Sunspot update: Hints of the next maximum

It’s time for another monthly sunspot update! NOAA yesterday updated its monthly graph for tracking the Sun’s monthly sunspot activity, and as I do every month, I am posting it below with additional anotations by me to show the past and new solar cycle predictions.

July 2020 sunspot activity

The graph above has been modified to show the predictions of the solar science community for both the previous and upcoming solar maximums. The green curves show the community’s two original predictions from April 2007 for the previous maximum, with half the scientists predicting a very strong maximum and half predicting a weak one. The blue curve is their revised May 2009 prediction. The red curve is the new prediction, first posted by NOAA in April 2020.

July continued the trend from June, with a slight uptick in activity. The SILSO graph below for July illustrates this.
» Read more

Study: Mars’ meandering canyons formed under ice

A new study comparing Mars’ meandering canyons with those found in the Arctic regions on Earth suggests that the Martian valleys were formed by water melting under large ice sheets, not flowing water on the surface.

A large number of the valley networks scarring the surface of Mars were carved by water melting beneath glacial ice, not by free-flowing rivers as previously thought, according to new research published in Nature Geoscience. The findings effectively throw cold water on the dominant “warm and wet ancient Mars” hypothesis, which postulates that rivers, rainfall and oceans once existed on the red planet.

To reach this conclusion, lead author and postdoctoral research scholar Anna Grau Galofre of Arizona State University’s School of Earth and Space Exploration developed and used new techniques to examine thousands of Martian valleys. She and her co-authors also compared the Martian valleys to the subglacial channels in the Canadian Arctic Archipelago and uncovered striking similarities. The western edge of the Devon ice cap on the Canadian Arctic Archipelago.

I have noted previously on Behind the Black my sense that the planetary science community was beginning to shift away from the hypothesis of flowing liquid surface water on Mars as an explanation for the planet’s riverlike and oceanlike features to some form or ice/glacial activity. For a half century the scientists have tried and failed to come up with some scenario that could allow water to flow on the surface in Mars’ cold climate and thin atmosphere.

Ice or glacial activity rather than flowing liquid water might solve this problem, and today’s paper is a push in this direction.

New model predicting solar flares is 56% accurate

The uncertainty of science: Using observations from the space-based Solar Dynamics Observatory (SDO), solar scientists have developed a new model for predicting the biggest solar flares, and have found it to able to predict a big flare about 56% of the time.

Kusano and his team looked at the seven active regions from the last solar cycle that produced the strongest flares on the Earth-facing side of the Sun (they also focused on flares from part of the Sun that is closest to Earth, where magnetic field observations are best). SDO’s observations of the active regions helped them locate the right magnetic boundaries, and calculate instabilities in the hot spots. In the end, their model predicted seven out of nine total flares, with three false positives. The two that the model didn’t account for, Kusano explained, were exceptions to the rest: Unlike the others, the active region they exploded from were much larger, and didn’t produce a coronal mass ejection along with the flare. [emphasis mine]

What they did was apply their model to active regions on the Sun during the last solar maximum to see if it would accurately predict the events we know did happen. The model predicted that big flares would spout from ten of twelve active regions on the Sun during the last solar cycle. In reality, only seven of those twelve active regions produced flares.

The press release minimizes the three false positives, making believe they don’t count in the total. That’s hogwash. The model got it wrong, and so these false positives must be counted just like the two false negatives.

A prediction rate of 56% is barely above random, so this model needs a lot of work. Nonetheless, it is a major step forward, because it is not based on simple statistics — counting the number of big sunspots and the number of big flares and then calculating the percentage that flare — which is how most solar science models are structured, and thus are really meaningless. Instead, this model is based an actual analysis of the behavior of the Sun’s magnetic field in big active regions when solar flares erupt. They are trying to pinpoint the precise conditions that cause the big flares, and appear to be narrowing the conditions successfully.

Jupiter’s south pole

The storms at the south pole of Jupiter
Click for full image.

