Ingenuity completes 13th flight

Ingenuity landing on September 5, 2021
Click for full image.

Though the full slate of images taken has not yet been released, it appears from the five images available that the thirteenth flight of Ingenuity on September 5, 2021 ended successfully. The photo to the right is the last available, and shows the helicopter’s shadow on the ground mere seconds before touch down. The landing legs’ shadows suggest it is oriented properly for that landing.

No word yet on how successful the flight itself was. The goal had been to fly back over the South Seitah area from a different angle and lower altitude, getting different perspectives of the ridges there to help plan Perseverance’s coming travels across that terrain.

The second picture below, cropped, reduced, and enhanced to post here, was taken about forty minutes before take-off by Perseverance and captures Ingenuity in the lower left, as indicated by the arrow.
» Read more

A Martian sunset in Jezero Crater

Sunset on Mars
Click for full image.

Cool image time! The photo to the right, reduced slightly to post here, was taken by the left navigation camera on the Mars rover Perseverance. Looking west to the rim of Jezero Crater, it catches the Sun as it sets behind that rim.

The image was taken on July 20, 2021, the 52nd anniversary of the Apollo 11 landing on the Moon. Seems somehow fitting to catch a sunset on Mars on this date, to illustrate how far we have come in that half century.

To my mind, not enough. Our ability to send robots to other worlds has certainly improved, but in 1969 we were able to put a human on another world. Since 1972 we no longer have had that capability, so that in 2021 all we can do is fly robots elsewhere.

It is time for this to change. I’d much prefer to make believe this photo was a sunrise suggesting a bright future, than the sunset it actually is, indicating a coming dark age.

Perseverance’s upcoming targets: sand ripples, rocks, and a lot of dust

Ingenuity's view during 12th flight

Cool image time! The photo to the right was one of ten color images taken by Ingenuity on its twelfth flight on August 15, 2021. This photo is one of two images looking the same area from slightly different positions in order to create a stereoscopic view, with the other image found here.

The ground the helicopter was scouting, dubbed South Seitah, is an area that the Perseverance team hopes to send the rover. Ingenuity’s images from this flight will not only tell them whether the terrain is safe to traverse, it will allow them to map out a route that will avoid problems while effectively targeting the most interesting rocks.

The photo shows a lot of Martian dust, with a good portion forming small sand dune ripples. The rocks appear to be bedrock pavement stones, which because these are on the floor of the crater and the lowest elevation, likely hold the oldest geology that Perseverance will see on its journey in Jezero Crater. For this reason the science team is spending a lot of time studying that floor, and will make probably several drilling attempts to obtain samples.

The terrain in general looks entirely safe for the rover to travel. I expect the science team will thus continue north, crossing to North Seitah, rather than backtrack and travel over already traversed ground. Initially they had decided to avoid this ground because they feared it might be too rough for the rover. I suspect they were just being overly cautious at the start of the mission, and will now work past that fear.

Perseverance’s next drill attempt

Perseverance short term planned route
Click for full image.

The Perseverance science team today announced its near-future plans for where it will send the rover, but also when and how it will attempt its next core sample drilling.

The map to the right, cropped and reduced to post here, shows the rover’s future route. The red dot indicates its present location. The blue dot indicates where next they will attempt to drill. The route shows that they have decided to also make a short side trip south, an target that until now was considered optional.

As for what they plan to do in that next drill attempt:

We will first abrade the selected rock and use the science instruments to confirm (to the best of our ability) that the new target is likely to result in a core after the sampling process.

If we choose to sample the rock, Perseverance will perform a set of activities very close to what was done on the prior coring target. The main difference will be, after coring, we’ve added a “ground in the loop” session to review the images of the tube in the bit and confirm a sample was collected. Then, the tube will be transferred into the rover for processing.

If post-coring imagery shows no sample in the tube, we may elect to try again, using an alternate geometry (e.g. more horizontal) for the coring activity. Another option, if the targeted rock doesn’t allow for a change in geometry, is to look for a different rock in this region that is more easily cored horizontally.

They really want to get a sample of this particular bedrock on the floor of Jezero Crater. Their problem is that the first core sample failed because the bedrock was too structurally weak, crumbled into powder during drilling, and thus poured out of the drillbit once retracted from the ground. It could be that this will be a consistent issue with any sample attempts in this bedrock. This is why they are also considering drilling sideways, in order to hold any material they grab.

I suspect that the short side trip south might be to an outcrop that the rover could drill sideways into. Thus, if they are successful in getting a sample at the blue dot they might still cancel that side trip.

Ingenuity’s 12th flight successful

Ingenuity's shadow just before landing.

According to the Perseverance science team, the Mars helicopter Ingenuity successfully completed its twelfth flight on Mars early yesterday, making a short scouting round trip over an area called South Seitah to provide images that the team can use to plan the rover’s future route.

All told, Ingenuity flew just under 1,500 feet flying about 30 feet above the ground for just under three minutes. The picture to the right was taken just before landing, and shows the helicopter’s shadow on the ground. It is one of six so far downloaded. The remaining images will follow later.

