’s rings are dying at the fastest predicted rate, and will disappear within 300 million years, at the most.

Dr Tom Stallard, Associate Professor in Planetary Astronomy at the University of Leicester and Dr James O’Donoghue, who studied for his PhD at the University of Leicester, have found that Saturn’s rings are dying at the maximum rate estimated from Voyager 1 and 2 observations made decades ago.

The rings of ice are being pulled into Saturn by gravity as particles of ice under the influence of Saturn’s magnetic field. Dr O’Donoghue, who now works at NASA’s Goddard Space Flight Center in Greenbelt, Maryland said: “We estimate that this ‘ring rain’ drains the equivalent of an Olympic-sized swimming pool from Saturn’s rings in half an hour. The entire ring system will be gone in 300 million years.”

Dr O’Donoghue believes that the rings could even disappear quicker than this. “Add to this the Cassini-spacecraft detected ring-material falling into Saturn’s equator, and the rings have less than 100 million years to live.”

Over the decades I have read numerous papers by scientists saying that rings this bright and large must be a relatively short-lived event, and that we are lucky to have seen them. This research only reinforces this conclusion.

At the same time, we do not yet know the frequency or the cause of the events that give rise such bright rings. It could be that such rings are short-lived, but happen frequently enough that it is still not rare to see them in any solar system. And we won’t know this until we get a more complete census of many solar systems, seen up-close.

Astronomers discover most distant solar system object so far

Worlds without end: Astronomers have discovered a dwarf planet about 300 miles in diameter orbiting the Sun at a distance of 120 astronomical units, making it the most distant solar system object discovered so far.

“2018 VG18 is much more distant and slower moving than any other observed Solar System object, so it will take a few years to fully determine its orbit,” said Sheppard. “But it was found in a similar location on the sky to the other known extreme Solar System objects, suggesting it might have the same type of orbit that most of them do. The orbital similarities shown by many of the known small, distant Solar System bodies was the catalyst for our original assertion that there is a distant, massive planet at several hundred AU shepherding these smaller objects.”

“All that we currently know about 2018 VG18 is its extreme distance from the Sun, its approximate diameter, and its color,” added Tholen “Because 2018 VG18 is so distant, it orbits very slowly, likely taking more than 1,000 years to take one trip around the Sun.”

I guarantee there are more of these discoveries to come. Many more.

OSIRIS-REx finds evidence of water on Bennu

Bennu from 15 miles

One of OSIRIS-REx’s instruments has now found evidence of water on the rubble-pile asteroid Bennu.

Recently analyzed data from NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) mission has revealed water locked inside the clays that make up its scientific target, the asteroid Bennu.

During the mission’s approach phase, between mid-August and early December, the spacecraft traveled 1.4 million miles (2.2 million km) on its journey from Earth to arrive at a location 12 miles (19 km) from Bennu on Dec. 3. During this time, the science team on Earth aimed three of the spacecraft’s instruments towards Bennu and began making the mission’s first scientific observations of the asteroid. OSIRIS-REx is NASA’s first asteroid sample return mission.

Data obtained from the spacecraft’s two spectrometers, the OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) and the OSIRIS-REx Thermal Emission Spectrometer (OTES), reveal the presence of molecules that contain oxygen and hydrogen atoms bonded together, known as “hydroxyls.” The team suspects that these hydroxyl groups exist globally across the asteroid in water-bearing clay minerals, meaning that at some point, Bennu’s rocky material interacted with water. While Bennu itself is too small to have ever hosted liquid water, the finding does indicate that liquid water was present at some time on Bennu’s parent body, a much larger asteroid.

The image on the right, reduced to show here, was created from 12 images taken on December 2, 2018 from about 15 miles. If you click on the image you can see the full resolution photograph, which is quite incredible. While the asteroid’s shape is approximately what was expected from ground-based observations and computer modeling, the giant boulder on the limb on the bottom right is about four times bigger than expected.