Cool image time! The photo to the right, rotated and reduced to post here, was taken by Juno during its 28th close orbital fly-by of Jupiter, and then processed by citizen scientist Hemant Dara.

While not the first Juno image of the poles of Jupiter, this photo illustrates very well the evolution of the gas giant’s deep atmosphere as you move from the equator to the pole. From the equator to the high mid-latitudes the planet’s rotation, producing a day only 10 hours long, organizes that atmosphere into jet streams that form the bands that astronomers have spied from Earth since the first telescopes.

At the pole the influence of that rotation seems to wane, or at least influence the atmosphere differently, so that the storms seem to form randomly and incoherently.

The image also shows that there appear to be several types of storms at the south pole. Some appear as tight spirals, similar to hurricanes. Others appear chaotic, with no consistent shape, almost like clouds on Earth.

The processes that would explain all this are not yet understood, in the slightest, and won’t be until we get orbiters at Jupiter able to watch the atmosphere continuously, as we do here on Earth. Then it will be possible to assemble movies of the formation and dissipation of these storms, and begin (only begin) to decipher what causes them.

Yutu-2 completes 20th lunar day on Moon

The new colonial movement: The Chinese lunar rover Yutu-2 has completed its 20th lunar day on the farside of the Moon, and has now been put in sleep mode for the long lunar night.

Yutu 2 continued on its planned journey to the northwest of the lander, according to the China Lunar Exploration Program (CLEP). The rover covered 90 feet (27.64 meters) during the lunar day to make a total of 1,610 feet (490.9 m) of roving since setting down on the far side of the moon in January 2019.

The article at the link includes some images, including visual data from the ground-piercing radar that suggests at least four layers in the lunar subsurface.

Midnight repost: A scientist’s ten commandments

The tenth anniversary retrospective of Behind the Black continues: The post below, from September 27, 2010, reports on one of the simplest but most profound scientific papers I have ever read. Its advice is doubly needed today, especially commandment #3.

————————–
A scientist’s ten commandments

Published today on the astro-ph website, this preprint by Ignacio Ferrín of the Center for Fundamental Physics at the University of the Andes, Merida, Venezuala, is probably the shortest paper I have ever seen. I think that Dr. Ferrin will forgive me if I reprint it here in its entirety:

1. Go to your laboratory or your instrument without any pre-conceived ideas. Just register what you saw faithfully.

2. Report promptly and scientifically. Check your numbers twice before submitting.

3. Forget about predictions. They are maybe wrong.

4. Do not try to conform or find agreement with others. You may be the first to be observing a new phenomenon and you may risk missing credit for the discovery.

5. Criticism must be scientific, respectful, constructive, positive, and unbiased. Otherwise it must be done privately.

6. If you want to be respected, respect others first. Do not use insulting or humiliating words when referring to others. It is not in accord with scientific ethics.

7. Do not cheat. Cheating in science is silly. When others repeat your experiment or observation, they will find that you were wrong.

8. If you do not know or have made a mistake, admit it immediately. You may say, “I do not know but I will find out.” or “I will correct it immediately.” No scientist knows the answer to everything. By admitting it you are being honest about your knowledge and your abilities.

9. Do not appropriate or ignore other people’s work or results. Always give credit to others, however small their contribution may have been. Do not do unto others what you would not like to be done unto you.

10. Do not stray from scientific ethics.

It seems that some scientists in the climate field (Phil Jones of East Anglia University and Michael Mann of Pennsylvania State University are two that come to mind immediately) would benefit by reading and following these rules.

Perseverance’s planned journey in Jezero Crater

Jezero Crater delta
Jezero Crater delta

If all goes right, on February 18, 2021 the rover Perseverance will gently settle down onto the floor of Jezero Crater on Mars. The image to the right is probably the most reproduced of this site, as it shows the spectacular delta that some scientists believe might be hardened mud that had once flowed like liquid or lava from the break in the rim to the west.