The announcement was made on Twitter, and included some embarrassingly over-the-top prose:

The #MarsHelicopter’s latest flight took us to the geological wonder that is the “South Séítah” region.

South Seitah is hardly a “geological wonder”. It is a sandy area with some rocks and interesting geology.

I’m not sure why, but the Perseverance rover team seems prone to do this with their press releases and announcements. The claim they make over and over that Perseverance’s prime mission is to look for ancient life is junk Now they call a relatively undistinguished and small area on a crater floor a “wonder.”

Makes one think they somehow feel a need to justify what they are doing, something that is patently absurd. They are controlling a robotic rover and helicopter tens of millions of miles away as both explore a place on another planet no one had ever visited before. That certainly is spectacular enough, and does not need purple prose to justify.

Ingenuity’s next flight

Ingenuity's flight plane for 12th flight
Click for full image.

The Ingenuity engineering team today announced their plans for the helicopter’s twelfth flight on Mars, scheduled for early tomorrow.

Ingenuity will climb to an altitude of 10 meters and fly approximately 235 meters east-northeast toward the area of interest in Séítah. Once there, the helicopter will make a 5-meter “sidestep” in order to get side-by-side images of the surface terrain suitable to construct a stereo, or 3D, image. Then, while keeping the camera in the same direction, Ingenuity will backtrack, returning to the same area from where it took off. Over the course of the flight, Ingenuity will capture 10 color images that we hope will help the Perseverance science team determine which of all the boulders, rocky outcrops and other geologic features in South Séítah may be worthy of further scrutiny by the rover.

The map above shows South Seitah in the yellow oval. The yellow line marks Ingenuity’s past flights. The white line marks the path Perseverance has taken south since landing. The dashed lines mark Perseverance’s planned route.

Thus, the helicopter will be obtaining aerial photos of the region in Seitah where the scientists want to send Perseverance, in order to help them pick the best route.

Confirmed: Perseverance sample was too crumbly and poured away

Perseverance scientists have confirmed that the reason their sample container was empty once stored on the rover was because the material that they had drilled into was more crumbly than expected, and when the core was extracted from the ground the powder simply poured out of the core tube.

The team has decided to move on.

Rather than try again with the cratered floor fractured rough, Perseverance has already departed the area and is heading towards a region named South Séítah, which likely contains layered sedimentary rocks that are more similar to the Earth rocks that engineers drilled during tests before the mission’s launch. “We are going to step back and do something we are more confident of,” says Trosper. The rover will try to drill a core there, perhaps in early September. When it does, engineers will pause the automated drilling process to check whether a core has been extracted before the rover takes the next steps of sealing the tube and storing it away.

While it makes sense to find a different place to drill for a core sample, it appears that Perseverance is designed in a manner that it can do no analysis of any drill hole material:

Curiosity and Perseverance are similar in many respects — Perseverance was actually built using much of the leftover hardware from Curiosity — but there is one major difference in how they drill into the Martian surface. Curiosity intentionally grinds rock into powder, which it then places inside analytical instruments it has onboard to conduct scientific studies. NASA designed Perseverance to extract intact cores that slide into its sampling tubes. So crumbly rocks are good for Curiosity, but not for Perseverance.

If Perseverance can do no analysis of any drillholes, this limits the science it can do significantly. While putting aside samples for later return to Earth is an excellent idea, to make this the priority so that Perseverance can analyze nothing seems a terrible decision. What if that sample return mission never gets built?

If my supposition here is correct it also means NASA’s repeated claim that Perseverance is searching for ancient life on Mars is even more of a lie than I had assumed. It isn’t merely that this claim is a distortion of Perseverance’s actual research goals — to study the geology of Mars — the rover can’t look for ancient life. It has no way of looking at any samples it digs up.

I am not sure if my conclusions here are entirely correct. For example, maybe they hope to find this alien evidence by looking at the sealed core samples they store. Unfortunately, I have no idea, because I am somewhat handicapped in describing Perseverance’s day-by-day operations because, unlike Curiosity, the Perseverance team is providing no regular updates of their operations at their blog. While the Curiosity team posts something at least twice a week, the Perseverance team has posted nothing since just after landing in February. I’ve emailed NASA about this, but have gotten no response.

Perseverance’s first sample grab fails

Perseverance's first core sample drill location
Click for full image.

The first attempt by the Mars rover Perseverance to obtain a core sample has apparently failed.

The failure does not appear to be technical. All the hardware appears to have worked. When they inspected the interior of the hollow core drill however no sample was seen inside.

“The sampling process is autonomous from beginning to end,” said Jessica Samuels, the surface mission manager for Perseverance at NASA’s Jet Propulsion Laboratory in Southern California. “One of the steps that occurs after placing a probe into the collection tube is to measure the volume of the sample. The probe did not encounter the expected resistance that would be there if a sample were inside the tube.”

