New auto-destruct system to increase launch rate

The competition heats up: A new auto-destruct system operating by computer, using GPS, and installed on each rocket should allow the launch rate in Florida to ramp up significantly.

Up until now it took several days to reconfigure the ground-based radar facilities. This system, first used on the most recent Falcon 9 launch, does not require this. It also involves fewer people to operate it. They expect that they will soon be able to launch up to 48 missions per year, some on the same day.

India’s government a barrier to private space

Even as India and its space agency show themselves to increasingly be a major player in the worldwide aerospace market, it appears that India’s governmental policy on private satellite communications is acting as a barrier that blocks the growth of a commercial space industry.

India’s current satcom policy, first rolled out in 1997 and then updated in 2000, is clearly outdated. A senior ISRO official who attended the ORF event (but declined to be identified) pointed out that all the existing satcom policy says is Indian satellite companies will be given preference over foreign multinational companies. “How does this preference play out? If the department of space is worried about national security concerns, they should lay down clear guidelines for security compliance by foreign satellites. The existing policy doesn’t talk about this, which inevitably leaves it to ISRO, DoS and Antrix’s discretion,” the official told The Wire.

And this discretion has held up multiple applications for satellite manufacturing and foreign direct investment over the last decade. Hughes’ Krishna is particularly frustrated over this. “If a company submits an application for satellite broadband services in India, irrespective of where the satellites will be made, it needs a specific timeline on when it will hear back from ISRO or the DoS. Will it be two years, three years or five years? It is difficult to line up future investments if speedy clearance is not given,” Krishna said.

Essentially, India’s Department of Space (DoS) and its space agency ISRO control all licensing, and have been using that power to delay or deny the issuing of any private satellite licenses, since such efforts are in competition with these government agencies.

The situation here is very similar to what existed in the U.S. with NASA for most of the last half of the 20th century. The agency did not want private launch companies competing with its own manned programs, and diligently worked to block their efforts. If you wanted to be part of manned space, you did what NASA told you to do and you built what they told you to build. It wasn’t until the rise of the commercial space programs to launch cargo to ISS that NASA’s grip on manned space was finally broken.

India now faces the same problem. ISRO has done an excellent job, as NASA did in its early years, in getting India’s space industry started. It now needs to back off, stop running things and simply be a customer of these competing private companies, letting freedom do the job instead of government dictate. The question now is whether the Indian government will allow this to happen. There are many vested interests there that will resist.

Dragon safely berths at ISS one day late

As expected, SpaceX’s Dragon freighter safely berthed at ISS today, one day late.

French astronaut Thomas Pesquet steered a 58-foot robotic arm to snare the unmanned Dragon at 5:44 a.m. EST, as the two spacecraft flew 250 miles above northwestern Australia. “Looks like we got a great capture,” radioed Shane Kimbrough, commander of the six-person Expedition 50 crew, to flight controllers in Houston.

The freighter will remain docked at ISS for a month while they off load it and load it with experiments being sent home.

NASA signs technology development contracts with eight companies

The competition heats up: NASA today announced the award of contracts to eight small companies to develop new technologies for the advancement of smallsat launch capabilities.

The contracts cover a wide range of launch concepts, from testing new imaging technology for spotting asteroids to new rocket engine development to new rocket designs. The key component however of all these contracts is this:

These fixed-priced contracts include milestone payments tied to technical progress and require a minimum 25 percent industry contribution, though all awards are contingent on the availability of appropriated funding. The contracts are worth a combined total of approximately $17 million, and each have an approximate two-year performance period culminating in a small spacecraft orbital demonstration mission or the maturation of small launch vehicle technologies.

In other words, the companies have to provide some of the funding, since the technology being developed will benefit them. They also will only be paid once they meet certain milestones, and any cost overages will be their responsibility. The result? The U.S. has the chance of giving birth to eight new space companies, all with cutting edge technology that can compete in the new launch market. And the country gets this for a measly $17 million.

Aerojet Rocketdyne sets record testing new rocket engine

The competition heats up: In recent static fire tests of its new AR-1 rocket engine Aerojet Rocketdyne set a record for the highest chamber pressure for any American engine using oxygen and kerosene.

