Perseverance deposits first core sample for pickup later

Perseverance's location December 21, 2022
Click for interactive map.

The Mars Perseverance rover has now deposited its first core sample on the floor of Jezero Crater for pickup later by a future Mars helicopter for eventual return to Earth.

A titanium tube containing a rock sample is resting on the Red Planet’s surface after being placed there on Dec. 21 by NASA’s Perseverance Mars rover. Over the next two months, the rover will deposit a total of 10 tubes at the location, called “Three Forks,” building humanity’s first sample depot on another planet. The depot marks a historic early step in the Mars Sample Return campaign.

The blue dot on the map to the right shows this location. The green dot shows Ingenuity’s present position. The red dotted line the rover’s future travel route.

InSight mission ended

Location of InSight's largest quakes
The white patches mark the locations on Mars of the largest quakes
detected by InSight

NASA today announced that it has officially ended the mission of the InSight lander on Mars.

Mission controllers at the agency’s Jet Propulsion Laboratory (JPL) in Southern California were unable to contact the lander after two consecutive attempts, leading them to conclude the spacecraft’s solar-powered batteries have run out of energy – a state engineers refer to as “dead bus.”

NASA had previously decided to declare the mission over if the lander missed two communication attempts. The agency will continue to listen for a signal from the lander, just in case, but hearing from it at this point is considered unlikely. The last time InSight communicated with Earth was Dec. 15.

Other than the success of InSight’s seismometer, this project was mostly a failure. Its launch was delayed two years, from 2016 to 2018, because of problems with the original French seismometer, forcing JPL to take over. Then its German-made mole digger failed to drill into the Martian surface, causing the failure of the lander’s second instrument, a heat sensor designed to measure the interior temperature of Mars.

Fortunately the seismometer worked, or otherwise it would have been a total loss. That data has told us much about Mars and its interior.

The same region on Ganymede, as seen by Voyager-1 in 1979 and Juno in 2021

Ganymede compared between Voyager-1 and Juno
Click for full image.

When the Jupiter orbiter Juno did a close pass of the moon Ganymede on June 7, 2021, it took four pictures, covering regions mostly photographed for the first time by Voyager-1 in its close fly-by in 1979.

Scientists have now published the data from this new fly-by. Though Juno’s higher resolution pictures revealed many new details when compared with the Voyager-1 images from four decades earlier, the scientists found no changes. The comparison image, figure 2 of their paper, is to the right, reduced and sharpened to post here.

A flicker comparison between the registered JunoCam and Voyager reprojected mosaics revealed no apparent new impact features. Given the high albedo of fresh craters on Ganymede, with high albedo ejecta deposits two or three times the diameter of the craters themselves, we argue that new craters as small as 250 m diameter would be detectable in images at these 1 km per pixel scales. Extrapolating Ganymede cratering rates from Zahnle et al. (2003) below 1 km, the probability of JunoCam observing a new crater over 12.2 million km2 in 42 years is 1 in 1500, consistent with none being observed.

In other words, at these resolutions finding no new impacts is not a surprise.

Of the new features detected, the Juno images could see more details in the bright rays emanating from the crater Tros (in the lower center of both images), and thus found “…terrain boundaries previously mapped as ‘undivided’ or as ‘approximate’, several large craters, and 12 paterae newly identified in this region.”

Paterae resemble craters but are thought to be a some form of volcanic caldera. Their geological origin however is not yet completely understood.

The paper’s conclusion is actually the most exciting:

The insight gained from this handful of images makes it likely in our opinion that new observations from the upcoming JUICE and Europa Clipper missions will revolutionize our understanding of Ganymede.

A congregation of Martian dust devils

A congregation of Martian dust devils
Click for full image.

Cool image time! The photo to the right, rotated, cropped, reduced, and sharpened to post here, was taken on September 9, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a spot on Mars where, as indicated by the many many tracks, dust devils routinely develop and travel across the surface.

Though this whole region appears to favor dust devils, within it are places that are even more favored. For example, the number of tracks on the northern and eastern slopes of that small hill at center left practically cover the surface, while the hill’s western and southern slopes are almost untouched.

