Tag Archives: rover

More successful image downloads for Curiosity

It increasingly looks like the computer download issues on the Mars rover Curiosity are being solved. For the first time in more than five weeks engineers were able to download numerous images from both of the rovers hazard avoidance cameras as well as both of its navigation cameras. More importantly, for the first time in five weeks they were able to do this two days in a row.

The Curiosity science team has as yet released no press update, but it appears that they are carefully testing the computer to make sure it is functioning properly. This computer was the rover’s original primary computer, but when it had problems several months after landing they had switched to the back-up computer. When that back-up computer had problems sending data back to Earth in September they decided to switch back to the original computer, which had been thought fixed.

Because of the original issues with the primary computer I suspect they are simply proceeding very slowly, so as not to have something fail in a manner that will not be recoverable. First they used it two weeks ago to upload a handful of small images from the hazard avoidance and navigation cameras. Then, after a week of analysis they uploaded a few more images from these cameras.

Then, after another week of analysis, they uploaded a full complement of images from all four cameras, and they did it two days in a row, suggesting that they are increasingly confident that the computer is operating correctly.

I expect a press release updating us on the specifics any time now.

Share

Active signaling to Opportunity to end

While NASA will continue to listen for activity from Opportunity for many more months, its active effort to signal the Mars rover is about to end.

After more than a month, Opportunity has not responded to those commands, and that active listening effort will soon end. “We intend to keep pinging Opportunity on a daily basis for at least another week or two,” said Lori Glaze, acting director of NASA’s planetary science division, during a presentation Oct. 22 at the annual meeting of the American Astronomical Society’s Division for Planetary Sciences here.

Glaze said that a factor in ending the active listening campaign is to prepare for the landing of the InSight spacecraft on Mars Nov. 26. “We want to wind that down before InSight gets to Mars and make sure all our orbital assets are focused on a successful landing of InSight,” she said.

That schedule is consistent with previous plans for attempting to restore contact with Opportunity. NASA said Aug. 30 that, once skies cleared sufficiently, it would attempt active listening for 45 days. “If we do not hear back after 45 days, the team will be forced to conclude that the sun-blocking dust and the Martian cold have conspired to cause some type of fault from which the rover will more than likely not recover,” John Callas, Opportunity project manager, said in a statement outlining those plans.

I would not be surprised if they do try to signal the rover a few more times, in January after the busy fall period when there are a lot of planetary probes needing access to the Deep Space Network. Even so, it appears the rover’s life is finally at an end, fourteen years past its originally planned lifespan of only 90 days.

Share

Curiosity sends down images for the first time in weeks

Good news! For the first time since September 15 Curiosity has sent back images.

The last raw images were received on Sol 2171, equivalent to September 15. Today’s images (Sol 2199) from the front and rear hazard cameras and the two navigation cameras suggest that the engineers have solved the computer issues that prevented the rover from sending its science data to Earth.

No press release has yet been released, but I suspect we shall see something shortly.

Share

Curiosity has problem sending back its stored data

The science team running Curiosity found this week that the rover is suddenly unable to send back its stored data.

Over the past few days, engineers here at JPL have been working to address an issue on Curiosity that is preventing it from sending much of the science and engineering data stored in its memory. The rover remains in its normal mode and is otherwise healthy and responsive.

The issue first appeared Saturday night while Curiosity was running through the weekend plan. Besides transmitting data recorded in its memory, the rover can transmit “real-time” data when it links to a relay orbiter or Deep Space Network antenna. These real-time data are transmitting normally, and include various details about the rover’s status. Engineers are expanding the details the rover transmits in these real-time data to better diagnose the issue. Because the amount of data coming down is limited, it might take some time for the engineering team to diagnose the problem.

On Monday and Tuesday, engineers discussed which real-time details would be the most useful to have. They also commanded the rover to turn off science instruments that were still on, since their data are not being stored. They’re also preparing to use the rover’s backup computer in case they need to use it to diagnose the primary computer. That backup computer was the rover’s primary one until Sol 200, when it experienced both a hardware failure and software issue that have since been addressed.

In other words, the rover is functioning, they can communicate with it in real time, but any data stored on board for some reason is not being transmitted.

