Chandra captures black hole outburst over eight months	
Astronomers using the Chandra X-ray space telescope have documented the motion of two blobs moving away from a stellar-mass black hole over a period of eight months, producing a four-frame movie from their images and estimating the speed of those blobs to be 80% that of the speed of light.
The gif animation to the right shows that short movie.
The black hole and its companion star make up a system called MAXI J1820+070, located in our Galaxy about 10,000 light years from Earth. The black hole in MAXI J1820+070 has a mass about eight times that of the Sun, identifying it as a so-called stellar-mass black hole, formed by the destruction of a massive star. (This is in contrast to supermassive black holes that contain millions or billions of times the Sun’s mass.)
The companion star orbiting the black hole has about half the mass of the Sun. The black hole’s strong gravity pulls material away from the companion star into an X-ray emitting disk surrounding the black hole.
While some of the hot gas in the disk will cross the “event horizon” (the point of no return) and fall into the black hole, some of it is instead blasted away from the black hole in a pair of short beams of material, or jets. These jets are pointed in opposite directions, launched from outside the event horizon along magnetic field lines. The new footage of this black hole’s behavior is based on four observations obtained with Chandra in November 2018 and February, May, and June of 2019, and reported in a paper led by Mathilde Espinasse of the Université de Paris.
Hubble has produced similar movies of the activity around the Crab Nebula. Sadly, we don’t have enough space telescopes like these in orbit to monitor such objects more frequently and thus photograph their behavior more completely. If we did we’d be able to get a much better understanding of their ongoing activity. We would also be able to produce more movies such as this, with much higher resolution and more continuous coverage.
 
Astronomers using the Chandra X-ray space telescope have documented the motion of two blobs moving away from a stellar-mass black hole over a period of eight months, producing a four-frame movie from their images and estimating the speed of those blobs to be 80% that of the speed of light.
The gif animation to the right shows that short movie.
The black hole and its companion star make up a system called MAXI J1820+070, located in our Galaxy about 10,000 light years from Earth. The black hole in MAXI J1820+070 has a mass about eight times that of the Sun, identifying it as a so-called stellar-mass black hole, formed by the destruction of a massive star. (This is in contrast to supermassive black holes that contain millions or billions of times the Sun’s mass.)
The companion star orbiting the black hole has about half the mass of the Sun. The black hole’s strong gravity pulls material away from the companion star into an X-ray emitting disk surrounding the black hole.
While some of the hot gas in the disk will cross the “event horizon” (the point of no return) and fall into the black hole, some of it is instead blasted away from the black hole in a pair of short beams of material, or jets. These jets are pointed in opposite directions, launched from outside the event horizon along magnetic field lines. The new footage of this black hole’s behavior is based on four observations obtained with Chandra in November 2018 and February, May, and June of 2019, and reported in a paper led by Mathilde Espinasse of the Université de Paris.
Hubble has produced similar movies of the activity around the Crab Nebula. Sadly, we don’t have enough space telescopes like these in orbit to monitor such objects more frequently and thus photograph their behavior more completely. If we did we’d be able to get a much better understanding of their ongoing activity. We would also be able to produce more movies such as this, with much higher resolution and more continuous coverage.