Both the overview map and the global Mars map below provide the full context.
» Read more

Perseverance’s planned route up onto the Jezero Crater delta

Perseverance's future route onto the delta
Click for original image.

Even as the Perseverance science team prepares to cache the ten first core samples on the surface of Mars for later pickup by a future Mars helicopter for return to Earth, they have also released the planned route they intend to follow as they drive the rover up onto the delta that flowed into Jezero Crater in the distant past.

The black line on the map to the right shows that route, with the black dots indicating points in which further core samples will likely be taken. The red dot indicates Perseverance’s present position, with the white line indicating its past travels. The green dot marks Ingenuity’s present position.

InSight fails to respond during scheduled communications session

InSight's daily power levels as of December 12, 2022

Since December 15, 2022 engineers have been unable to contact the Mars InSight lander, which likely means its power levels have finally fallen so low that the spacecraft is no longer functioning.

On Dec. 18, 2022, NASA’s InSight did not respond to communications from Earth. The lander’s power has been declining for months, as expected, and it’s assumed InSight may have reached its end of operations. It’s unknown what prompted the change in its energy; the last time the mission contacted the spacecraft was on Dec. 15, 2022.

The graph to the right shows the decline in InSight’s power levels since May. The atmosphere has been clearing following the dust storm in October, indicated by the drop in the tau level. Normal tau levels outside of dust storm season are around 0.6-0.7. It is therefore likely that as this dust cleared, it also settled on InSight’s solar panels, and reduced their ability to generate power to the point the spacecraft ceased functioning.

This is very much the same thing that put the rover Opportunity out of business in 2019.

According to this update, engineers are going to continue to try to contact the lander, but it is likely that this effort will end in about a week, should no contact be successful.

Big sink near the Martian south pole

Big sink near the Martian south pole
Click for full image.

Cool image time! The photo to the right, rotated, cropped, reduced, and sharpened to post here, was taken on September 12, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The image is rotated so that south is at the top. The science team labels this a “subsidence feature,” or in plain English, a sinkhole.

Its perfectly circular shape, plus its central peak, strongly suggests we are looking at an impact crater. However, the lack of a raised rim of debris, produced by the ejecta from the impact, raises questions about this conclusion, and is one reason why the scientists think this is a sinkhole instead. Its shape however could be telling us that this sink is simply mirroring the existence of a buried crater.

The overview map below as always provides more context.
» Read more

The edge of the Martian south pole ice cap

The edge of the Martian south pole ice cap
Click for full image.

Cool image time! The photo to the right, rotated, cropped, reduced, and sharpened to post here, was taken on September 4, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The MRO science team labeled this simply “Diverse Terrain,” an apt description but woefully incomplete.

Though the grade here goes uphill to the south, there are ups and downs along the way. The flat areas near the top as well that band near the bottom appear to be the oldest terrain, with the rough hollows appearing to be places where that flat material has sublimated or eroded away.

This terrain is in the very high southern latitudes. South is to the bottom of this picture, with the south pole of Mars about 380 miles away. Thus, that eroding top layer is likely disappearing because it has either water ice or dry ice within it, and over time it sublimates away.

The picture itself was taken in winter, when the entire surface is likely covered with a thin mantle of dry ice that fell as snow with the coming of colder temperatures. A wider view of this region in the spring, taken by MRO’s context camera, shows that this mantle, now appearing like white frost, appears largely confined to the higher terrain. Apparently, the annual sublimation of this dry ice mantle is linked somehow to the erosion of this flat terrain.

The additional location information provided by overview map below helps explain why this terrain is so diverse.
» Read more

Ingenuity completes 36th flight; preps for its 37th

Overview map
Click for interactive map.

Ingenuity on December 10, 2022 successfully completed 36th flight, flying about 180 feet to the northwest and then returning the same distance to land at its take-off point.

This was the third flight in a row to land at this point, and was also the third flight since the Mars helicopter’s software was upgraded to allow it to fly higher and over rougher terrain.

The green dot on the map to the right shows Ingenuity’s present position. The blue dot shows where Perseverance presently sits. The rover has been moving eastward, away from the cliff face to the west where it had gathered more core samples, including the first to contain surface regolith (that is, the dirt of Mars).