Share

Opportunity’s uncertain future

Link here. This article from JPL provides a detailed status report on the rover, as well as what will happen if they should regain communications.

After the first time engineers hear from Opportunity, there could be a lag of several weeks before a second time. It’s like a patient coming out of a coma: It takes time to fully recover. It may take several communication sessions before engineers have enough information to take action.

The first thing to do is learn more about the state of the rover. Opportunity’s team will ask for a history of the rover’s battery and solar cells and take its temperature. If the clock lost track of time, it will be reset. The rover would take pictures of itself to see whether dust might be caked on sensitive parts, and test actuators to see if dust slipped inside, affecting its joints.

Once they’ve gathered all this data, the team would take a poll about whether they’re ready to attempt a full recovery.

Even if engineers hear back from Opportunity, there’s a real possibility the rover won’t be the same. The rover’s batteries could have discharged so much power — and stayed inactive so long — that their capacity is reduced. If those batteries can’t hold as much charge, it could affect the rover’s continued operations. It could also mean that energy-draining behavior, like running its heaters during winter, could cause the batteries to brown out.

They remain hopeful, but this article is clearly meant to prepare the public for the possibility that Opportunity’s long journey on Mars might have finally ended.

Share

How to build a scaled-down version of Curiosity, all by yourself!

JPL has released open-source plans for building a scaled down version of the rover Curiosity at a total cost of only $2,500.

This project is a successor to an earlier educational rover model called “ROV-E,” which received positive responses in schools and museums, NASA said. The Open Source Rover offers a more affordable, less complicated model, and according to agency officials, people can assemble the new model with off-the-shelf parts for about $2,500.

“While the OSR [Open Source Rover] instructions are quite detailed, they still allow the builder the option of making their own design choices,” JPL officials said. “For example, builders can decide what controllers to use, weigh the trade-offs of adding USB cameras or solar panels and even attach science payloads. The baseline design of OSR … will allow users to choose how they want to customize and add to their rover, touching on multiple hardware and software principles along the way.”

I wonder how heavy a home-built rover would be, and whether it could be launched on a Falcon Heavy to Mars.

Share

Another failed drilling attempt by Curiosity

The second attempt by Curiosity to drill into Vera Rubin Ridge was a failure, the rock once again being too hard using the rover’s new improvised drilling technique.

They are now in search of “softer rock.” The scientists very much want to get at least one drill hole in the hematite unit on Vera Rubin Ridge. However, it does appear that the new drill technique, that uses the robot arm to push the drill bit down as its drills, does not provide enough force for some hard geological features.

The failure to drill is in itself not a complete scientific washout. Knowing the hardness of a rock can tell a geologist a great deal about it. Nonetheless, the Curiosity science team seems determined to find something they can drill into on Vera Rubin Ridge.

Share

Mars dust storm blocks Mars Reconnaissance Orbiter images

In my normal routine to check out the periodic posting of new high resolution images from Mars Reconnaissance Orbiter (MRO), the August 1 update brought what at first was a disturbing surprise. If you go to the link you will see that a large majority of the images show nothing by a series of vertical lines, as if the high resolution camera on MRO has failed.

Yet, scattered among the images were perfectly sharp images. I started to look at these images to try to figure out the differences, and quickly found that the sharp images were always of features in high latitudes, while the blurred images were closer to the equator.

The August 1 image release covered the June/July time period, when the on-going Martian dust storm was at its height. The images illustrate also where the storm was most opaque, closer to the equator.

The next few updates, which occur every three weeks or so, should show increasing clarity as the storm subsides. And the storm is subsiding, according to the latest Opportunity update. The scientists have still not re-established contact with the rover, and do not expect to for at least a month or more, but they are finding that the atmospheric opacity at Endeavour Crater seems to be dropping.

Share

Mars rover update: May 23, 2018

Summary: Curiosity drives down off of Vera Rubin Ridge to do drilling in lower Murray Formation geology unit, while Opportunity continues to puzzle over the formation process that created Perseverance Valley in the rim of Endeavour Crater.

For a list of past updates beginning in July 2016, see my February 8, 2018 update.

Curiosity

Curiosity's travels on and off Vera Rubin Ridge

For the overall context of Curiosity’s travels, see Pinpointing Curiosity’s location in Gale Crater.