They hope to convince ULA to use this engine in its Atlas 5 rocket to replace the Russian engine they presently use. At the moment, though ULA has made no commitment, it appears however that the company is favoring Blue Origin’s engine instead. That Congress favors Aerojet Rocketdyne is their one ace in the hole, since Congress controls the purse strings.

Sea Launch deal finalized?

The competition heats up? Two articles today in the Russia press suggest that either their settlement deal with Boeing over bankrupt Sea Launch is either on the verge of signing or the Russians are trying to pressure Boeing to an agreement by use of the press.

The first article says that a final agreement is about to be signed, but provides no date or indication from Boeing that they have agreed to terms. The second announces that the private Russian company that is acquiring Sea Launch from the Russian government to compete in the commercial launch market has been given a launch license by the Russian government, and will launch its first rocket from Baikonur later this year, using the Ukrainian Zenit-M rocket that was designed to fly from the Sea Launch floating platform. .This launch is intended as a test flight prior to restarting launches from the Sea Launch platform itself.

The complexity of this Sea Launch situation boggles my mind. Russia has sold Sea Launch to a private Russian airline company, S7, which will use a Ukrainian rocket to launch satellites from the Sea Launch platform. Before that can happen however Russia has to settle its dispute with Boeing, which won a $300+ million settlement in court over the breakup of their Sea Launch partnership. That settlement reportedly includes free passenger seats on Soyuz flights to ISS, which Boeing is reportedly offering to sell to NASA, which might need them. Meanwhile, Russia does not seem to have a problem with a Russian company using a Ukrainian rocket, even though Russia itself has completely banned the use of Ukrainian equipment on any of its own space rockets or capsules.

The business of commercial space sometimes amazes me.

Posted in the airport terminal in Belize City. We are waiting for everyone to arrive to take a van together to our resort, Maya Mountain Lodge.

Dragon aborts berthing with ISS

Because the spacecraft had apparently rendezvoused with ISS about 15 minutes early today, the computers on Dragon aborted the berthing, backing off to try again tomorrow.

No explanation as to why the spacecraft arrived so much earlier than expected, though it is reported to be in excellent shape.

Posted above the Gulf of Mexico, which appears very calm today.

Testing of Virgin Galactic’s LauncherOne first stage engine

The competition heats up: This week Virgin Galactic’s successfully completed a long duration static fire test of the first stage engine of its LauncherOne smallsat rocket.

I predict that LauncherOne will fly its first commercial flight before Unity, the company’s second SpaceShipTwo spacecraft, and it will do it multiple times. In fact, right now I firmly believe that Unity is never going to reach suborbital space, as they have designed it for an engine that simply doesn’t work, and can’t figure out how to redesign it to solve the problem.

LauncherOne meanwhile has at least one launch contract, and is being designed with a workable engine, right from the start.

India’s space agency wants to build a space station

The decline begins: The head of India’s space agency ISRO yesterday advocated that his country build its own space station.

The spacesuit is ready. A survival capsule is on the way. ISRO has everything to send astronauts into space and develop a space station, all that’s left is for the government to give the money and policy clearance, said ISRO chief AS Kiran Kumar here on Monday. “We have the capability to create a space station, but you (government) have to give us the money and time to make this happen,” Kumar told reporters on the sidelines of 34th foundation day celebration of the Raja Ramanna Centre for Advanced Technology (RRCAT). “If the government and country decides… we are ready. You need to provide us funding, policy clearance,” he said, adding that space mission is low priority for the government “because one doesn’t see any immediate use of this in country’s development and growth”.

Kumar’s comments came in the backdrop of Chinese media reacting to ISRO’s recent record launch of 104 satellites at one go. An editorial in a Chinese newspaper pointed out that “there is no Indian astronaut in space and the country’s plan to establish a space station has not started”. [emphasis mine]

Rather than focus on development that could increase India’s competitiveness in the profitable launch market, such as improving its rockets either by making them reusable or able to launch more frequently, Kumar instead wants to spend his government’s money and build a space station. He doesn’t really outline what he intends to accomplish with this station, other than demonstrate that India can match China. His focus instead is creating an infrastructure for pork and jobs for ISRO. The station will not bring in profits, which would be more useful to the country and its nascent private space industry.