New Horizons completes another course correction before flyby

On December 2 New Horizons successfully completed another engine burn to refine its course for its January 1, 2019 flyby of the Kuiper Belt object Ultima Thule.

The maneuver was designed to keep New Horizons on track toward its ideal arrival time and closest distance to Ultima, just 2,200 miles (3,500 kilometers) at 12:33 a.m. EST on Jan. 1. At the time of the burn New Horizons was 4.03 billon miles (6.48 billion kilometers) from Earth and just 40 million miles (64 million kilometers) from Ultima – less than half the distance between Earth and the Sun. From that far away, the radio signals carrying data from the spacecraft needed six hours, at light speed, to reach home.

The team is analyzing whether to conduct up to three other course-correction maneuvers to home in on Ultima Thule.

The distance to Ultima Thule is still too much to produce detailed images. New Horizons however is going very fast, so in the coming three weeks this will change drastically, and for the better.

Calculating Bennu’s future

In order to better constrain Bennu’s future fly-bys of the Earth, including the possibility that it could impact the planet, scientists will be using the data sent from OSIRIS-REx to better understand its orbit, its composition, its surface make-up, and its thermal properties, all factors that can influence its future path in space.

This is really important, as Bennu has a good chance of hitting the Earth in the future.

About a third of a mile, or half a kilometer, wide, Bennu is large enough to reach Earth’s surface; many smaller space objects, in contrast, burn up in our atmosphere. If it impacted Earth, Bennu would cause widespread damage. Asteroid experts at the Center for Near-Earth Object Studies (CNEOS) at NASA’s Jet Propulsion Laboratory in Pasadena, California, project that Bennu will come close enough to Earth over the next century to pose a 1 in 2,700 chance of impacting it between 2175 and 2196. Put another way, those odds mean there is a 99.963 percent chance the asteroid will miss the Earth. Even so, astronomers want to know exactly where Bennu is located at all times.

The article provides a good overview of the difficulty of properly calculating Bennu’s orbit into the future, and how the data from OSIRIS-REx will help make those calculations more precise.

OSIRIS-REx at Bennu

OSIRIS-REx has successfully completed its last maneuver engine burn to place it in proximity orbit around the asteroid Bennu.

The link takes you to the live NASA stream, which has been a bit hokey. This event is actually not that visually exciting, a bunch of engineers staring at computer screens awaiting data back from the spacecraft indicating that all has occurred as planned. In fact, some felt a bit staged, though the actual event was really happening.

The OSIRIS-REx team has released relatively little data so far, compared to most NASA missions. There will be a press conference in a week when they say they will release more information. I guess we will have to wait until then.

Update: the live stream has shifted to the docking of the manned Soyuz capsule at ISS, which is in itself a more riveting event than OSIRIS-REx’s last engine burn.

Bennu from 85 miles

Bennu at 85 miles

The OSIRIS-REx science team today released a new image of Bennu, taken by the spacecraft from only 85 miles on November 16, two weeks ago Its contrast has been increased to bring out the details.

The asteroid continues to remind me of Ryugu, a rubble pile of boulders with few smooth spots. I suspect the OSIRIS-REx engineers are going to struggle as much as the Hayabusa-2 engineers are in an effort to find a safe spot to grab a sample. The advantage however for OSIRIS-REx is that the main body of the spacecraft doesn’t have to get as close to the surface as with Hayabusa-2. They will come down only close enough for the robot arm to touch down.

Rendezvous is set for December 3.

Scientists discover giant impact crater buried under Greenland ice

Scientists have discovered the existence of a giant impact crater buried under the Greenland ice.

An international team of researchers, including a NASA glaciologist, has discovered a large meteorite impact crater hiding beneath more than a half-mile of ice in northwest Greenland. The crater — the first of any size found under the Greenland ice sheet — is one of the 25 largest impact craters on Earth, measuring roughly 1,000 feet deep and more than 19 miles in diameter, an area slightly larger than that inside Washington’s Capital Beltway.

They think, based on the data, that this crater is very young, one of the youngest known on Earth. At the most is is no more than 3 million years old.