Engineers are already planning Ingenuity’s 37th flight, which is scheduled for tomorrow and will reposition the helicopter to a new landing spot.

More results from DART impact of Dimorphos

Didymos and Dimorphos as seen from Earth
Click for movie.

At a science conference this week scientists provided an update on the changes that occurred to the asteroid Dimorphos after it was impacted by the DART spacecraft in September, shortening its orbit around the larger asteroid Didymos by 33 minutes.

The image to the right is a screen capture from a short movie made from 30 images taken by the Magdalena Ridge Observatory in New Mexico, and part of a new image release of the asteroid pair.

It shows the motion of the Didymos system across the sky over the course of roughly 80 minutes, and features a long, linear tail stretching to the right from the asteroid system to the edge of the frame. The animation is roughly 32,000 kilometers across the field of view at the distance of Didymos.

According to the scientists, the impact displaced more than two million pounds of material from Dimorphos.

Observations before and after impact, reveal that Dimorphos and its larger parent asteroid, Didymos, have similar makeup and are composed of the same material – material that has been linked to ordinary chondrites, similar to the most common type of meteorite to impact the Earth. These measurements also took advantage of the ejecta from Dimorphos, which dominated the reflected light from the system in the days after impact. Even now, telescope images of the Didymos system show how solar radiation pressure has stretched the ejecta stream into a comet-like tail tens of thousands of miles in length.

Putting those pieces together, and assuming that Didymos and Dimorphos have the same densities, the team calculates that the momentum transferred when DART hit Dimorphos was roughly 3.6 times greater than if the asteroid had simply absorbed the spacecraft and produced no ejecta at all – indicating the ejecta contributed to moving the asteroid more than the spacecraft did.

This information is teaching us a great deal about these two particular asteroids, which could be used if for some reason their totally safe orbit got changed and they were going to impact Earth. However, NASA’s repeated effort to make believe this info would be useful for deflecting other asteroids is somewhat absurd. It is helpful, but each asteroid is unique. The data from DART is mostly helping astronomers get a better understanding of the geology of these specific asteroids, which will widen their understanding of asteroids in general. Planetary defense is really a very minor aspect of this work.

Sunken butte on Mars

Collapsed butte in the Martian northern lowland plains
Click for full image.

Cool image time! The photo to the right, cropped, reduced, and sharpened to post here, was taken on November 1, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label a “layered butte.” Like the mesas in the American southwest, those layers, or terraces, mark the geological history of this place, where over time layer upon layer was placed down, and then eroded away except for this mesa.

What makes the mesa even more intriguing and strange, however, are surrounding concentric cracks and the moat at the mesa’s base. These features suggest that at some point the ground below the mesa collapsed so that the entire mesa dropped, as a unit.

What could cause this? The overview map below provides a clue, though certainly not an answer.
» Read more

Scientists publish papers describing largest Mars quake from May

Location of May quake

Though news of the largest quake so far detected by InSight on Mars, magnitude 4.7, was released in May, this week the science team published two papers describing the quake itself and what they have learned from it. From the press release:

The waves from the record-breaking quake lasted about 10 hours — quite a while, considering no previous Marsquakes exceeded an hour.

It was also curious because the epicenter was close to but outside the Cerberus Fossae region, which is the most seismically active region on the Red Planet. The epicenter did not appear to be obviously related to known geologic features, although a deep epicenter could be related to hidden features lower in the crust.

Marsquakes are often divided into two different types — those with high-frequency waves characterized by rapid but shorter vibrations, and those of low-frequency, when the surface moves slowly but with larger amplitude. This recent seismic event is rare in that it exhibited characteristics of both high- and low-frequency quakes. Further research might reveal that previously recorded low- and high-frequency quakes are merely two aspects of the same thing, Kawamura said.

The green-dotted white patch on the map above marks the approximate location of this quake, east of where most of the previous larger quakes have been detected and under the Medusa Fossae Formation of volcanic ash. That no surface features appear to correspond to this quake, it is thought it was the result of a shift of underground features.