This is what government agencies routinely do. They might start out functioning like an innovative private company trying to attract customers, but the lure of coerced government money always takes precedence in the end, and the agency shifts its focus to building pork-laden empires funded by tax dollars.

SpaceX delays first Dragon Mars mission to 2020

SpaceX has decided to delay its first Dragon flight to Mars from 2018 to 2020 so as to focus on more immediate priorities.

Instead of aiming for the 2018 deadline, SpaceX will now try to launch a robotic mission to Mars — known as its Red Dragon mission — two years later, in 2020, SpaceX president Gwynne Shotwell said during a press conference Friday.

This delay will allow the company to refocus on other more, earthly ambitions in the near term before setting its sights on Mars down the road. “We were focused on 2018, but we felt like we needed to put more resources and focus more heavily on our crew program and our Falcon Heavy program, so we’re looking more in the 2020 time frame for that,” Shotwell said.

They need to fly the Falcon Heavy several times first, and the delays caused by last year’s September 1 launchpad explosion, has pushed the first Falcon Heavy launch back from late in 2016 to the summer of 2017.

Killing both commercial space and American astronauts

This all reeks of politics: A new Government Accountability Office (GAO) report released yesterday says that NASA it should not permit Boeing and SpaceX to fly humans on their capsules and rockets until they fix certain issues and test both repeatedly on unmanned flights before the first manned flights to ISS.

This GAO report was mandated by Congress, and it requires NASA to certify that both Boeing and SpaceX have met NASA’s requirements before allowing those first manned flights. While the technical issues outlined in the report — to which NASA concurs — might be of concern, my overall impression in reading the report, combined with yesterday’s announcement by NASA that they are seriously considering flying humans on SLS’s first test flight, is that this process is actually designed to put obstacles in front of Boeing and SpaceX so as to slow their progress and allow SLS to launch first with humans aboard.

For example, the report lists three main problems with the commercial manned effort. First there is the Russian engine on the Atlas 5. From the report itself [pdf]:
» Read more

Two congressmen propose naming SLS for astronaut Gene Cernan

Two congressman yesterday introduced legislation that would rename SLS after Eugene Cernan, the last Apollo astronaut to walk on the Moon.

I don’t think anyone would argue with this. First, SLS is a terrible name for the rocket. Second, Cernan deserves the recognition.

At the same time, I suspect this is happening as part of an overall push within the Washington community to sell SLS to Trump and his administration. This proposal, as well as the recent news stories proposing SLS/Orion Moon missions and putting astronauts on SLS’s first flight, all point to a lobbying effort inside NASA, Congress, and the big space community to save SLS, which when compared to the successes and achievements of commercial space since 2010 appears an abject failure.

That comparison is at the heart of my policy paper, Capitalism in Space, which will hit the newstands next week. It makes it very clear how much a failure SLS/Orion has been, and how embarrassing that failure stands when compared to commercial space.

Rocket Lab delivers first test rocket to launch site

The competition heats up: Rocket Lab has delivered its first test rocket to its New Zealand launch complex in preparation for testing.

Over the coming weeks, a series of tests and checkouts will be conducted at the site before the rocket, named “It’s a Test,” is signed-off to fly. “We put it out to our team to name the vehicle,” said Beck. “We wanted to acknowledge the intensive research and development Electron has undergone and that continues with these test flights.”

The launch, which will be the first orbital launch attempt from New Zealand, is the first of three planned tests before Rocket Lab begins providing customers commercial satellite launches.

They hope to launch their first commercial payload on an operational Electron rocket before the end of this year.

India preparing rover for 2018 Moon landing

The competition heats up: India preparing rover for 2018 Moon landing.

Isro’s Satellite Applications Centre Director, M. Annadurai, revealed the tentative launch schedule while speaking to the press at the Satish Dhawan Space Centre, Shar, Sriharikota on Wednesday. He said a Lander and a six-wheeled Rover were being prepped to go with the Chandrayaan-II mission. The chief scientist added that a launch is likely to take place in the first quarter of 2018. According to Dr P.V. Venkita Krishnan, the director of the Isro Propulsion Complex at Mahendragiri, engineers were currently testing soft-landing engines.