Since my April 27, 2018 update, Curiosity has continued its downward trek off of Vera Rubin Ridge back in the direction from which it came. The annotated traverse map to the right, cropped and taken from the rover’s most recent full traverse map, shows the rover’s recent circuitous route with the yellow dotted line. The red dotted line shows the originally planned route off of Vera Rubin Ridge, which they have presently bypassed.

It appears they have had several reasons for returning to the Murray Formation below the Hematite Unit on Vera Rubin Ridge. First, it appears they wanted to get more data about the geological layers just below the Hematite Unit, including the layer immediately below, dubbed the Blunts Point member.

While this is certainly their main goal, I also suspect that they wanted to find a good and relatively easy drilling candidate to test their new drill technique. The last two times they tested this new technique, which bypasses the drill’s stuck feed mechanism by having the robot arm itself push the drill bit against the rock, the drilling did not succeed. It appeared the force applied by the robot arm to push the drill into the rock was not sufficient. The rock was too hard.

In these first attempts, however, they only used the drill’s rotation to drill, thus reducing the stress on the robot arm. The rotation however was insufficient. Thus, they decided with the next drill attempt to add the drill’s “percussion” capability, where it would not only rotate but also repeatedly pound up and down, the way a standard hammer drill works on Earth.

I suspect that they are proceeding carefully with this because this new technique places stress the operation of the robot arm, something they absolutely do not want to lose. By leaving Vera Rubin Ridge they return to the more delicate and softer materials already explored in the Murray Formation. This is very clear in the photo below, cropped from the original to post here, showing the boulder they have chosen to drill into, dubbed “Duluth,” with the successful drill hole to the right.
» Read more

Share

NASA will fly a test drone on 2020 Mars rover mission

NASA today announced that a test drone, dubbed Mars Helicopter, will be flown on the 2020 Mars rover mission.

Once the rover is on the planet’s surface, a suitable location will be found to deploy the helicopter down from the vehicle and place it onto the ground. The rover then will be driven away from the helicopter to a safe distance from which it will relay commands. After its batteries are charged and a myriad of tests are performed, controllers on Earth will command the Mars Helicopter to take its first autonomous flight into history.

“We don’t have a pilot and Earth will be several light minutes away, so there is no way to joystick this mission in real time,” said Aung. “Instead, we have an autonomous capability that will be able to receive and interpret commands from the ground, and then fly the mission on its own.”

The full 30-day flight test campaign will include up to five flights of incrementally farther flight distances, up to a few hundred meters, and longer durations as long as 90 seconds, over a period. On its first flight, the helicopter will make a short vertical climb to 10 feet (3 meters), where it will hover for about 30 seconds.

As a technology demonstration, the Mars Helicopter is considered a high-risk, high-reward project. If it does not work, the Mars 2020 mission will not be impacted. If it does work, helicopters may have a real future as low-flying scouts and aerial vehicles to access locations not reachable by ground travel.

The only word I can think of to express my thoughts on this is “Cool!”

Share

Heat shield for 2020 Mars rover cracks during testing

The heat shield to be used during landing by the U.S.’s 2020 Mars rover cracked during recent testing.

The heat shield’s structural damage, located near the shield’s outer edge, happened during a weeklong test at the Denver facility of contractor Lockheed Martin Space, according to a NASA statement released Thursday (April 26). The test was intended to subject the heat shield to forces about 20 percent greater than those it will experience when it hits the Martian atmosphere for entry, descent and landing operations.

The Mars 2020 team found the fracture on April 12. Mission management at NASA’s Jet Propulsion Laboratory in Pasadena, California, will work with Lockheed Martin to lead an examination of the cause of the crack and to decide if any design changes should be made, NASA officials said in the statement.

They do not expect this issue to cause them to miss the 2020 launch window. However, it is astonishing that the heat shield should fail in this manner. First, to save development costs this rover was essentially a rebuild of Curiosity. The new heat shield should have been the same design, and thus should have already been proven capable of surviving this test. Second, Lockheed Martin has been making heat shields of all kinds for decades. This is not cutting edge technology.

Third, note that Lockheed Martin is building Orion, and it also experienced cracks in the capsule’s structure (not its heat shield) during manufacture and testing.