…”The initial thinking is that the empty tube is more likely a result of the rock target not reacting the way we expected during coring, and less likely a hardware issue with the Sampling and Caching System,” said Jennifer Trosper, project manager for Perseverance at JPL. “Over the next few days, the team will be spending more time analyzing the data we have, and also acquiring some additional diagnostic data to support understanding the root cause for the empty tube.” [emphasis mine]

Do the highlighted words remind you of anything? They do for me. The first thing I thought of when I read this was the drilling mole for InSight’s heat sensor. It failed in its effort to drill into the Martian surface because the nature of the Martian soil was different than expected. It was too structurally weak, and would break up into soft dust rather than hold together to hold the mole in place.

In the case of Perseverance, it appears right now (though this is not confirmed) that the drill successfully drilled into the ground, with its core filling with material, but when the core was retracted, that material simply fell out, as if it was too structurally weak to maintain itself inside the core.

The photo above of the drill hole and its thick pile of dust appears to support this hypothesis. Even though they drilled into what looked like bedrock the act of drilling fragmented that bedrock apart.

I am speculating based on limited information, so I am likely wrong. For example, the drill certainly has sensors to detect the density and structural strength of the rock it is drilling into. The engineers will check those numbers during drilling. If the rock doesn’t appear dense enough or structurally strong enough for a core sample, I would expect them to pick a different spot.

If true however it means that obtaining core samples at many locations in Jezero Crater will simply not be possible. This does not mean no samples will be obtained, because there are definitely places on Mars where the ground’s structure is solid enough for this method to work. Curiosity definitely found this to be true, when if found several places on Vera Rubin Ridge where its drill didn’t have the strength to penetrate the rock.

The view of Jezero Crater, from both Ingenuity and Perseverance

The view from Ingenuity during 10th flight
Click for full image.

Cool image time! Today the Perseverance science team released the 200 images that Ingeniuty took during its 10th flight on July 24, 2021.

The photo to the right was taken about 25 seconds before the helicopter landed, and looks to the southwest. In the foreground can be seen the ridge of rocks and pebbles that the scientists sent Ingeniuty to photograph. In the distance can be seen the rim of Jezero Crater, about 7.5 miles away, with some rounded hills that sit in the crater floor about 5.5 miles away.

The white box indicates the area covered by two high resolution images taken by Perseverance on July 28th that I have combined into the panorama below.
» Read more

Update on Ingenuity’s 10th flight and Perseverance’s first sample drilling

Ingenuity landing at end of 10th flight

The news coming from the Perseverance and Ingeniuty science teams has been sparse this past weekend, even though Perseverance had begun drilling its first core sample that it will stored for pickup by a later unmanned robot, and Ingenuity had attempted its 10th and most challenging flight yet.

We do have images however, and the two to the right give us hints about what has happened.

First, the top picture on the right was taken by Ingenuity’s navigation camera just prior to landing. The camera looks straight down and is used by the helicopter to adjust its flight. The dark area is the helicopter’s shadow. Based on this picture and the four preceding images (taken over an eleven second period), it appears the helicopter was landing safely. No other images have yet been downloaded, nor has the Ingenuity team announced any results, so we do not yet know if the flight proceeded as planned.

UPDATE: The flight was a success, as per this JPL announcement:

With the #MarsHelicopter’s #flight success today, we crossed its 1-mile total distance flown to date. It targeted an area called “Raised Ridges,” named for its #geographic features. Flight 10 is #Ingenuity’s most complex flight profile yet, with 10 distinct waypoints and a new #record height of 40 feet (12 meters).

Drill and core sample in the ground

The second image, taken by Perseverance’s left navigation camera and cropped and reduced to post here, is more puzzling. It shows what appears to be the core sample still in the ground after drilling. While this could be entirely as planned, it seems very surprising. Most of what I can find online describing the operation for obtaining these samples implies that the robot arm would drill the hole, and then retract the sample immediately to place it in storage. Nothing suggests the arm would be retracted with the sample still in the ground.

I think however the odds of this picture revealing a problem are low. This JPL press release from February 2021 implies vaguely that the core sample will be released in this manner before retraction. After the core sample, with bit, is separated from the arm, the release suggests they will lift the arm away to inspect the drilling process, then return the arm to retract the core sample for storage. This does make some sense, though grabbing that sample again will be quite challenging.

If this was not supposed to happen as described, then there is a problem that must be resolved. I expect more details in the next day or so to clarify this situation.

Ingenuity’s next flight set for today

Flight plan for Ingenuity's 10th flight
Click for full image.

Though circumstances can obviously change, the Ingenuity/Perseverance science teams have scheduled Ingenuity’s 10th Martian flight for sometime later today, with a flight plan, shown to the right, that is even more ambitious.

Flight 10 will allow us to reap the benefits of our previous flight. Scheduled for no earlier than this Saturday (July 24), Flight 10 will target an area called the “Raised Ridges” (RR), named for the geographic features that start approximately 164 feet (50 meters) south-by-southwest of our current location. We will be imaging Raised Ridges because it’s an area that Perseverance scientists find intriguing and are considering visiting sometime in the future.