Null result from Spitzer suggests Oumuamua was small

The uncertainty of science: The inability of the infrared Spitzer Space Telescope to detect the interstellar object Oumuamua as it exited the solar system suggests the object is small.

The fact that ‘Oumuamua was too faint for Spitzer to detect sets a limit on the object’s total surface area. However, since the non-detection can’t be used to infer shape, the size limits are presented as what ‘Oumuamua’s diameter would be if it were spherical. Using three separate models that make slightly different assumptions about the object’s composition, Spitzer’s non-detection limited ‘Oumuamua’s “spherical diameter” to 1,440 feet (440 meters), 460 feet (140 meters) or perhaps as little as 320 feet (100 meters). The wide range of results stems from the assumptions about ‘Oumuamua’s composition, which influences how visible (or faint) it would appear to Spitzer were it a particular size.

The new study also suggests that ‘Oumuamua may be up to 10 times more reflective than the comets that reside in our solar system – a surprising result, according to the paper’s authors.

These results fit the models that explain Oumuamua’s fluctuations in speed as caused by the out gassing of material, like a comet. They also do not contradict the recent hypothesis that the object might have been an alien-built light sail.

The simple fact is that we do not have enough data to confirm any of these theories.

Bennu’s two hemispheres

Bennu's two hemispheres

The image above of the two hemispheres of the asteroid Bennu, cropped and reduced very slightly to post here, was created from several images taken by OSIRIS-REx on two different days last week.

These two super-resolution views of asteroid Bennu were created using eight 2.5-millisecond exposure images captured by OSIRIS-REx on two separate days. The view on the left is composed of eight PolyCam images taken over the span of two minutes on Nov. 1, 2018, when the spacecraft was about 126 miles (203 km) from the asteroid. The one on the right – showing the opposite side of the asteroid – was generated using eight images taken during the same two-minute time slot on Nov. 2, from a distance of about 122 miles (196 km).

The rock on the southern limb is the same in both images, merely seen from opposite sides. Bennu appears very similar to Ryugu, except that there do appear to be dark areas on its surface, possibly crater sites, that might be smooth enough for landing.

The rendezvous at Bennu will occur on December 3.

UPDATE: The OSIRIS-REx science team has now released a short movie showing Bennu’s rotation as imaged during this same time period.

Dawn’s last look at Ceres

Ceres

The Dawn mission has ended, and the image on the right, reduced to post here, is one of its last views of Ceres, with the bright spots of Occator Crater clearly visible, before its fuel ran out. You can see the full resolution image by clicking on the image.

This photo of Ceres and the bright regions in Occator Crater was one of the last views NASA’s Dawn spacecraft transmitted before it depleted its remaining hydrazine and completed its mission.

This view, which faces south, was captured on Sept. 1, 2018 at an altitude of 2,340 miles (3,370 kilometers) as the spacecraft was ascending in its elliptical orbit. At its lowest point, the orbit dipped down to only about 22 miles (35 kilometers), which allowed Dawn to acquire very high-resolution images in this final phase of its mission. Some of the close-up images of Occator Crater are shown here.

Occator Crater is 57 miles (92 kilometers) across and 2.5 miles (4 kilometers) deep and holds the brightest area on Ceres, Cerealia Facula in its center and Vinalia Faculae in its western side. This region has been the subject of intense interest since Dawn’s approach to the dwarf planet in early 2015.

If NASA made any specific announcement about the end of the mission, I have missed it. Either way, this end is not a surprise, because they have made it clear for the past few months that the spacecraft was about to run out of fuel.

They have also posted today an image of Ceres’ largest mountain, Ahuna Mons.

Update: Even as I posted this, NASA sent out this press release: NASA’s Dawn mission comes to an end

OSIRIS-REx snaps image of target asteroid Bennu

Bennu

OSIRIS-REx has snapped its sharpest image yet of its target asteroid Bennu, set for a rendezvous on December 3. The image on the right is that image, at full resolution but cropped.