Curiosity looks down Gediz Vallis

Curiosity's looks down Gediz Vallis
Click for original image.

Overview map
Click for interactive map.

The panorama above was taken by Curiosity’s right navigation camera today, December 14, 2022, looking down into Gediz Vallis, the giant slot canyon that the rover will use as its route up Mount Sharp.

The red dotted lines above and on the overview map to the right indicate approximately the planned route for Curiosity. The yellow lines indicate the approximate area covered by the panorama above.

At present the scientists are attempting to drill into the marker band on which Curiosity sits. This marker layer is visible at many places at about the same elevation on all sides of Mount Sharp’s flanks. The white arrows indicate other examples of it in this overview map. It generally appears smooth and flat, which suggests it is made of a harder substance more resistant to erosion. That hardness was confirmed when Curiosity’s first drill attempt into it last week failed. The scientists are now trying again.

Juno snaps heat image of Jupiter’s volcano-covered moon Io

Io's volcanoes
Click for full image.

The image to the right, cropped and reduced to post here, was taken on July 5, 2022 by one of the infrared instruments on the Jupiter orbiter Juno of the moon Io, known for having many many active volcanoes.

This infrared image was derived from data collected by the Jovian Infrared Auroral Mapper (JIRAM) instrument aboard Juno. In this image, the brighter the color the higher the temperature recorded by JIRAM.

Each bright spot is an active volcano, some of which have been in the past photographed during eruptions. In fact, the first such photo was taken in March 1979 by the Voyager-1 spacecraft just after its fly-by of Jupiter, and was the first time any active volcano outside of Earth had ever been identified.

What made that discovery more profound was that only a week earlier scientists had published a paper predicting active volcanoes on Io, caused by the strong tidal forces from Jupiter’s gravity.

Since then planetary scientists have been studying Io’s volcanism repeatedly, tracking the evolution of specific volcanoes over time as they erupt and then become dormant.

The featureless volcanic ash plains of Mars

The featureless volcanic ash plains of Mars

Cool image time! The photo to the right, cropped, reduced, and sharpened to post here, was taken on September 10, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what appears to be a relatively featureless plain with a surface resembling stucco.

At -9 degrees south latitude, this is in the Martian dry equatorial regions. No ice or glaciers here. However, the consistent orientation of the knobs and hills suggest dunes and sand blown by prevailing winds, and that guess holds some truth. This location is deep within the Medusae Fossae Formation, the largest volcanic ash deposit on Mars, covering an area about as big as India, and believed to be the source of most of the red planet’s dust.

We are thus looking at thick layer of ash, its surface shaped over eons by the winds of Mars’ thin atmosphere.
» Read more

InSight still going, but barely

InSight's daily power levels as of December 12, 2022

The InSight science team issued another update today, outlining the continuing low power levels produced by the Mars lander, barely enough to keep its seismometer, and nothing else, running.

As of Dec. 12, 2022, InSight is generating an average of ~285 watt-hours of energy per Martian day, or sol. The tau, or level of dust cover in the atmosphere, was estimated at .96 (typical tau levels outside of dust season range from 0.6-0.7).

I have added these numbers to the graph at right in order to show their context over time. Since the October dust storm the levels have held steady, even as the dust in the atmosphere has cleared somewhat.

Nonetheless, InSight’s future continues to be day-to-day. Should it fail to respond to two consecutive scheduled communications sessions, the team will declare it dead, and make no effort at recovery. Though they have been expecting this to happen since the end of October, the lander continues to hang on.

Strange terrain on the eastern floor of Gale Crater

Strange terrain on the eastern floor of Gale Crater
Click for full image. For the inset, go here.

Though today’s cool image on the right, rotated, cropped, and reduced to post here, shows a small section on the floor of 96-mile-wide Gale Crater where Curiosity has been roving for the past decade, this picture looks at a different place. Curiosity landed in the northwest quadrant of the crater, and has been climbing the western slopes of Mount Sharp, which fills much of the crater’s interior. Today’s image looks at the crater’s floor on the east side of Mount Sharp.