From navigation and performance perspectives, Flight 10 will be our most complex flight to date, with 10 distinct waypoints and a nominal altitude of 40 feet (12 meters). It begins with Ingenuity taking off from its sixth airfield and climbing to the new record height. It will then head south-by-southwest about 165 feet (50 meters), where upon hitting our second waypoint, take our first Return to Earth (RTE) camera image of the Raised Ridges, looking south. Next, we’ll translate sideways to waypoint 3 and take our next RTE image – again looking south at Raised Ridges.

Imagery experts at JPL hope to combine the overlapping data from these two images to generate one stereo image. Flying farther to the west, we’ll try for another stereo pair of images (waypoints 4 and 5), then head northwest for two more sets of stereo pairs at waypoints 6 and 7 as well as 8 and 9. Then, Ingenuity will turn northeast, landing at its seventh airfield – about 310 feet (95 meters) west of airfield 6. Total time in the air is expected to be about 165 second.

Unlike the previous flights, this one will involve several turns while in the air. The engineers are definitely pushing the envelope with each flight, thus not only gathering scientific data about Jezero Crater but also advancing their engineering knowledge on the art of robotic flying on Mars.

It’s drill time for Perseverance!

The Perservance science team is preparing the rover for its first drill hole and the first collection of a sample to cache so that a future spacecraft can return it to Earth.

They are presently at the general location where they wish to drill, and are looking for the exact right spot.

The sampling sequence begins with the rover placing everything necessary for sampling within reach of its 7-foot (2-meter) long robotic arm. It will then perform an imagery survey, so NASA’s science team can determine the exact location for taking the first sample, and a separate target site in the same area for “proximity science.”

“The idea is to get valuable data on the rock we are about to sample by finding its geologic twin and performing detailed in-situ analysis,” said science campaign co-lead Vivian Sun, from NASA’s Jet Propulsion Laboratory in Southern California. “On the geologic double, first we use an abrading bit to scrape off the top layers of rock and dust to expose fresh, unweathered surfaces, blow it clean with our Gas Dust Removal Tool, and then get up close and personal with our turret-mounted proximity science instruments SHERLOC, PIXL, and WATSON.”

“After our pre-coring science is complete, we will limit rover tasks for a sol, or a Martian day,” said Sun. “This will allow the rover to fully charge its battery for the events of the following day.”

Sampling day kicks off with the sample-handling arm within the Adaptive Caching Assembly retrieving a sample tube, heating it, and then inserting it into a coring bit. A device called the bit carousel transports the tube and bit to a rotary-percussive drill on Perseverance’s robotic arm, which will then drill the untouched geologic “twin” of the rock studied the previous sol, filling the tube with a core sample roughly the size of a piece of chalk.

Perseverance’s arm will then move the bit-and-tube combination back into bit carousel, which will transfer it back into the Adaptive Caching Assembly, where the sample will be measured for volume, photographed, hermetically sealed, and stored. The next time the sample tube contents are seen, they will be in a clean room facility on Earth, for analysis using scientific instruments much too large to send to Mars.

Not all drill samples will be cached in this manner.

With this press release and press conference NASA continued to push the fiction to the press that Perservance’s prime mission is to search for life. That is a lie designed to catch the interest of ignorant journalists who don’t know anything. The rover’s real mission is to study the overall Martian geology in Jezero Crater in order to better under the planet’s present geology as well as the geological history that made it look like it does today.

If the scientists using Perseverance find evidence of life, wonderful, but that is not their prime goal.

Ingenuity’s view of Jezero Crater during its 9th flight

Ingenuity looks across Jezero Crater
Click for full image.

Overview map
Click for interactive map.

Cool image time! The photo above, cropped, enhanced, and reduced to post here, was taken on July 5, 2021, about thirty seconds after Ingenuity had taken off on its 9th flight on Mars. I have increased the contrast slightly to bring out the features. This is a raw image, so I do not think the colors are accurate, and I also do not know why the middle of the image is brighter than the edges.

The red lines on the map to the right indicates the general area this image captures. Essentially, once the helicopter reached its flying altitude after liftoff the engineers had it tilt so that it could see the route it was about to take to the southwest. As they noted in their description of this flight,

We began by dipping into what looks like a heavily eroded crater, then continued to descend over sloped and undulating terrain before climbing again to emerge on a flat plain to the southwest.

I think that crater is visible on the left edge of this picture.

So far 180 raw images from Ingenuity have arrived at JPL. There might be a few more, but I think this is the bulk from the flight. Of these, all but nine are black and white and point straight down. The nine color images seem tilted up towards the horizon to various degrees, though the image above is the only one that captures the horizon itself and the distance mountains of Jezero Crater’s rim.

Update on Ingenuity’s 9th flight

Ingenuity's 9th flight
Click for interactive map

Ingenuity’s engineering team late yesterday posted an update on the helicopter’s successful 9th flight on July 5th, describing in detail the changes they made to their software that made the challenging flight possible.