Overall, these facts suggest that some fundamental manufacturing error has occurred, and that there might also be a quality control problem at Lockheed Martin.

Share

Aligned erosion lines of Perseverance Valley

The uncertainty of science: Last week, while I was flying to Israel, the Opportunity science team announced the discovery of strange aligned erosion lines, what they are calling stone stripes, in Perseverance Valley.

The ground texture seen in recent images from the rover resembles a smudged version of very distinctive stone stripes on some mountain slopes on Earth that result from repeated cycles of freezing and thawing of wet soil. But it might also be due to wind, downhill transport, other processes or a combination.

…On some slopes within the valley, the soil and gravel particles appear to have become organized into narrow rows or corrugations, parallel to the slope, alternating between rows with more gravel and rows with less.

The origin of the whole valley is uncertain. Rover-team scientists are analyzing various clues that suggest actions of water, wind or ice. They are also considering a range of possible explanations for the stripes, and remain uncertain about whether this texture results from processes of relatively modern Mars or a much older Mars.

For those who are regular readers of Behind the Black, you already knew about a variation of this discovery back in November 2017, from my regular rover updates. Then, they discovered aligned groves in the gravel that looked to me like slickensides, erosion patterns produced by glacial activity. The science team told me, however, that they were favoring wind, not ice, as a primary cause, though that conclusion was far from certain.

In the press release last week, they focused more on the aligned erosion patterns in the fine gravel that appear to align perpendicular to the slope. Though they think they have found a comparable Earth-based phenomenon that might explain these patterns, it appears that the science team remains just as unsure of their cause as they are for the rocks.

Share

Curiosity takes a panorama that shows its entire journey so far

Cool image time! The Curiosity science team has released a panorama taken in October 2017 that looks north across the floor of Gale Crater and shows the rover’s entire journey since it landed in 2012.

Rather than post the image here, I have posted below the fold a video produced by the science team that pans across the entire panorama, and then shows where Curiosity has traveled in that panorama. Look close, and you will realize how truly little of Mars we have so far explored.
» Read more

Share

U.S. 2020 Mars rover faces delays

A new inspector general report has pinpointed a number of issues that could cause a delay in the 2020 launch of the next American Mars rover mission.

The biggest risk to the mission, according to NASA OIG, is the sampling system that will be used to collect and store samples of Martian rock and soil that a future mission will gather for return to Earth. That system, an essential part of the mission, has several key technologies that are less mature than planned at this phase of the mission’s development. “The immaturity of the critical technologies related to the Sampling System is concerning because, according to Mars 2020 Project managers, the Sampling System is the rover’s most complex new development component with delays likely to eat into the Project’s schedule reserve and, in the worst case scenario, could delay launch,” OIG stated.

I find it puzzling that the sampling system is an issue. This rover is essentially based on Curiosity, which has very sophisticated equipment for grabbing and even storing samples for periods of time. I don’t understand why such systems could not be quickly revised for future retrieval.

Nonetheless, there are other problems however.

Two instruments on the Mars 2020 mission have also suffered problems. One, called MOXIE, is designed to test the ability to generate oxygen on Mars, saw its estimated increase by more than 50 percent during its development. NASA has taken steps to reduce some of that cost growth by eliminating development of an engineering model and skipping further design improvements in one element of MOXIE.

Another instrument designed to study atmospheric conditions on Mars, MEDA, has suffered delays because of a “financial reorganization” by its developer, Spain’s National Institute for Aerospace Technology. OIG concluded in its report that MEDA is unlikely to be ready for delivery to NASA in April 2018, as currently scheduled. That could require adding MEDA to the rover later in the overall assembly process, or flying the mission without the instrument.

One of the reasons the Obama administration decided to make this 2020 rover mission a reboot of Curiosity was to save cost and development time. Thus, it does not speak well for NASA’s planetary program that they are having these problems.

Share

Curiosity spots cracks formed from drying mud

mud cracks on Mars?

As Curiosity moves across the dust-shrewn dune-filled flats at the base of Mt. Sharp it has recently taken images of surface rocks that have cracks resembling those found from drying mud.