The picture was taken on September 30, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The dark areas are likely dune seas, while the golden section near the top of the color strip is likely dust, though that is not certain. (This bright yellow is unusual for this particular color filter.) The greenish color suggests coarser materials, such as larger boulders and rocks, though this is also not certain.

The inset zooms into some unusual polygon lines that cut across the dunes and cratered terrain. Such lines suggest that once, in the far past, the ground here was wet. When it dried out (being now in the very dry equatorial regions of Mars) it formed these cracks, similar in nature to the polygon cracks one sees in drying mud on Earth. Since the data from Curiosity when it was on the crater floor also suggests a lake once existed inside the crater, these cracks add weight to that conclusion.

The overview map below places Gale Crater in the larger context of Mars.
» Read more

Ancient lava flows down the flanks of the solar system’s largest volcano

Lava flows on Olympus Mons
Click for full image.

Cool image time! The photo to the right, cropped, reduced, and sharpened to post here, was taken on October 2, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what appears to be very old and eroded lava on the northeast flanks of Olympus Mons, the largest volcano on Mars as well as the entire solar system. About 600 miles across, from the edge to its peak, Olympus rises about 54,000 feet, with an actual height relative to Mars’ “sea level” of just under 70,000 feet, more than twice as high as Mount Everest on Earth.

The white arrow show the downward grade. Several different flows can be seen throughout the picture, some confined to a central channel with smooth aprons of overflows on either side. Others are more broken and less coherent, and suggest that either the flows were inherently different, or are much older and have deteriorated with time.
» Read more

What a Martian impact looks like on a sheet of slushy ice

Overview map

What a Martian impact looks like on a sheet of ice
Click for full image.

My headline is a bit of a guess, but it is an educated guess for today’s cool image. The photo to the right, cropped, reduced, and sharpened to post here, was taken on October 30, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The location, as indicated by the white dot in the overview map above, puts this impact in a relatively flat area of Deuteronilus Mensae, the westernmost chaos region of the 2,000 mile long mid-latitude strip I call glacier country.

In other words, there is likely a lot of near surface ice here, as this impact makes very plain. If you imagine dropping a pebble into a thick layer of soft ice cream, you might get a crater reminiscent of this. I use for comparison ice cream on Earth because the lighter Martian gravity probably makes Martian ice softer and more slushy.

As I have said many times before, Mars is strange, Mars is mysterious, and above all Mars is alien.

A Martian ship’s prow

A Martian ship's prow
Click for full image.

Cool image time! The photo to the right, cropped, reduced, and sharpened to post here, was taken on August 31, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists call “layering” surrounding this pointed mesa, which I roughly estimate to be somewhere between 200 to 400 feet high.

As you approach the mesa you first walk on the dust-covered flat plains. Then you start up a slope of what looks like alluvial fill, material that over time has fallen from the mesa to pile up as an apron at its base. You then reach a series of terraces, each likely marking a different layering major event from sometime in the distance past. Over time, for unknown reasons, the material surrounding this material has eroded away, while the mesa and its layers somehow survived.

The overview map below helps tell us what those past layering events were, as well as the source of the large amount of dust and sand at this location.
» Read more

Ingenuity sets altitude record on 35th flight

Overview map
Click for interactive map.

On December 3, 2022 Ingenuity completed its 35th flight, traveling about 49 feet sideways but reaching a new altitude record for the Mars helicopter of 46 feet.

The map to the right shows the helicopter’s new position by the green dot, with Perseverance’s present position shown with the blue dot. The helicopter only moved slightly to the northwest of its previous position.

The plan had been to test the helicopter’s upgraded software at this new altitude while flying fly 50 feet sideways for 52 seconds at a speed of 6.7 feet per second. The flight met these goals almost exactly, going a distance only slightly shorter, well within its margin of error. The new altitude record however is significant, as going even slight distances higher in Mars’ very thin atmosphere (1/1000th of Earth’s) is challenging, to say the least. This higher flight means Ingenuity can fly up above higher terrain, such as the delta that is Perseverance’s next goal.

InSight’s low power levels holding steady

InSight's power levels as of November 29, 2022

The science team for the Mars’ lander InSight today (December 6th) released a new update (dated November 29th) of the power levels being produced by its dust-covered solar panels.