The changes were required because the helicopter flew for the first time over much rougher terrain then initially planned, as shown by the map to the right.

Flight 9 was not like the flights that came before it. It broke our records for flight duration and cruise speed, and it nearly quadrupled the distance flown between two airfields. But what really set the flight apart was the terrain that Ingenuity had to negotiate during its 2 minutes and 46 seconds in the air – an area called “Séítah” that would be difficult to traverse with a ground vehicle like the Perseverance rover. This flight was also explicitly designed to have science value by providing the first close view of major science targets that the rover will not reach for quite some time.

In other words, Ingenuity flew for the first time over terrain that Perseverance cannot drive to, recording images from above of surface features beyond the rover’s range.

We began by dipping into what looks like a heavily eroded crater, then continued to descend over sloped and undulating terrain before climbing again to emerge on a flat plain to the southwest.

The images of that rough terrain have not yet been downloaded to Earth, but will be in the next week.

First images from Ingenuity’s 9th flight today

Ingenuity landing, July 5, 2021

Ingenuity has apparently completed its 9th flight on Mars, its most challenging yet attempted. Based on the six images so far released from that flight, all taking during its landing, it appears the flight was successful. Or at least, the helicopter landed without incident or damage.

The photo to the right was the last picture taken just before touch down. From the caption:

NASA’s Ingenuity Mars Helicopter acquired this image using its navigation camera. This camera is mounted in the helicopter’s fuselage and pointed directly downward to track the ground during flight.

The dark shadow of the helicopter is clearly visible. If you want to see the entire sequence of six images, go to the Ingenuity raw image website and pick the “latest images” filter in the right column. At present it shows this sequence, though I am certain as the day passes images from the entire flight will start appearing.

As noted at the first link above, the flight was to be more than twice as long as any previous flight while flying over the roughest terrain. There was the real risk that its software would become confused by that terrain.

Next Ingenuity flight to push envelope significantly

Ingenuity's 9th flight plan
Click for full image.

The engineers running the Mars helicopter Ingenuity revealed today that they will be attempting their most ambitious flight for the helicopter’s ninth flight, presently scheduled for no earlier than July 4th.

I have annotated the map to the right to show Ingenuity’s present position and its approximate landing area.

Without question this flight will be the riskiest taken by Ingenuity so far, more than doubling the flight distance achieved on any previous flight. More important, it will be flying over terrain far rougher than it was initially designed for.
» Read more

Perseverance’s most recent view of Jezero Crater

Panorama by Perseverance, Sol 130, July 2, 2021
Click for full resolution.

Overview map
Click for interactive map.

Cool image time! The panorama above, reduced to post here, is made from two navigation camera images on the Mars rover Perseverance, found here and here.

The map to the right, taken from the “Where is Perseverance?” website and annotated further by me, shows with the yellow lines what I think (but am not sure) is the area seen in the panorama.

The navigation cameras on Perseverance are more wide angle than the navigation cameras on Curiosity, in order to cover a larger area. They thus produce a slight fisheye distortion, illustrated by the curve of the horizon.

The large mountain in the center right is likely the crater rim. You can also see the knobs to the left as indicated on the overview map. The rover is now about halfway to the southernmost planned spot it is expected to reach within the floor of Jezero Crater, which is about a half to three quarters of a mile further south.

The terrain seems quite desolate and barren, which of course is no surprise, because that is what it is like on all of the surface of Mars. No plant life, just rocks and dirt. While Curiosity is now in the mountains, Perseverance remains on the crater floor, so the points of interest (from the mere tourist’s perspective) are small or far away.

Ingenuity completes 7th flight on Mars

Locations of Perseverance and Ingenuity on Mars
Click for interactive map.

Ingenuity yesterday successfully completed its 7th flight on Mars, heading south and landing exactly as planned.

Ingenuity lifted off around 12:34 local mean solar time on Tuesday, which corresponds to 11:54 a.m. EDT (1554 GMT). As planned, the chopper then traveled 348 feet (106 meters) south from its previous location on the floor of Mars’ Jezero Crater, staying aloft for nearly 63 seconds, JPL officials wrote in another tweet. The solar-powered rotorcraft set down at a new airfield, the fourth one it has reached since landing on the Red Planet with NASA’s Perseverance rover on Feb. 18.

Both the rover Perseverance and Ingenuity are traveling south on the floor of Jezero Crater, with the helicopter leapfrogging ahead every few weeks. On the map the red dot indicates Perseverance location, with the green dots Ingenuity’s last three landing sites. They have not yet added to the map exactly where Ingenuity landed yesterday (#7), so I have estimated it based on the information above.

The red outline indicates the region they are planning to explore over the next few months in order to gather a very thorough understanding of the geology of the floor of Jezero Crater. They will eventually head to the northwest towards the cliffs in the upper left, which is the foot of the large delta that flowed in the past into the crater through a gap in its western rim. The route they will take to get there however remains undetermined.