They hope to put Perseverance down to the southeast of that delta, as shown in the overview map below.
» Read more

Astronomers find freshly fallen meteorites based on tracking their fall

Australian astronomers have found two meteorites on the ground after spotting them in the sky before they fell, with one found only

The first had been spotted in the sky only a few weeks earlier, while the second had been spotted back in November 2019. They had had to postpone the search for the second until the restrictions for the Wuhan flu were lifted.

The discovery of the first was amusing:

Astronomer Dr Hadrien Devillepoix and planetary geologist Dr Anthony Lagain originally went on a reconnaissance mission to assess the latest fall site near Madura, taking drone imagery of the area. Dr Devillepoix said that as they were walking back to their car along the old telegraph track near Madura Cave, they spotted what appeared to be a real meteorite on the ground just in front of them.

“I thought Anthony was playing a prank on me, that he planted one of the fake meteorites we were using for the drone training session. But after a closer inspection, it was evident that the fist-sized, 1.1 kilogram rock we just found was indeed the meteorite we were after,” Dr Devillepoix said. Dr Devillepoix explained that although the rock was very close to the predicted fall position, the team was not expecting to find it that quickly in this bushy terrain.

Based on its track as it fell, the astronomers think it might be from the Aten family of asteroids, which orbit the Sun between Venus and Earth. Such asteroids are hard to find because of the glare of the Sun, and are thus not as well studied. This makes this find even more significant.

Finds like this, which are beginning to happen more and more, are important because, first, the meteorite doesn’t spend much time in the Earth environment, and second, they can precisely identify where the asteroid came from. Both facts allow scientists a much better understanding of the asteroids themselves.

Neutron star left over from Supernova 1987A?

The uncertainty of science: Two different teams of astronomers are now suggesting that, based on evidence recently obtained by the Atacama Large Millimeter/submillimeter Array (ALMA), a neutron star is what is left over from the star that caused Supernova 1987A, the only naked eye supernova in the past four hundred years.

Recently, observations from the ALMA radio telescope provided the first indication of the missing neutron star after the explosion. Extremely high-resolution images revealed a hot “blob” in the dusty core of SN 1987A, which is brighter than its surroundings and matches the suspected location of the neutron star.

..The theoretical study by Page and his team, published today in The Astrophysical Journal, strongly supports the suggestion made by the ALMA team that a neutron star is powering the dust blob. “In spite of the supreme complexity of a supernova explosion and the extreme conditions reigning in the interior of a neutron star, the detection of a warm blob of dust is a confirmation of several predictions,” Page explained.

These predictions were the location and the temperature of the neutron star. According to supernova computer models, the explosion has “kicked away” the neutron star from its birthplace with a speed of hundreds of kilometers per second (tens of times faster than the fastest rocket). The blob is exactly at the place where astronomers think the neutron star would be today. And the temperature of the neutron star, which was predicted to be around 5 million degrees Celsius, provides enough energy to explain the brightness of the blob.

They haven’t actually gotten any direct evidence of this stellar remnant, so some healthy skepticism is required. At the same time, the data favors this solution, which means the star did not collapse into a black hole when it exploded.

Glacier country on Mars

Glacial flow in Protonilus Mensae
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on May 24, 2020 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and provides a wonderful example of the kind of evidence of buried glaciers found extensively in the mid-latitudes of Mars.

This particular region, called Protonilus Mensae, is a region of chaos terrain at the transition zone between the southern cratered highlands and the northern lowland plains. I have featured a number of cool images in Protonilus, all of which show some form of buried glacial flow, now inactive.

The last cool image above was one that the MRO science team had picked to illustrate how to spot a glacier on Mars.