This “super-resolution” view of asteroid Bennu was created using eight images obtained by NASA’s OSIRIS-REx spacecraft on Oct. 29, 2018 from a distance of about 205 miles (330 km). The spacecraft was moving as it captured the images with the PolyCam camera, and Bennu rotated 1.2 degrees during the nearly one minute that elapsed between the first and the last snapshot. The team used a super-resolution algorithm to combine the eight images and produce a higher resolution view of the asteroid. Bennu occupies about 100 pixels and is oriented with its north pole at the top of the image.

It is beginning to appear that the OSIRIS-REx engineering team is going to have the same kind of problems now faced by the Hayabusa-2 engineering team. In this first glance Bennu appears very similar to Ryugu, a rubble pile shaped approximately like a box, rotating on one point. If so, they are also going to find it difficult to locate a smooth landing site.

Bennu by the way is in an orbit that makes a collision with the Earth possible in the late 22nd century. Knowing its composition, density, and solidity is critical for determining what to do, should that collision become likely.

Oblique view of Hayabusa-2’s most recent landing rehearsal

Cool movie time! The Hayabusa-2 science team has released a small movie of images taken by a side-mounted camera of the spacecraft’s most recent landing rehearsal, showing the spacecraft ascend from its closest approach from an oblique angle.

I have embedded the movie from these images below the fold. As they note,

Images taken with the small monitor camera (CAM-H) during the Touchdown 1 Rehearsal 3 operation (TD1-R3). One image was captured every second from immediately after the spacecraft began to ascend (altitude 21m) on October 25, 2018 at 11:47 JST. The spacecraft was rising at about 52cm/s.

It appears the closest image was taken from about 21 meters away, about 65 feet, and gives a sense of scale. It also reveals once again how difficult that landing in January is going to be. Though this location is thought to be the smoothest spot on Ryugu, it is still littered with rocks that could cause problems.
» Read more

Hayabusa-2’s highest resolution image so far

Ryugu up close

The Hayabusa-2 science team has released the highest resolution image taken by the spacecraft so far. The image on the right, reduced to post here, is that image. Click on it to see the full resolution version.

The image resolution is about 4.6mm/pixel. This is the highest resolution image that Hayabusa2 has taken so far and even small rocks with a diameter of 2 – 3cm are clearly visible. The maximum resolution of AMICA –the camera at the time of the first Hayabusa mission— was 6 mm/pixel, so even its resolution has now been exceeded. As the image captured of the asteroid surface from the spacecraft, it will be one of the highest resolution to be taken of Ryugu (MINERVA-II1 and MASCOT which landed on the surface, have captured even higher resolution images).

A feature from the image is the lack of regolith (sandy substance). This was suspected to be true from the images obtained so far, but it is more clearly seen in this high resolution photograph. There is also a collection of pebbles with different colors, which may be evidence that the surface material of Ryugu is mixed.

This was taken during the second landing rehearsal about two weeks ago. The image clearly shows the rubble pile that is Ryugu, lacking anything but cemented rocks. It also illustrates the landing problem faced by Hayabusa-2’s engineers. They need a flat smooth area to land, and they have not really found one that fits their needs.

Hayabusa-2 completes third Ryugu touchdown rehearsal

Ryugu up close

Hayabusa-2 today completed its third Ryugu touchdown rehearsal.

According to their operation schedule, they were planning to descent to about 20 meters of the surface, about 65 feet. The image on the right is the closest image taken during the rehearsal. You can see the shadow of Hayabusa-2 in the middle of the frame.

They have not released any information about the rehearsal results. The key here is how accurately they were able to get Hayabusa-2 to approach the asteroid’s largest flat spot, a tiny 20 meter wide spot less than half the size of their original planned landing diameter. From the image, it is unclear how successful they were.

They will now spend the next two months analyzing the data from their landing rehearsals in preparation for a landing attempt in January. During this time observations will be reduced because the Sun will be between the Earth and the asteroid.