Ingenuity to make sixth flight next week

Future travels for Perseverance and Ingenuity

The Ingenuity engineering team announced today that the Mars helicopter will make its sixth flight next week, flying to a new landing spot while taking images for the Perseverance science team.

Ingenuity’s flight plan begins with the helicopter ascending to 33 feet (10 meters), then heading southwest for about 492 feet (150 meters). When it achieves that distance, the rotorcraft will begin acquiring color imagery of an area of interest as it translates to the south about 50-66 feet (15-20 meters). Stereo imagery of the sand ripples and outcrops of bright rocks at the site will help demonstrate the value of an aerial perspective for future missions. After completing its image collection, Ingenuity will fly about 164 feet (50 meters) northeast where it will touch down at its new base of operations (known as “Field C”).

The flight will attempt a new speed record of 9 mph, and will also land for the first time in a spot that the helicopter has not scouted beforehand. It will instead be using data from high resolution images from Mars Reconnaissance Orbiter (MRO) combined with its own hazard avoidance system.

Ingenuity will essentially place itself over and in an area where Perseverance plans to go, leapfrogging ahead flight by flight, as shown by the map above (annotated by me from the map available here). The green dot numbered 5 shows the helicopter’s present position, while #6 shows its approximate landing spot after its sixth flight. Perseverance, whose present location is indicated by the blue marker, is generally heading south within the area outlined by the red line, as described during the science team’s an April 30th press conference. The goal in exploring this region is to gain a very robust geological baseline of the floor of Jezero Crater, which scientists believe will be the oldest material the rover should see in its travels.

Fourth flight of Ingenuity set for today; shifting to operational phase

Ingenuity close-up taken by Perseverance April 28th
Ingenuity close-up taken by Perseverance April 28th

Even as the Ingenuity engineering team will attempt a fourth flight of Ingenuity, JPL announced today that they and NASA have decided to now shift to operational flights, attempting to duplicate the kind of scouting missions that such helicopters will do on future rovers.

The second link takes you to the live stream of the press conference. The press release is here.

Essentially, they will send Ingenuity on a series of scouting missions after this fourth flight, extending its 30 day test program another 30 days. Its engineers will be working with the Perseverance science team to go where those scientists want to send it. After the fourth and fifth test flights they will fly Ingenuity only periodically, separated by weeks, and send it to scout places Perseverance can’t reach, and have it land at new sites that Perseverance scouted out as it travels.

They have decided to do this because they want to spend more time in this area on the floor of Jezero Crater, for several reasons. First, they are still testing the rover to get it to full working operations. Second, they want to obtain some samples for future pickup at this location. Third, they want to spend an extensive amount of time exploring the floor up to a mile south of their present location.

Finally, the relatively flat terrain is perfect for testing and actually using the helicopter as a scout.

Though the extension is for 30 days, and though the helicopter was not built for long term survival, there is no reason it cannot continue indefinitely until something finally breaks.

Right now they are awaiting the data from the fourth flight, which will arrive at 1:39 pm (Eastern) and will be used to determine what the fifth flight will do, probably a week from now.

The rovers’ view of Mars

The view from the top of Mont Mercou
Click for higher resolution. For original images, go here and here.

Some cool images to savor from Mars! Above is a panorama from Curiosity, created by me from two images taken by the rover’s left navigation camera today, April 18, 2021. The view is southwest towards the canyon regions where Curiosity will be heading in the coming months. Note the roughness of the ground. Travel is going to be tricky from here on out.

The photo was taken from the top of Mont Mercou, the 20-foot high outcrop that the rover spent several weeks studying at the cliff’s base. The Curiosity science team is presently preparing to drill into the bedrock at the top.

Ingenuity on the floor of Jezero Crater
Click for full image.

The photo to the right, reduced to post here, was taken by Perseverance on April 13, 2021, and looks west across the floor of Jezero crater. The high mountains in the distance are the crater’s rim. The low and much closer hill is the delta that is the rover’s primary geological target.

In the center of the picture is the helicopter Ingenuity. You can also see the tracks of Perseverance’s wheels just below it.

This will be the rover’s vantage point when Ingenuity attempts its first test flight in the early morning hours of April 19, 2021. The helicopter will head to the right once it lifts off.

Ingenuity requires software update before flying

JPL engineers have determined that they need to upload a software update on Ingenuity in order to solve the issue that caused the first high-speed spin test of its rotary blades to end prematurely.

In an update released late Monday by NASA’s Jet Propulsion Laboratory, mission managers said engineers identified a software fix for the “command sequence issue” that ended the high-speed spin-up test Friday.

Officials at JPL, which manages the Ingenuity helicopter project, did not announce a new target date for the rotorcraft’s first test flight. Ground teams hope to determine a new target date next week for the helicopter’s first flight.

According to the original plans, Ingenuity was to get about a 30 day test period, after which Perseverance would move on to its primary Mars science mission. It is not clear at this moment whether that test period will be extended because of these issues. I suspect they will extend it to get as many flight tests as possible, since Perseverance is functioning like a dream and can wait a few extra weeks before beginning what will be years of Martian roving. How often does one get to flight test a helicopter on another world?