In this particular image are several obvious glacier features. First, we can see a series of moraines at the foot of each glacier in the photo, each moraine indicating the farthest extent of the glacier when it was active and growing. It also appears that there are two major layers of buried ice, the younger-smaller layer near the image’s bottom and sitting on top of a larger more extensive glacier flow sheet. This suggests that there was more ice in the past here, and with each succeeding ice age the glaciers grew less extensive.

Second, at the edges of the flows can be seen parallel ridges, suggestive also of repeated flows, each pushing to the side a new layer of debris.

Third, the interior of the glacier has parallel fractures in many places, similar to what is seen on Earth glaciers.

Protonilus Mensae, as well as the neighboring chaos regions Deuteronilus to the west and Nilosyrtis to the east, could very well be called Mars’ glacier country. Do a search on Behind the Black for all three regions and you will come up with numerous images showing glacial features.

Below is an overview of Protonilus, the red box showing the location of this image. Also highlighted by number are the locations of the three features previously posted and listed above.
» Read more

Martian eroding ridges amid brain terrain

Brain terrain and bisected ridges on Mars
Click for full image.

Today’s very cool image is cool because of how inexplicable it is. To the right, cropped to post here, is a photo taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) of an area of what they call “Ribbed Terrain and Brain Terrain”.

I call it baffling.

Nor am I alone. At the moment the processes that create brain terrain (the undulations between the ridges) remain a complete mystery. There are theories, all relating to ice sublimating into gas, but none really explains the overall look of this terrain.

Making this geology even more baffling are the larger ridges surrounding the brain terrain, all of which appear to have depressions along their crests. Here too some form of sublimation process appears involved, but the details remain somewhat mysterious.
» Read more

Another university researcher arrested for spying for China

The FBI yesterday arrested a researcher who had been working at the University of California-Davis and had lied about here contacts with the Chinese communist party and its military.

Juan Tang, 37, who had been a visiting cancer researcher at UC Davis for several months, left her Davis apartment in June after FBI agents questioned her about evidence that she lied concerning whether she was a member of the Chinese military or Communist Party when she applied for a visa, according to federal court papers.

…U.S. authorities have no authority to enter the consulate without permission, and it was not immediately clear Friday whether she had voluntarily surrendered. Jail records show the FBI arrested her overnight and booking was still in progress Friday morning.

She is one of four Chinese researchers charged by the Justice Department this week for spying. The other three have already been arrested.

Slip-sliding away – on Mars

Faults on Mars
Click for full image.

Today’s cool Martian image, rotated, cropped, and reduced to post here, comes from the camera on Mars Odyssey and was taken on May 18, 2020. It shows an area on Mars where faults and cracks in the ground have caused criss-crossing depressions. In this particular case we can see that the north-south trending fissure at some point got cut in half by east-west trending fault, its northern and southern halves thus getting shifted sideways from each other. For scale the straight section of the northern canyon is about five miles long, with the sideways shift about a mile in length.

As the caption notes, “With time and erosion this region of fault blocks will become chaos terrain,” regions of canyons often cutting at right angles to each other with flat-topped mesas and buttes in between.

Now for the mystery.
» Read more

A July 4th Hubble image of Saturn

Saturn as seen by Hubble on July 4, 2020
Click for full image, annotated.

Cool image time! The photo to the right, cropped and reduced to post here, was taken by the Hubble Space Telescope on July 4, 2020, and shows Saturn, its rings, plus several moons, in all their glory.

The dot near the bottom center is Enceladus. The dot at center right is Mimas. If you click on the annotated full image it will show the locations of several other smaller moons much harder to see.

This new Saturn image was taken during summer in the planet’s northern hemisphere.

Hubble found a number of small atmospheric storms. These are transient features that appear to come and go with each yearly Hubble observation. The banding in the northern hemisphere remains pronounced as seen in Hubble’s 2019 observations, with several bands slightly changing color from year to year. The ringed planet’s atmosphere is mostly hydrogen and helium with traces of ammonia, methane, water vapor, and hydrocarbons that give it a yellowish-brown color.