Pluto orbiter mission could also explore Kuiper belt

An analysis by scientists of the orbital mechanics surrounding Pluto and Charon, combined with the use of an ion engine similar to that used by the asteroid probe Dawn, suggests that an orbiter sent to Pluto could also break from from that planet to travel out into the Kuiper Belt and explore additional objects there.

The team first discovered how numerous key scientific objectives can be met using gravity assists from Pluto’s giant satellite, Charon, rather than propellant, allowing the orbiter to change its orbit repeatedly to investigate various aspects of Pluto, its atmosphere, its five moons, and its solar wind interactions for up to several years. The second achievement demonstrates that, upon completing its science objectives at Pluto, the orbiter can then use Charon’s gravity to escape the system without using fuel, slinging the spacecraft into the Kuiper Belt to use the same electric propulsion system it used to enter Pluto orbit to then explore other dwarf planets and smaller Kuiper Belt bodies.

“This is groundbreaking,” said Stern. “Previously, NASA and the planetary science community thought the next step in Kuiper Belt exploration would be to choose between ‘going deep’ in the study of Pluto and its moons or ‘going broad’ by examining smaller Kuiper Belt objects and another dwarf planet for comparison to Pluto. The planetary science community debated which was the right next step. Our studies show you can do both in a single mission: it’s a game changer.”

The key here is a willingness to make increased use of the ion-type engine used by Dawn in its journey from the asteroids Vesta and Ceres. Such a probe could spend decades traveling from one Kuiper Belt object to the next.

Hayabusa-2 will do two touchdown rehearsals prior to landing in January

In order to test whether they can bring Hayabusa-2 down to the surface within a circle only 20 meters (65 feet) across (the largest smooth landing area they have found so far on Ryugu), their engineering team has decided to first do two more touchdown rehearsals in October.

In the area where the spacecraft will touchdown, it is dangerous to have boulders with a height greater than about 50cm. Since the length of the sampler horn is about 1m and the spacecraft will be to be slightly inclined during the touchdown, there is a possibility that if a boulder with a height above about 50cm is present, it will strike the main body of the spacecraft or the solar panels. Viewed from the position in Figure 2, there is no boulder larger than 50cm in the area L08-B. L08-B is the widest part within all the candidate sites without a boulder larger than 50cm.

The difficulty is that area L08-B is only about 20m in diameter. Originally, it was assumed that a safe region for touchdown would be a flat area with a radius of about 50m (100m in diameter). This has now become a radius of just 10m; a fairly severe constraint. On the other hand, during the descent to an altitude of about 50m during the MINERVA-II1 and MASCOT separation operations, we were able to confirm that the spacecraft can be guided within a position accuracy of about 10m for a height 50m above the surface of Ryugu (Figure 3). This is a promising feature for touchdown.

Although the spacecraft can be controlled with a position error of 10m at an altitude down to 50m, there remains the question of whether this accuracy can be retained as the spacecraft descends to the surface. This must be confirmed before touchdown operations. Therefore, the touchdown itself will be postponed until next year, during which time we will have two touchdown rehearsals; TD1-R1-A and TD1-R3.

After the rehearsals in October they must wait until January to do the landing because in November and December the sun will be in-between the Earth and the spacecraft, making operations more difficult. They want to also use this time to review the results of the rehearsals to better prepare for the January landing.

MASCOT’s journey on Ryugu

MASCOT's journey on Ryugu

MASCOT’s German science team has released a summary of the lander/hopper’s results and seventeen hour journey across the surface of the asteroid Ryugu. The image on the right, reduced and cropped to post here, shows the spacecraft approach, landing, and numerous hops across the surface. If you click on the image you can see the full high resolution image.

Having reconstructed the events that took place on asteroid Ryugu, the scientists are now busy analysing the first results from the acquired data and images. “What we saw from a distance already gave us an idea of what it might look like on the surface,” reports Ralf Jaumann from the DLR Institute of Planetary Research and scientific director of the MASCOT mission. “In fact, it is even crazier on the surface than expected. Everything is covered in rough blocks and strewn with boulders. How compact these blocks are and what they are composed of, we still do not know. But what was most surprising was that large accumulations of fine material are nowhere to be found – and we did not expect that. We have to investigate this in the next few weeks, because the cosmic weathering would actually have had to produce fine material,” continues Jaumann.