India’s launch of a record 104 satellites on a single rocket has pumped up the Indian press, as there were almost 20 stories on space and that launch in their press today, almost all favorable.

This article however is from the U.S., and takes a look at the ineffective American space policy that supposedly forbids American companies from launching on Indian rockets.

The U.S. Commercial Space Launch Agreement of 2005 prohibits the launch of commercial satellites on the Indian vehicle. The reasoning is that struggling U.S. commercial launch providers needed time to establish themselves in the market and would be wiped out by India’s PSLV, which is developed by the Indian Space Organization.

Since 2015, commercial satellite owners have successfully obtained waivers to the policy.

The article notes India’s competitive prices, as well as the overall state of the smallsat industry and its dependence on bigger rockets as secondary payloads to get into space. India’s rockets, funded and subsidized by the government but also built to be inexpensive so as to attract customers, is clearly positioned to effectively compete with SpaceX, who until now charged the least.

What will our Congress do? My preference would be for them to repeal this part of the 2005 law so that American satellite companies can fly on whoever they wish. That would increase competition but it would also likely invigorate the overall launch industry because it would increase the satellite customer base for those rockets and thus create more business for everyone.

Sadly, I suspect that Congress will instead demand that the waivers to the law cease, and will thus block the use if Indian satellites by American companies. The short-sightedness of our politicians never ceases to surprise me.

Capitalism in Space to be released early next week

After several months of delay for a variety of reasons that I do not need to go into, my policy paper for the Center of New American Security has gone to the printers will be released to the public early next week. The title: Capitalism in Space: Private Enterprise and Competition Reshape the Global Aerospace Launch Industry.

I will have the pdf of this paper available here on Behind the Black the instant it is available. To give everyone a taste, here are my concluding words:

A close look at these recommendations will reveal one common thread. Each is focused on shifting power and regulatory authority away from the federal government and increasing the freedom of American companies to act as they see fit to meet the demands of the market. The key word that defines this common thread is freedom, a fundamental principle that has been aspired to since the nation’s founding. Political leaders from both parties have made the concept a central core tenet of American policy. Democrat John Kennedy stated that his commitment to go to the Moon was a “stand for freedom” in the Cold War. Republican Ronald Reagan proposed “Freedom” as the name for the new space station, and viewed it as a platform for promoting private enterprise in space.

Freedom is actually a very simple idea. Give people and companies the freedom to act, in a competitive environment that encourages intelligent and wise action, and they will respond intelligently and wisely.

The United States’ history proves that freedom can work. It is time that it prove it again, in space.

The international government effort to come up with a cis-lunar ISS

The competition heats up: In the past five years the various international partners and their space agencies have been conducting studies for developing a new international space station, this time based not in Earth orbit but located near the Moon.

Following initial approval in the fall of 2014, the five space agencies formed the ISS Exploration Capabilities Study Team, IECST, which was tasked with reviewing how the ISS experience could be used to build the cis-lunar infrastructure, with determining its possible architecture and with drafting its flight plan and possible mission. Specialists also had the task of looking at all the necessary technologies, logistics and maintenance which would be required for building and operating a small habitat near the Moon. This man-tended outpost could serve as a way station to the lunar surface and as a springboard for the exploration of the Solar System, including asteroids, Mars and its moons. In fact, the outpost itself could eventually embark on a journey toward a deep-space destination. Representatives of the various space agencies also tried to see what contributions each country could make, based on their technical capabilities and realistic budgets.

All the work was conducted within the ISS program and covered by its budget.

Initially, the IECST group included representatives from space agencies only, for the exception of Russia, with Roskosmos officials needed help from the nation’s prime contractor in human space flight — RKK Energia. For the final few meetings in 2016, ESA also brought representatives from the European space industry. However NASA did not directly involve its key human space flight contractors into the IECST activities. (Instead, the US aerospace companies Boeing and Lockheed Martin continued parallel studies in cooperation with RKK Energia in Russia, EADS Astrium in Europe and Mitsubishi in Japan.) [emphasis mine]

Read the whole article. Lots of interesting details.