Perseverance as seen from orbit

Perseverance landing site prior to landing
Click for full image.

Perservance on the ground
Click for full image.

Cool image time! The two photos to the right show the landing site for the Perseverance rover in Jezero Crater on Mars. The first image was taken in 2016 by the high resolution camera on Mars Reconnaissance Orbiter. The second image was made available today in the monthly release of photos taken that camera on MRO.

The arrow points to a small white streak that is not visible in the 2016 photo. A closer look reveals that the streak is actually two fanlike white deposits expanding outward in opposite directions from a central point.

What we are seeing are the exhaust fans blown onto the Martian surface by the retro-jets on the Sky crane that was lowering Perseverance to the ground. The rover was put down at the centerpoint, and was still at that spot on March 2nd when this photo was acquired.

The highest resolution version of this image requires special software, so in this version you cannot see the rover itself. Nor can you see the Sky crane after it crashed landed or the parachutes.

The new photo was taken one week after the first high resolution image from MRO, as part of what will become a routine periodic monitoring of the site, along with obtaining mapping information for picking the rover’s upcoming route They will also probably use both images to try to locate both the Sky crane and parachutes, on the ground.

Watching Ingenuity’s flight

NASA has now announced the planned flight time for its Ingenuity helicopter now on the Martian surface, including information for watching the live stream of the attempt.

A livestream confirming Ingenuity’s first flight is targeted to begin around 3:30 a.m. EDT Monday, April 12, on NASA Television, the NASA app, and the agency’s website, and will livestream on multiple agency social media platforms, including the JPL YouTube and Facebook channels.

I will embed the JPL live stream on Behind the Black when it goes live.

Meanwhile, Perseverance’s weather station is now functioning, providing its first weather reports from Jezero Crater.

[E]ngineers now have atmospheric data from three different locations on the Red Planet – Perseverance, Curiosity, and NASA’s InSight lander, which hosts the Temperature and Wind sensors for InSight (TWINS). The trio will enable a deeper understanding of Martian weather patterns, events, and atmospheric turbulence that could influence planning for future missions. In the near term, MEDA’s information is helping decide the best atmospheric conditions for the Ingenuity Mars Helicopter flights.

As Ingenuity achieved pre-flight milestones, a MEDA report from the 43rd and 44th Martian days, or sols, of the mission (April 3-4 on Earth) showed a temperature high of minus 7.6 degrees Fahrenheit (minus 22 degrees Celsius) and low of minus 117.4 degrees Fahrenheit (minus 83 degrees Celsius) in Jezero Crater. MEDA also measured wind gusts at around 22 mph (10 meters per second).

Those numbers are about normal for Jezero Crater at 18 degrees north latitude in the spring.

Deployment process of Ingenuity begins

Ingenuity on the bottom of Perseverance
Click for full image.

Ingenuity vertical under Perseverance
Click for full image.

The photo to the right, cropped and reduced to post here, shows the Ingenuity helicopter attached to the base of the Perseverance rover, with its left end (the white box in the middle) now lowered. Previously the helicopter was stored horizontal against the rover’s base.

This photo was taken yesterday by Perseverance’s Watson camera, which provides images of the rover’s bottom and wheels.

The deployment process has only begun. They need to get that white box vertical and on the ground, then unfold the blades that are attached above it. I suspect as the base is dropped the two blades to the left will remain attached to Perseverance, thus partly unfolding them. I also suspect that full deployment of all four blades (the right two blades are what looks like a post with a bulbous end on the right of the base) will not occur until Ingenuity is fully detached and Perseverance has moved away. My error. I mistook the helicopter’s landing legs for its blades. Two of the legs (on the left) appear deployed, while two (on the right) remain in their stored position.

UPDATE: Ingenuity is now vertical, underneath Perseverance, as shown by the second image to the right.

These images are from yesterday, so these are actions that the rover and helicopter are doing autonomously. It appears from later images that the second set of legs began deploying next.

Curiosity faces the mountains

A cropped section from Perseverance's 1st panorama
A cropped section from Perserverance’s 1st panorama.
Click for full image.

Though the present excitement over the spectacular images and sounds coming down from Perseverance is certainly warranted, what must be understood is that this rover is presently only at the beginning of its journey, and is thus sitting on relatively boring terrain, from a merely visual perspective. The scientists might be excited, but to the general public, all we really are seeing is a flat dusty desert with some scattered rocks on the floor. In the far distance can be seen some hills and mountains (Jezero Crater’s rim), but they are very far away.

Curiosity, which the press and the public has largely forgotten about, is actually just beginning what will likely be the most breath-taking part of its journey. As I noted in my last rover update last week, Curiosity is now at the very base of Mount Sharp, and is about to enter the mountain’s canyons and initial slopes. For its past eight-plus years of roving it has been on the flat floor of Gale Crater, followed by some weaving among the smallest foothills of Mount Sharp. The views have been intriguing and exciting from a research perspective, but hardly breath-taking from a picture-taking point of view.