Scientists used NASA’s Curiosity Mars rover in recent weeks to examine slabs of rock cross-hatched with shallow ridges that likely originated as cracks in drying mud. “Mud cracks are the most likely scenario here,” said Curiosity science team member Nathan Stein. He is a graduate student at Caltech in Pasadena, California, who led the investigation of a site called “Old Soaker,” on lower Mount Sharp, Mars.

If this interpretation holds up, these would be the first mud cracks — technically called desiccation cracks — confirmed by the Curiosity mission. They would be evidence that the ancient era when these sediments were deposited included some drying after wetter conditions. Curiosity has found evidence of ancient lakes in older, lower-lying rock layers and also in younger mudstone that is above Old Soaker.

The rover is no longer on the floor the crater, but in the foothills at the base of Mt. Sharp. Thus, what we are likely looking at is evidence of the slow disappearance of the giant lake that scientists think once filled Gale Crater. These mud cracks suggest that the rover is now moving up out of the lake and through its margins.

I plan to do a rover update for both Curiosity and Opportunity tomorrow, so stay tuned.

Share

Drill issues at Curiosity

The recent failure by Curiosity to drill has caused engineers to stop the rover in its tracks while they analyze the cause of the problem.

The rover team learned Dec. 1 that Curiosity did not complete the commands for drilling. The rover detected a fault in an early step in which the “drill feed” mechanism did not extend the drill to touch the rock target with the bit. “We are in the process of defining a set of diagnostic tests to carefully assess the drill feed mechanism. We are using our test rover here on Earth to try out these tests before we run them on Mars,” Curiosity Deputy Project Manager Steven Lee, at NASA’s Jet Propulsion Laboratory in Pasadena, California, said Monday. “To be cautious, until we run the tests on Curiosity, we want to restrict any dynamic changes that could affect the diagnosis. That means not moving the arm and not driving, which could shake it.”

Two among the set of possible causes being assessed are that a brake on the drill feed mechanism did not disengage fully or that an electronic encoder for the mechanism’s motor did not function as expected. Lee said that workarounds may exist for both of those scenarios, but the first step is to identify why the motor did not operate properly last week.

Though they do not say so, the problem is almost certainly related to a fundamental design flaw in the drill’s design that causes intermittent short-circuits when they use it, and has the possibility of shorting out the entire rover if they are not careful.

Share

ISS astronaut to steer rover on Earth

On to Mars! The British have enlisted the skills of astronaut Tim Peake on ISS to do some test driving of a prototype rover planned for launch on the second ExoMars mission in 2018.

Major Peake will operate Bruno remotely from the International Space Station. His mission will be to drive the robot into a make-shift cave, which will replicate the conditions on Mars, where he will seek out targets marked with an “X”. “There are caves on Mars and craters that cast long shadows,” said Airbus Defence & Space communications director Jeremy Close. “To explore those areas, it’s more efficient to have a human in the loop.”

I must be a bit of a skeptical grump here: Looking at this story I found it packed with more public relations junk than you can imagine. The whole test facility shown is absurd. All show, no reality. Also, their claims about the rover’s route-finding superiority don’t sound right to me.

And the rover itself? This is the prototype of what they plan to launch in 2018? You have got to be kidding? We are less than two years from launch. While I grant this is probably only a model for testing the robot’s route-finding capability, using something held together by packing tape at this late date hardly fills me with confidence about the final product.

Hat tip John Batchelor for sending me the link.

Share

Curiosity reaches Naukluft Plateau

The view from Naukluft

Apropos to my post yesterday on Curiosity’s journey on Mars, the rover this week reached the flat area the science team has dubbed Naukluff Plateau.

The Sol 1281 drive completed as planned, crossing the Murray/Stimson contact at the edge of the Naukluft plateau. Now that we have a better view of the plateau, we are ready to start driving across it. But first, ChemCam and Mastcam will observe targets “Orupembe” and “Witvlei” on the bedrock in front of the rover. Mastcam will also take pictures of the rocks in front of the rover and targets “Natab East” and “Natab West” on either side of the vehicle before the Sol 1282 drive. After the drive, in addition to the usual post-drive imaging, the Left Mastcam will acquire a full 360-degree panorama, as the view from the new location (near the left edge of the image above) is expected to be good. We are looking forward to seeing the new data!