In a sense, this international effort is a political lobbying effort by these space agencies to come up with a single project to follow ISS that will continue the funneling of government money to them all. It is also an effort by them to structure future space exploration so all efforts will be contained within this single program, rather than allowing for many different competing efforts, both private and public. In addition, it is an attempt by NASA to come up with some long-term mission for SLS/Orion, which at present has no operational purpose and no funding beyond its first manned flight in 2021.

Finally, note the highlighted sentence above. This effort — which will benefit not just NASA but the space agencies of Russia, Europe, and Japan as well as the old big space companies like Boeing, Lockheed Martin, and Mitsubishi — is been paid entirely by American tax dollars. Something about this to me seems wrong. Shouldn’t the cost here be shared? And doesn’t it seem inappropriate for NASA to be picking the companies it wants to work with, without open bidding?

Countdown begins on India’s record-setting launch of 104 satellites

The competition heats up: ISRO has begun the countdown for Wednesday’s launch of India’s PSLV rocket, carrying a record-setting 104 satellites.

he Polar Satellite Launch Vehicle would be carrying a 714 kilogram main satellite for earth observation and 103 smaller “nano satellites” which would weigh a combined 664 kilograms. Nearly all of the nano satellites are from other countries, including Israel, Kazakhstan, The Netherlands, Switzerland, United Arab Emirates and 96 from United States, said the state-run ISRO.

If successful, India will set a world record as the first country to launch the most satellites in one go, surpassing Russia which launched 39 satellites in a single mission in June 2014.

Obviously, all these different satellites got a cut-rate launch deal by sharing the launch, which helps make their launch affordable. The disadvantage here is that they do not have much flexibility in choosing their orbits, which is why there is also a market now for small rockets aimed at launching single smallsats, such as Rocket Lab’s Electron.

A glimpse at China’s unmanned cargo freighter

The competition heats up: A Chinese state media report just released included footage showing China’s unmanned cargo freighter, Tianzhou-1, as engineers prepare it for its April launch to their test space station module, Tiangong-2.

Two important take-aways from this report. First, note in the simulation showing the docking of the freighter to Tiangong-2 the size comparison. The two craft are almost the same size, showing that Tiangong-2 really is nothing more than a test module, not large enough for long sustained space station operations. The freighter meanwhile is quite substantial.

Second, the report says they are aiming for a 2018 launch of the first module of their full size station.

Japan to try another launch of low-cost mini-rocket

The competition heats up: Japan has decided, following a January launch failure, to try another launch attempt in 2017 of a test of low-cost mini-rocket.

Participating businesses will likely bear the brunt of the 300 million yen to 500 million yen ($2.64 million to $4.4 million) launch cost, though the government will likely allocate funds as well. JAXA aims to have the rocket finished by autumn. It will soon plan out how to procure needed parts and build the vehicle in time for a 2017 launch, then submit the plan to the Ministry of Education, Culture, Sports, Science, and Technology. The ministry will secure a launch site accordingly, and a safety and inspections committee of its space division will review the plan.

January’s rocket was a three-stage version of the existing two-stage SS-520, modified to carry a miniature satellite. Off-the-shelf consumer product technology was incorporated to keep costs down. The rocket blasted off successfully. But during the first stage of the launch sequence, transmission of such critical data as its temperature and position ceased. The agency aborted the second stage, letting the vehicle fall into the ocean.

This second attempt, and the speed in which they appear to be gearing up to launch it, suggests that Japan might finally be recognizing that it has been failing badly in its efforts to participate in the new commercial launch market, and needs to energize its launch industry if it wants to participate in the exploration of the solar system.

Orbital ATK prepares Cape Canaveral launchpad for July Minotaur launch

The competition heats up: Orbital ATK crews on Sunday practiced stacking stages on a Cape Canaveral launchpad in preparation for a July Minotaur 4 launch of an Air Force surveillance satellite.

Teams this weekend stacked three inert Peacekeeper missiles stages on a launch stand similar to those that will make up the Minotaur IV rocket’s first three stages. Two more Orion 38 stages will fill out the rocket. On Sunday, the first three stages standing more than 50 feet tall were surrounded by puffy white covers that will keep the right temperature during the launch campaign’s summer heat.

Plans called for the mobile gantry to be rolled back on rails to its launch position before the stages are taken down on Monday.