The spacecraft apparently bounced eight times after first contact, then executed three hops. The rubble pile nature that is observed I think explains why the Hayabusa-2 science team decided to delay its own landing for a few months so they could figure out a plan. It really appears that Ryugu does not have any smooth flat spots, as expect.

Hayabusa-2 landing on Ryugu delayed until January

Because of the roughness of the surface of Ryugu, the Hayabusa-2 science team has decided to delay the landing of the spacecraft on the asteroid from the end of this month until late January at the earliest.

JAXA project manager Yuichi Tsuda said they needed more time to prepare the landing as the latest data showed the asteroid surface was more rugged than expected.

“The mission … is to land without hitting rocks,” Tsuda said, adding this was a “most difficult” operation. “We had expected the surface would be smooth … but it seems there’s no flat area.”

.

This decision is a wise one. They will have the ability to land very precisely, and this will give them time to find the least risky spot. It does indicate however that the landing itself is going to be risky, which is probably why they want more time to gather data beforehand. Should the landing fail, the mission will essentially be over. This way they can maximize what they learn.

Ceres’s poles have shifted by as much as 36 degrees

A new analysis of Dawn data suggests that the poles of Ceres have wandered by as much as 36 degrees, and the data also adds further support for the existence of a liquid water layer between the dwarf planet’s crust and mantle.

“The most surprising aspect of this paper is to me the observation that the pole of Ceres must have followed an indirect path to its current pole. A multi-step reorientation could mean that the equatorial density anomaly was still evolving during the reorientation, and this could be because the crust and mantle were weakly rotationally coupled, allowing the crust to start reorienting while the mantle would lag behind,” Tricarico said. “If crust and mantle are allowed to shift with respect to one another, that could point to a layer of reduced friction between crust and mantle, and one of the possible mechanisms to reduce friction could be an ancient water ocean beneath the crust.”

In other words, the crust and mantle are not locked together. Imagine a baseball where the ballcover is not tightly held to the inner core, and slides around it. (Boy there are a lot of pitchers who wish they could get a hand on that baseball.) The cause of that looseness on Ceres is possibly because of a liquid layer in-between the crust and the mantle.

Need I note that there are uncertainties here?

Sixth biggest Michigan meteorite discovered as doorstop

The sixth biggest Michigan meteorite ever discovered had been used as a doorstop for decades and was only identified when its present owner got curious and had it inspected by scientists.

Central Michigan University says Thursday that the 22.5-pound space rock was recently identified by Department of Earth and Atmospheric Sciences professor Dr. Monaliza Sirbescu after the owner “brought it to her out of curiosity.” The Grand Rapids man was apparently inspired to investigate after seeing news of meteorite hunters finding shards and selling them for thousands of dollars after a meteor sighting in January in the Detroit area.

The chunk of iron and nickel was later valued at $100,000 after the Smithsonian Institution verified the find, CMU said in a release. The rock, which was initially used as a doorstop in the Edmore area for several decades after a farmer recovered it sometime in the 1930s, turned out to be Michigan’s sixth-largest meteorite, a university spokesperson said.

Hat tip Wayne DeVette.

Images of Mascot by Hayabusa released

MASCOT descending towards Ryugu

The Hayabusa-2 science team today released images taken of MASCOT as it descended to the surface of Ryugu, including images showing where it landed.

In the image on the right, reduced slightly to post here, you can see MASCOT as it slowly moves downward towards the asteroid shortly after its release from Hayabusa-2. At the link there is another image showing the mini-lander as a white dot when it was still about 115 feet above the surface. Other images show its location on the surface where it operated for seventeen hours and completed three hops.

The next big event from Hayabusa-2 will be the spacecraft’s own landing, sometime later this month.

1 9 10 11 12 13 29