Scientists propose planetary orbital alignments cause the sunspot cycle
The uncertainty of science: Scientists today proposed a new model that says the orbital alignments of the planets, most especially Venus-Earth-Jupiter, act to initiate the eleven-year solar sunspot cycle.
As with the gravitational pull of the Moon causing tides on Earth, planets are able to displace the hot plasma on the Sun’s surface. Tidal forces are strongest when there is maximum Venus-Earth-Jupiter alignment; a constellation that occurs every 11.07 years. But the effect is too weak to significantly perturb the flow in the solar interior, which is why the temporal coincidence was long neglected. However, the HZDR researchers then found evidence of a potential indirect mechanism that may be able to influence the solar magnetic field via tidal forces: oscillations in the Tayler instability, a physical effect that, from a certain current, can change the behavior of a conductive liquid or of a plasma. Building on this concept, the scientists developed their first model in 2016; they have since advanced this model in their new study to present a more realistic scenario.
More details at the link. To put it mildly, this theory is far from proven. While they mention how it might also cause grand minimums and double-peaked maximums, they are somewhat vague in explaining this process. If valid, however, they should be able to use this model to predict future cycles, including the possible arrival of a new grand minimum in the coming decades.
The uncertainty of science: Scientists today proposed a new model that says the orbital alignments of the planets, most especially Venus-Earth-Jupiter, act to initiate the eleven-year solar sunspot cycle.
As with the gravitational pull of the Moon causing tides on Earth, planets are able to displace the hot plasma on the Sun’s surface. Tidal forces are strongest when there is maximum Venus-Earth-Jupiter alignment; a constellation that occurs every 11.07 years. But the effect is too weak to significantly perturb the flow in the solar interior, which is why the temporal coincidence was long neglected. However, the HZDR researchers then found evidence of a potential indirect mechanism that may be able to influence the solar magnetic field via tidal forces: oscillations in the Tayler instability, a physical effect that, from a certain current, can change the behavior of a conductive liquid or of a plasma. Building on this concept, the scientists developed their first model in 2016; they have since advanced this model in their new study to present a more realistic scenario.
More details at the link. To put it mildly, this theory is far from proven. While they mention how it might also cause grand minimums and double-peaked maximums, they are somewhat vague in explaining this process. If valid, however, they should be able to use this model to predict future cycles, including the possible arrival of a new grand minimum in the coming decades.