As of Nov. 29, 2022, InSight is generating an average between 290 watt-hours of energy per Martian day, or sol. The tau, or level of dust cover in the atmosphere, was estimated at .95 (typical tau levels outside of dust season range from 0.6-0.7).

I have added this new data unto the graph to the right, though I am puzzled by the date given to the update. Why post this today, when this update covers data only two days after the previous update (November 27th), and is more than a week out of date? This is especially puzzling because the numbers did not change at all.

Nonetheless, the lander is still alive, but barely. One wonders however what happened in the past week, since today’s update does not bring us up to date.

Martian dunes, as far as the eye can see

Martian dunes
Click for full image.

Cool image time! The photo to the right, cropped, reduced, and sharpened to post here, was taken on July 14, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the dune filled floor of an unnamed 25-mile-wide ancient and very eroded Martian crater.

These endless dunes — which extend far beyond this photo to cover the entire floor of this crater as well as an overlapping crater to the north that is only slightly smaller — reveal something fundamental about this location: The winds prevail from one direction consistently, from either the north or the south. Closer inspection would likely resolve which way, but I don’t have the knowledge or access to the data to do so.

The overview map below, provides context, and also further information about why these dunes are here.
» Read more

The steep interior rim of Aristarchus Crater

Aristarchus Crater
Click for larger image.

Cool image time! The photo to the right, cropped, reduced, and sharpened to post here, is a just released image taken by Lunar Reconnaissance Orbiter, looking across the top of Aristarchus Crater on the Moon from a height of only 60 miles, with the dark surrounding plateau in the foreground contrasting sharply with the bright crater interior. For scale, the distance from the floor of the crater to the top of the rim is about 9,000 feet. The bright central peak is about 1,300 feet tall. The contrast in brightness inside and outside the crater is explained thus:

Adjacent to Aristarchus crater is the Aristarchus plateau, one of the largest volcanic centers on the Moon. Here we find one of the largest rilles [on the Moon, dubbed Vallis Schröteri], a massive pyroclastic deposit, and the source of extensive flood basalts.

These volcanic materials are considered relatively young (for the Moon) – 1.5 to 2.5 billion years. The pyroclastic deposit formed when magma was explosively ejected from the vent and broke into small droplets quenched as glass in the cold vacuum of space as they fell back to the surface. Due to their high glass content, the pyroclastic deposits are distinctly low in albedo (relatively dark), providing a dark background for the bright Aristarchus crater. Within the crater, some of these pyroclastic deposits may be visible as the darkest areas on the far wall, and glassy impact melt is moderately lower in reflectance than the bright, rocky materials exposed on areas of the crater floor and walls.

The overview map below shows both the crater and the vent from which Vallis Schröteri belched.
» Read more

Curiosity’s recent and future travels amid the Martian mountains

Curiosity's recent and future travels on Mars
Click for full panorama.

Overview map
Click for interactive map.

The panorama above, created from 31 images taken by Curiosity’s right navigation camera on December 5, 2022, provides us a wonderful overview of the rover’s recent and future travels amid the lower foothills of Mount Sharp in Gale Crater.

The overview map to the right provides context. The blue dot indicates Curiosity’s present position. The yellow lines indicate the approximate area viewed by the panorama. The red dotted line indicates Curiosity’s planned route, with the white dots the route it has actually traveled. On the panorama, the pink dotted line indicates where it has been, and the red dotted line where it is going.

For scale, Kukenan is estimated to be about 1,500 feet high. Though Chenapua in front seems comparable, it is actually much smaller, only about 200 to 300 feet high, at the most. Orinoco, though lower on the mountain, is probably about 300 to 400 feet high.

To really see the magnificence of this terrain, you must click on the panorama and explore the full image. Curiosity is truly traveling amid mountains, and is the first human robot to do so on another world.

Martian glaciers below 30 degrees latitude

A Martian glacier below 30 degrees north latitude
Click for full image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on September 28, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). While it shows what looks like a somewhat typical Martian glacial flow pushing through a gap between hills, this glacial flow is not typical. It sits at just under 30 degrees north latitude, closer to the equator than almost any glacial feature on Mars. Moreover, the younger impact crater on top suggests this glacier has been here for some time. Though the impact is younger than the crater, it is not that young, as the dark streaks normally seen in the first years after impact are gone.