Orbital ATK has been prevented from expanding its Minotaur 4 market beyond military launches because the rocket uses these available but now unused Peacekeeper missiles and is thus very inexpensive. Their competitors have been their influence in Congress to forbid their use commercially.

SpaceX successfully completes Falcon 9 static fire test

SpaceX on Sunday successfully completed the launch dress rehearsal countdown and static fire test for its next Falcon 9 launch, which will loft a Dragon capsule to ISS and is set now for February 18.

The article at the link as well as a lot of other news organizations are making a big deal about the fact that this launch is taking place at the LC-39A launchpad, used during the Apollo program as well as by the shuttle. While the historic background is interesting, of more significance to me is that this test brings SpaceX closer to having two operational pads in Florida, one of which (LC-39A) is configured for Falcon Heavy launches.

UK commits £10 million to space development

The competition heats up: The United Kingdom’s space agency yesterday announced that it is making available £10 million in grants for projects that develop and improve the country’s launch capabilities.

Organisations expected to bid for a share of the funding are likely to be joint enterprises of launch vehicle operators and potential launch sites. The funding must be used to develop spaceflight capabilities, such as building spaceport infrastructure or adapting launch vehicle technology for use in the UK. The aim is to establish a commercial spaceflight market to capture a share of the emerging global market from 2020.

The government also announced today that it is preparing legislation to develop a safe and competitive regulatory environment for spaceflight. This work goes hand-in-hand with government’s work internationally to achieve the technical, trade and policy agreements necessary for UK based launch services and developing interest from launch customers and operators from around the world.

It is interesting to me that the UK’s effort to prepare a better regulatory environment for private space is happening parallel to the similar recently-announced regulartory efforts in Luxembourg, the United States, and the United Arab Emirates, just to name a few. It seems that the nations that wish to compete in the new colonial movement in space are all discovering that the Outer Space Treaty is a problem, and they are all searching for ways to legally bypass it, without abandoning it.

Trump to the Moon!

Two stories in the past two days strongly suggest that the Trump administration is planning a two-pronged space policy approach, with the long-term goal of shifting most of space to private operations.

From the first link:

The more ambitious administration vision could include new moon landings that “see private American astronauts, on private space ships, circling the Moon by 2020; and private lunar landers staking out de facto ‘property rights’ for American on the Moon, by 2020 as well,” according to a summary of an “agency action plan” that the transition drew up for NASA late last month. Such missions would be selected through an “internal competition” between what the summary calls Old Space, or NASA’s traditional contractors, and New Space characterized by SpaceX and Blue Origin. But the summary also suggests a strong predilection toward New Space. “We have to be seen giving ‘Old Space’ a fair and balanced shot at proving they are better and cheaper than commercial,” it says.

Another thrust of the new space effort would be to privatize low-Earth orbit, where most satellites and the International Space Station operate — or a “seamless low-risk transition from government-owned and operated stations to privately-owned and operated stations.” “This may be the biggest and most public privatization effort America has ever conducted,” it says.

Essentially, they are going to do exactly what I suggested back in late December, give SLS/Orion a short-term realistic goal of going to the Moon. This is what it was originally designed for, and it is the only technology presently available that has even the slightest chance of meeting the three year deadline outlined above. More important, this will give Congress something in the negotiations, as SLS/Orion has been Congress’s baby — pushed and funded by Congress over the objections of the previous administration and without a clear mission to go anywhere — in order to keep the money stream flowing to the big “Old Space” companies like Boeing and Lockheed Martin. Obama tried to simply cancel its predecessor, Constellation, and that did not sit well with Congress. Trump however understands negotiation and how to play the game. In order to eventually eliminate SLS Trump is going to provide Congress some short term excitement and some viable long term alternatives.

The long term alternatives will be private enterprise. Even as they send SLS/Orion on its grand finale to the Moon, the Trump administration will accelerate the restructuring of NASA to make the agency less of a design and construction operation and more a mere customer of private space. All non-military Earth orbital operations will be shifted to the private sector over time, so that once SLS/Orion has achieved that goal of completing a lunar mission there will be a strong enough private space sector to replace it, allowing Congress to let it go the way of Apollo and the space shuttle.

1 127 128 129 130 131 216