Hubble photographed a slight reddish haze over the northern hemisphere in this color composite. This may be due to heating from increased sunlight, which could either change the atmospheric circulation or perhaps remove ices from aerosols in the atmosphere. Another theory is that the increased sunlight in the summer months is changing the amounts of photochemical haze produced.

The distance across from one end of the rings to the other is about 150,000 miles, about two thirds the distance from the Earth to the Moon.

First image of multi-exoplanets around young sunlike star

Two exoplanets in one image

Worlds without end: Using the Very Large Telescope (VLT) in Chile, astronomers have taken the first image that captures two different exoplanets circling a young sunlike star.

The star’s light is partly blocked in the upper left of the photo to the right, cropped slightly to post here.

You can read the paper here [pdf]. The star itself, though similar in mass to the Sun, is thought to be only seventeen million years old.

But the system, dubbed TYC 8998-760-1, is nothing like our solar system. One of the star’s companions straddles the line that defines planets, with a mass 14 times Jupiter’s; the other has a mass of six Jupiters. Both orbit far from the star, about 160 and 320 times the average distance between Earth and the Sun. That puts them more than four times farther out than Pluto is from the Sun.

The size and distance of these giant planets were why they could be imaged from the ground.

Moving ripples on Mars

Using Mars Reconnaissance Orbiter (MRO) high resolution images, scientists have now determined that the giant ripples seen from space are actually moving, albeit very slowly.

Megaripples are found in deserts on Earth, often between dunes. Waves in the sand spaced up to tens of meters apart, they’re a larger version of ripples that undulate every 10 centimeters or so on many sand dunes. But unlike dunes, megaripples are made up of two sizes of sand grains. Coarser, heavier grains cap the crests of megaripples, making it harder for wind to move these features around, says Simone Silvestro, a planetary scientist at Italy’s National Institute of Astrophysics in Naples.

Since the early 2000s, Mars rovers and orbiters have repeatedly spotted megaripples on the Red Planet. But they didn’t seem to change in any measurable way, which led some scientists to think they were relics from Mars’s past, when its thicker atmosphere permitted stronger winds.

Now, using images captured by NASA’s Mars Reconnaissance Orbiter, Silvestro and his colleagues have shown that some megaripples do creep along—just very slowly.

They found that the ripples shift position about four inches per year, which astonished them since they had not believed the winds of Mars were strong enough to move them at all.

Tianwen-1 successfully launched, on its way to Mars

UPDATE: According to news reports, China tonight successfully launched Tianwen-1 towards Mars, with arrival expected in February 2021.

Below the fold is a live stream of the launch of the Long March 5 rocket. It is not in English, and since it was not linked to China’s mission control, it only covers the first two minutes or so, after which the rocket went out of sight.

The leaders in the 2020 launch race:

17 China
11 SpaceX
7 Russia
3 ULA
3 Japan

The U.S. still leads China 18 to 17 in the national rankings.
» Read more

Rover update: Curiosity pauses to drill

Curiosity's entire journey so far in Gale Crater

Overview map of Curiosity's recent travels

The artist’s oblique drawing above, as well as the map to the right, provide some context as to Curiosity’s present location and its entire journey in Gale Crater. For the overall context of Curiosity’s travels, see my March 2016 post, Pinpointing Curiosity’s location in Gale Crater. For all rover updates since then through May 2020, go here.

Since my last update on July 7, 2020, Curiosity has quickly moved a considerable distance to the east, as planned, skirting the large sand field to the south in its journey to the best path upward onto Mt. Sharp. The science team however has detoured away from their planned route, shown in red on the map, heading downhill a bit in order to find one last good location in the clay unit to drill. They are at that location now and are presently scouting for the best drilling spot.

About a week ago, before heading downhill, they had stopped to take a set of new images of Curiosity’s wheels. » Read more

After releasing its Ryugu samples Hayabusa-2’s mission will continue

Japan’s space agency JAXA has revealed that it is looking at two fast-spinning asteroids as possible destinations for its Hayabusa-2 spacecraft after it has dropped off its samples from the asteroid Ryugu on December 6.