The second link above leads to the rover’s daily update site. It was here that the science team reported an issue with the rover’s scoop back in early February. Since then, however, they have never revealed if the problem was solved. Nor have they used the scoop in any way since then. I now wonder if it is no longer operational and am considering pursuing that question a bit to find out.

Share

Pinpointing Curiosity’s location in Gale Crater

Curiosity's traverse

The Curiosity science team recently released a new Mars Reconnaissance Orbiter image, showing Curiosity’s overall route since its landing on Mars in August 2012. I have posted a reduced version on the right.

Similarly, on the Curiosity website you can view this more detailed map of its traverse route. This map is updated regularly as Curiosity continues its climb up Mount Sharp.

Neither of these maps is to me very satisfying or useful, however. Neither shows the overall location of Curiosity within Gale Crater. Nor do they give one a sense of how far it is has come on its climb up the mountain. In fact, it is very unclear how close the rover actually is to the peak from either image.

Thus, I decided to do a little research to get some better context of Curiosity’s position and its overall journey.
» Read more

Share

China unveils model of planned 2020 Martian probe

The competition heats up: China today unveiled a one-third scale model of its planned Martian lander/rover, scheduled for launch in 2020.

If they succeed in putting a lander and rover on Mars, China will have clearly demonstrated the capability to do almost anything in space that the United States can do. The competition in the coming decades should thus be most interesting.

Posted from Tucson International Airport.

Share

Curiosity’s future path

Looking up Mt Sharp

Cool image time! The Curiosity science team has produced another panorama of Mount Sharp and the regions that the rover will soon traverse.

This composite image looking toward the higher regions of Mount Sharp was taken on September 9, 2015, by NASA’s Curiosity rover. In the foreground — about 2 miles (3 kilometers) from the rover — is a long ridge teeming with hematite, an iron oxide. Just beyond is an undulating plain rich in clay minerals. And just beyond that are a multitude of rounded buttes, all high in sulfate minerals. The changing mineralogy in these layers of Mount Sharp suggests a changing environment in early Mars, though all involve exposure to water billions of years ago. The Curiosity team hopes to be able to explore these diverse areas in the months and years ahead. Further back in the image are striking, light-toned cliffs in rock that may have formed in drier times and now is heavily eroded by winds.

They have adjusted the colors, adding blue, so that things look as they would on Earth, in order to help the geologists understand what they are looking at.

Be sure and click on the link. The full resolution image is quite amazing. Like mountains on Earth, from a distance things look a lot simpler than they do once you get there. The slopes of Mount Sharp are complex and rugged, and will be a big challenge for Curiosity to traverse.

Moreover, this rough terrain illustrates that the Martian surface has, like Earth, been significantly shaped by erosion. The surface we see here is not the surface produced by the impact that produced the crater. It has been reshaped and eroded over many eons by many later processes, including wind and water.

Share

Opportunity’s flash memory reformatted successfully

A three month old flash memory problem on the Mars rover Opportunity has finally been fixed by reformatting the rover’s memory banks.

Since the problem came up in December they have been operating the rover without any flash memory, essentially running it on the equivalent of its ram memory. This fix allows them to once again store data on the rover and gives them more flexibility of operation.

Share

Curiosity moves on

After six months and a short pause in work while engineers analyzed a short circuit, Curiosity has finally left the Pahrump Hills are on the slopes of Mount Sharp.

The rover has begun driving away from the Pahrump Hills outcrop where it had spent the last six months. On Thursday, March 12, it drove about 33 feet (about 10 meters) southwestward. The rover team plans on taking Curiosity through a valley called “Artist’s Drive” to reach higher geological layers of Mount Sharp. Curiosity is currently heading towards a rock outcrop known as “Garden City.”

The link has a nice image showing Curiosity’s recent travels as well as its future route.

Share

Yutu is slowly dying

China’s lunar rover Yutu, unable to move since its first few weeks on the moon, is slowly dying.

The rover is currently in good condition and works normally, but its control problem persists, said Yu Dengyun, deputy chief designer of China’s lunar probe mission. “Yutu has gone through freezing lunar nights under abnormal status, and its functions are gradually degrading,” Yu told Xinhua at an exclusive interview. He said that the moon rover and the lander of the Chang’e-3 lunar mission have completed their tasks very well. The rover’s designed lifetime is just three months, but it has survived for over nine.