Thus, this glacier suggests that not only can near surface Martian ice exist closer than 30 degrees latitude from the equator, it can survive there for a considerable amount of time.

Nor is this glacial flow, so close to the equator, unusual for this region of Mars.
» Read more

Expanded craters in Martian ice

Expanded craters in Martian ice
Click for full image.

Cool image time! The photo to the right, rotated, cropped, reduced, and sharpened to post here, was taken on August 18, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It includes a wide variety of geology related to sublimating ice, including expansion cracks as well as several different examples of what scientists call “expanded craters,” impacts that occurred in near surface ice and have been reshaped by the ice’s melting and sublimation at impact and then later. It also shows some obvious glacial fill in the two distorted craters at the center right.

A 2017 dissertation [pdf] by Donna Viola of the University of Arizona outlines nicely what we know of Martian expanded craters. As she notes in her conclusion:
» Read more

Scientists: Viking-1 might have landed on a field of Martian tsunami debris

The geological history of the Viking-1 Mars landing site

As outlined in their new paper [pdf], a team of scientists now hypothesize that the features that surrounded Viking-1 when it landed on Mars in 1976 were caused by two past Martian tsunamis. Each tsunamis occurred due to an impact in the theorized ocean that is believed to have existed in this part of Mars’ northern lowland plains several billion years ago.

The graphic to the right, figure 8 from the paper, shows the hypothesized sequence of events. From the caption:

(a) Pohl crater forms within a shallow marine environment, (b) triggering tsunami water and debris flow fronts. (c) The wave fronts extensively inundate the highland lowland boundary plains, including a section ~ 900 km southwest of the impact site. (d) The ocean regresses to ~ − 4100 m, accompanied by regional glacier dissection, which erode the rims of Pohl and other craters. (e) The younger tsunami overflows Pohl and parts of the older tsunami. Glaciation continues, and mud volcanoes later source and emerge from the younger tsunami deposit. (f) ~ 3.4 billion years later, the Viking 1 Lander touches down on the edge of the older tsunami deposit.

The overview map below provides the larger context.
» Read more

InSight continues to just hold on

InSight's power levels as of November 27, 2022

The InSight science team today posted another update on the daily power levels the Mars lander’s dust-covered solar panels are producing. The graph to the right includes these new numbers.

As of Nov. 27, 2022, InSight is generating an average between 285 and 295 watt-hours of energy per Martian day, or sol. The tau, or level of dust cover in the atmosphere, was estimated at .95 (typical tau levels outside of dust season range from 0.6-0.7).

The atmosphere is definitely clearing from the dust storm that occurred in October. It also appears that not much of this dust is settling on InSight’s solar panels, since the daily power level has not dropped significantly.

Nonetheless, at these very low power levels, InSight’s future remains day-to-day. Unless it finally gets lucky and a dust devil blows the solar panels clear so more power can be generated, the mission will end should two scheduled communications sessions in a row fail to make contact.

Traveling in the mountains of Mars

Traveling in the mountains of Mars
Click for full resolution. Original images can be found here and here.

Overview map
Click for interactive map.

Cool image time! The panorama above was created by two photos taken by the Mars rover Curiosity’s right navigation camera on November 30, 2022. It looks to the south, into Gediz Vallis, the slot canyon that has been the rover’s major goal since it landed in Gale Crater a decade ago.

The blue dot on the overview map to the right marks Curiosity’s present position, now on its way east after making a short detour to the west towards Gediz Vallis Ridge. The yellow lines indicate the approximate area shown by this panorama. The red dotted line in both images marks the rover’s planned future route. The white arrows indicate what scientists have labeled the marker band, a distinct smooth layer seen at about the same elevation in many places on the flanks of Mount Sharp. According to the most recent update from the science team, the rover’s next drive will place it on that marker band, the second time it has been there.

From here the rover will continue south, climbing up into Gediz Vallis.

1 12 13 14 15 16 52