That is now changing. The picture below, taken by Curiosity just this week, gives us a taste of what is to come.
» Read more

Perseverance begins journey with 1st test drive

Perseverance's future planned route
Click for full image.

On March 4th the engineers on the Perseverance science team successfully completed the rover’s first test drive.

Ground teams commanded the rover to drive forward, turn in place, and then back up. The first 33-minute test drive covered just 21 feet, or 6.5 meters,but Perseverance will soon travel much farther. “Our first drive went incredibly well,” said Anais Zarifian, a Perseverance mobility test engineer at JPL.

Perseverance has six aluminum wheels, each with titanium spokes for support, and a suspension capable of traveling over rocks as big as the wheels themselves. The one-ton rover is based on the design of NASA’s Curiosity rover, which landed on Mars in 2012, but with some improvements.

The wheels on Perseverance are sightly narrower, have a larger diameter, and are made of thicker materials, Zarifian said. Engineers also changed the tread pattern on the wheels to reduce the risk of damage from sharp rocks, which created dings and cuts in Curiosity’s wheels.

The map above shows the route the science team has presently chosen for Perseverance, a revision from earlier routes created prior to landing. The white dot on the right is the rover’s present position, the blue and purple lines are two alternative routes they are considering for their route to the delta coming out of Neretva Vallis. The yellow route up the delta is especially exciting in that it gets them onto it much sooner than previous plans.

Which route they choose for the initial journey I think will partly depend on which provides the best location to test fly Ingenuity, the experimental helicopter on the rover. Scientists and engineers I am sure are presently poring over high resolution images from Mars Reconnaissance Orbiter (MRO) in order to make that choice. At this link, centered on Perseverance’s present location, you can take a look at all those images by MRO by selecting the arrow icon at the top and then clicking on any red box. Because so many photos have been taken there is a lot of overlap, so each click will give you many pictures to look at.

Rover update: Panorama from Curiosity; Perseverance unwinds

Summary: Curiosity has crept to the foot of Mt Sharp at last, while Perseverance checks out its equipment.

Curiosity

Curiosity panorama Sol 3049
Click for full resolution.

Overview map

This rover update will be short but very sweet. While the press and public has been oo’ing and ah’ing over the first panorama from Perseverance, Curiosity yesterday produced its own panorama above showing the looming cliffs of Mt. Sharp, now only a short distance away. The original images can be found here, here, here, and here.

The overview map to the right, from the “Where is Curiosity?” webpage, shows the rover’s location, with the yellow lines roughly indicating the view afforded by the panorama above. If you compare this panorama with the one I posted in my previous rover update on February 12, 2021, you can get a sense of how far the rover has traveled in just the past two weeks. It now sits near the end of the red dotted line pointing at the mountain, right next to what had been a distant cliff and now is only a short distance to the rover’s right.

Somewhere on the mountain slopes ahead scientists have spotted in orbiter images recurring slope lineae, seasonal streaks on slopes that appear in the spring and fade as they year passes. As Curiosity arrives at the next geological layer a short distance ahead at the base of these cliffs (dubbed the sulfate unit), it will spend probably several months studying both that sulfate unit as well as those lineae. Expect the rover to drill a few holes for samples as it watches to see any changes that might occur on that lineae.

Now, on to Perseverance!
» Read more

Perseverance’s first high resolution panorama

Looking west in Perseverance's 1st hi-res panorama
Click for full resolution image.

The photo above is only one small slice from the first high resolution panorama taken by Perseverance on the floor of Jezero Crater. It is also reduced in size to post here.

From the press release:

The camera was commanded to take these images by scanning the mast, or “head,” a full 360-degrees around the horizon visible from the landing site. [In the section above] the top of some of the distant crater rim is cut off … to ensure the images would cover the front ridge of the Jezero Crater’s ancient delta, which is only about 1.25 miles (2 kilometers) away from the rover in the center of this panorama. At that distance and focal length, Mastcam-Z can resolve features as small as about 50 centimeters (1.6 feet) across along the front of the delta.

The mosaic is not white balanced but is instead displayed in a preliminary calibrated version of a natural color composite, approximately simulating the colors of the scene that we would see if we were there viewing it ourselves.

So, this is approximately what you would really see if you were standing next to Perseverance and looked west towards the delta (the low hills in the foreground) and the high crater rim beyond.

First panorama from Perseverance

The Perseverance science team has released the first panorama taken by the Perseverance rover after landing on Mars February 18th.

Below the fold however I have embedded something far better than the science team’s mosaic. Andrew Bodrev has taken these same navigation camera images and created a 360 degree virtual reality panorama, one that you can pan and tilt at your own pleasure. The view also includes the sounds of the Martian winds from the rover’s microphone. If you pause it you won’t hear the sounds, but you can scan and rotate for as long as you want.

» Read more

1 4 5 6 7