As China’s first planetary rover mission, the limited roving success of Yutu is well balanced by its ability to continue functioning on the lunar survey for so long. The engineering data obtained from this mission will serve Chinese engineers well as they plan future missions.

Share

Polish and Egyptian teams win first European rover competition

In Europe’s first college competition to see who could build the best Mars rover, two Polish teams finished first and second, with an Egyptian team coming in third.

The first ever European Rover Challenge (ERC) is over and the Scorpio Team from Wrocław University of Technology can now celebrate their victory over 9 other contestants plus a $1,000 cash prize. The challenge was to design, construct and operate a rover that most successfully complete a number of Mars-exploration themed tasks designed by the organizers. “A year of hard work is now finally fulfilled,” said Jędrzej Górski of the Scorpio Team. “Our efficiency is the result of our cohesive team.” The second spot was secured by Polish crew also, the Impuls Team from Kielce University of Technology. Lunar and Mars Rover Team from Cairo University in Egypt scooped the 3rd place. A special bonus award was given to the Robocol Team of Universidad de los Andes (Colombia). ERC 2014 took place in Podzamcze, Poland on Sept. 5-7.

Share

Opportunity to get a reboot

Because of an increasing number of computer resets on the Mars rover Opportunity, engineers plan to reformat the rover’s computer.

The resets, including a dozen this month, interfere with the rover’s planned science activities, even though recovery from each incident is completed within a day or two.

Flash memory retains data even when power is off. It is the type used for storing photos and songs on smart phones or digital cameras, among many other uses. Individual cells within a flash memory sector can wear out from repeated use. Reformatting clears the memory while identifying bad cells and flagging them to be avoided.

Obviously there is a risk, though small, that this action will not work and the mission will end here. Stay tuned.

Share

Curiosity retreats from Hidden Valley

Finding its sandy floor slipperier than expected, engineers have backed Curiosity out of Hidden Valley to drill some holes while they reassess the rover’s route.

The rover’s wheels slipped more in Hidden Valley’s sand than the team had expected based on experience with one of the mission’s test rovers driven on sand dunes in California. The valley is about the length of a football field and does not offer any navigable exits other than at the northeastern and southwestern ends. “We need to gain a better understanding of the interaction between the wheels and Martian sand ripples, and Hidden Valley is not a good location for experimenting,” said Curiosity Project Manager Jim Erickson of JPL. …

Curiosity reversed course and drove out of Hidden Valley northeastward. On the way toward gaining a good viewpoint to assess a possible alternative route north of the valley, it passed over the pale paving stones on the ramp again. Where a rover wheel cracked one of the rocks, it exposed bright interior material, possibly from mineral veins.

More and more, the journey to Mount Sharp appears to be increasingly adventurous for the rover.

Share

The next U.S. Mars rover will try to make and store oxygen

Of the seven science instruments proposed for the next U.S. Mars rover, scheduled for a 2020 launch date, MOXIE test the engineering to produce and store oxygen, pulled from the Martian atmosphere.

Developed in partnership with NASA’s Jet Propulsion Laboratory, it’s based on the fact that the Martian atmosphere, though extremely thin, is composed of 96 percent carbon dioxide, which means its a vast potential source of oxygen for future explorers and settlers. Essentially, MOXIE is a fuel cell in reverse. Instead of generating electricity by using oxygen to burn a fuel, it uses a process called solid oxide electrolysis , where electricity is employed to split carbon dioxide into oxygen and carbon monoxide.

This process would see Martian air pumped into the unit through a dust filter and pressurized before being passed into a fuel cell. At high temperatures, some ceramic oxides act as oxygen ion conductors. In the fuel cell, a thin, non-porous disc of this ceramic separates two porous electrodes. One electrode acts as the cathode and the other as the anode. Carbon dioxide passes through the cathode and when it comes into contact with the ceramic, the interaction of electricity and the ceramic causes the carbon dioxide to split into oxygen and carbon monoxide. The oxygen and the carbon monoxide are then separated and the oxygen stored.

What makes this unusual is that NASA has actually dedicated one science instrument to engineering research, not pure science. The agency does not do this much anymore, but such research is essential if the U.S. is going to someday send humans to other planets.

Share
1 2 3