The candidate asteroids on the agency’s list are asteroid 2001AV43 which Hayabusa2 would reach in November 2029 after flying by Venus, and asteroid 1998KY26 which the probe would reach in July 2031 after passing by another asteroid.

JAXA says both asteroids are rotating on their axis once every 10 minutes. The high-speed spinning indicates that the asteroids’ inner structures are likely different from that of asteroid Ryugu on the first mission, which consists of pieces of rocks.

The spacecraft will no longer have the equipment for returning additional samples, but everything else is functioning and it has the fuel.

Tianwen-1 launch set for July 23rd

China has rolled out its Long March 5 rocket and is now preparing to launch its Tianwen-1 orbiter/lander/rover to Mars this coming Thursday, July 23rd, some time between 12 am and 3 am (Eastern).

A Long March 5 rocket is set for liftoff with China’s Tianwen 1 mission some time between 12 a.m. and 3 a.m. EDT (0400-0700 GMT) Thursday, according to public notices warning ships to steer clear of downrange drop zones along the launcher’s flight path.

Chinese officials have not officially publicized the launch date. Chinese state media outlets have only reported the launch is scheduled for late July or early August, and officials have not confirmed whether the launch will be broadcast live on state television.

This will be the first operational launch of the Long March 5, which has had three previous test launches, with the first two failing. The success of the December launch, as well as the May success of the related Long March 5B, made this Mars mission possible.

After achieving orbit in February 2021 and spending two months scouting the landing site, the lander will descend to the surface, bringing the rover with it. The prime landing site is Utopia Planitia, in the northern lowland plains.

Active volcanoes on Venus?

Using computer models and past radar images from orbiters, scientists now believe that Venus could have as many as 37 active volcanoes.

The type of feature on Venus they think might still be active is called a coronae, circular features detected by radar and distinct to this planet that have been thought to be inactive ancient volcanic features.

In the new study, the researchers used numerical models of thermo-mechanic activity beneath the surface of Venus to create high-resolution, 3D simulations of coronae formation. Their simulations provide a more detailed view of the process than ever before.

The results helped Montési and his colleagues identify features that are present only in recently active coronae. The team was then able to match those features to those observed on the surface of Venus, revealing that some of the variation in coronae across the planet represents different stages of geological development. The study provides the first evidence that coronae on Venus are still evolving, indicating that the interior of the planet is still churning.

Lots of uncertainty here, but nonetheless this is good science. It also reinforces other evidence in recent years that has suggested active volcanism on Venus.

The magnetic field of a spiral galaxy

Magnetic field of a spiral galaxy
Click for full image.

Using a variety of telescopes, especially the Jansky Very Large Array radio telescope, astronomers have successfully mapped the magnetic field lines of a spiral galaxy seen edge on and 67 million light years away.

The image to the right, cropped and reduced to post here, shows what they have found.

The magnetic field lines extend as much as 22,500 light-years beyond the galaxy’s disk. Scientists know that magnetic fields play an important role in many processes, such as star formation, within galaxies. However, it is not fully understood how such huge magnetic fields are generated and maintained. A leading explanation, called the dynamo theory, suggests that magnetic fields are generated by the motion of plasma within the galaxy’s disk. Ideas about the cause of the kinds of large vertical extensions seen in this image are more speculative, and astronomers hope that further observations and more analysis will answer some of the outstanding questions.

Our understanding of these kinds of gigantic magnetic fields is poor, to put it mildly. This data really only begins the research.

Why the UAE’s Hope Mars Orbiter is really a US mission for UAE’s students

Today there were many many news stories touting the successful launch of the United Arab Emirates’ (UAE) first interplanetary probe, Hope, (al-Amal in Arabic), successfully launched yesterday from Japan. This story at collectSpace is typical, describing the mission in detail and noting its overall goals not only to study the Martian atmosphere but to inspire the young people in the UAE to pursue futures in the fields of science and engineering.

What most of these reports gloss over is how little of Hope was really built by the UAE. The UAE paid the bills, but during design and construction almost everything was done by American universities as part of their education programs, though arranged so that it was UAE’s students and engineers who were getting the education.
» Read more

More COVID-19 good news

A close look at the infection rate based on the increased number of tests in the past two months suggests that by election day the entire country will be close to herd immunity, and that quite possibly 40% of the population is already immune.

As of July 17, 44.2 million people have been tested, with 3.63 million positives (8.2%). Those folks who tested negative either never contracted COVID-19 or had it (with or without symptoms) and recovered.

…One eighth of the country [44.2 million] already tested is a very large sample, statistically. Applying the 8% baseline infection rate to the entire population, this means that every week after the beginning of April, another 2.67% of the people in the U.S. had recovered from COVID-19, were immune and non-contagious, and were not a threat to anybody. These numbers are additive. By July 17 (15 weeks), 40% of the country is now immune to the coronavirus, whether or not these people know it, and they cannot infect anybody else (for as long as the period of immunity lasts, likely well into the fall).

We can use the trajectory of the “hot spots” in March and April (which peaked about mid-April) to estimate the future trajectory of the percent of nationwide positive COVD-19 test results — which are now less than 2% in the former hot-spot areas — as the current set of “hot spots,” which are currently at peak, subside. I roughly estimate the following: for August, 5.4%; September, 4.0%; October, 2.1%. On the day you go to the polls to vote for either Orange Man or Senator Senex, by my estimate, 62% of the country will be immune to COVID-19, which is close to herd immunity.

And yes, there is uncertainty here, but the analysis appears reasonable, based on the number so far tested and the numbers found to test positive. It also matches what a reasonable person should expect from this respiratory disease.

Of course, because it suggests we have a lot to be optimistic about the Wuhan virus, this analysis must be dismissed immediately, out of hand. It just can’t be right. We are all gonna die from COVID-19 and that’s it.

UAE’s Hope Mars Orbiter successfully launched

The new colonial movement: The United Arab Emirates first interplanetary probe, its Hope Mars Orbiter, was successfully launched by a Mitsubishi H-2A rocket today from Japan, and is now on its way to Mars.

It will arrive in February 2021, when it will attempt to inject itself into orbit, where it will then be used to study the Martian weather.

The leaders in the 2020 launch race:

16 China
10 SpaceX
7 Russia
3 ULA
3 Japan

The U.S. still leads China in the national rankings, 17 to 16.

Midnight repost: The uncertainty of climate science

The tenth anniversary retrospective of Behind the Black continues: Tonight’s repost, from 2015, can be considered a follow-up to yesterday’s. While many global warming activists are absolutely certain the climate is warming — to the point of considering murder of their opponents a reasonable option — the actual available data is so far from certain as to be almost ludicrous.

——————————-
The uncertainty of climate science

For the past five years, I have been noting on this webpage the large uncertainties that still exist in the field of climate science. Though we have solid evidence of an increase of carbon dioxide in the atmosphere, we also have no idea what the consequences of that increase are going to be. It might cause the atmosphere to warm, or it might not. It might harm the environment, or it might instead spur plant life growth that will invigorate it instead. The data remains inconclusive. We really don’t even know if the climate is truly warming, and even if it is, whether CO2 is causing that warming.

While government scientists at NASA and NOAA are firmly in the camp that claims increasing carbon dioxide will cause worldwide disastrous global warming, their own data, when looked at coldly, reveals that they themselves don’t have sufficient information to make that claim. In fact, they don’t even have sufficient information to claim they know whether the climate is warming or cooling! My proof? Look at the graph below, produced by NOAA’s own National Centers for Environmental Information.
» Read more

1 91 92 93 94 95 276