Problems fixed with next Russian ISS module

According to a report from Russia today, the problems with contamination in the fuel tanks for Russia’s next module to ISS, originally scheduled for launch in 2013, have finally been dealt with, and the launch can go forward.

“Original tanks will be used. They had successfully undergone all trials, all problems with them have been fixed. We are now receiving relevant documents,” one of the sources told TASS. He said the module is currently at the Khrunichev center, and the timeframe of finishing touches to it is now being coordinated.

Another source in the industry told TASS that although Nauka tanks were initially designed for multiple use, “they will be used only once – for the module’s docking with the space station.”

In other words, they weighed their options, and decided that limiting the tanks to only one use was better than trying to replace them. I suspect this is because the replacement was both very difficult and would have also delayed the launch so much that ISS might not have been orbit any longer.

A new launch date has not been announced. Previously Roscosmos had indicated 2020 as the date.

Starlink satellite launches to dominate SpaceX’s 2020 launch schedule

According to statements made by an SpaceX official on September 10, in 2020 the bulk of all the company’s launches will be to launch satellites in its Starlink internet constellation.

SpaceX plans as many as 24 launches next year to build out the company’s Starlink network to provide broadband Internet service from space, following up to four more Starlink missions before the end of this year, according to SpaceX’s chief operating officer.

The rapid-fire launch cadence for SpaceX’s Starlink fleet will take up the majority of the company’s launch manifest next year with a series of missions taking off from Florida’s Space Coast, adding new nodes to a network that could eventually contain nearly 12,000 small satellites.

If they complete this schedule, then SpaceX could complete as many as 40 launches in 2020, when all its other backlogged launches are included.

At the same time, this schedule indicates the slowdown in the launch of geosynchronous satellites, as predicted by many in the launch business. The communications industry appears to be shifting to lower orbit constellations and smaller satellites, as illustrated by Starlink itself.

LRO fails to spot Vikram on Moon

Despite successfully taking high resolution images of the area on the Moon where it is thought India’s Vikram crash-landed two weeks ago, the Lunar Reconnaissance Orbiter (LRO) science team has been unable to identify it in those images.

LRO’s Lunar Reconnaissance Orbiter Camera instrument, or LROC, imaged the intended south pole touchdown site for the lander, which is called Vikram, as planned yesterday (Sept. 17), Aviation Week’s Mark Carreau reported. But “long shadows in the area may be obscuring the silent lunar explorer,” Carreau wrote.

“It was near dusk as the region prepares to transition from a two-week lunar day to an equally long lunar night, so shadows covered much of the region, and Vikram may not be in the LROC’s field of view,” Carreau wrote, citing a NASA statement.

This means that they will simply have to try again during a later orbit. Eventually the lighting conditions will be right, and LRO will photograph Vikram.

House hearing, and budget, raises doubts about 2024 Moon landing

Two events yesterday increased the likelihood that the Trump administration’s effort to complete a manned Moon landing by 2024 will not happen.

First, at hearings yesterday before the House Science, Space, and Technology (SS&T) Committee, not only did a top NASA official express skepticism about the 2024 date, several key Democratic lawmakers added their own skepticism about the entire project.

Then, the Democratically-controlled House released a draft continuing resolution which included none of the extra $1.6 billion requested by the Trump administration for the 2024 Moon mission.

At the first link there is much discussion about the issues of Gateway, of using commercial launchers instead of SLS, of funding, and of the endless delays for SLS, of the management problems at SLS/Orion/Gateway. All these issues illustrate the hodgepodge and very disorganized project design that has represented SLS/Orion/Gateway from the beginning. SLS/Orion was mandated by Congress, with no clear mission. Gateway was tacked on later by NASA and the big space contractors building SLS (Boeing) and Orion (Lockheed Martin), with lobbying help from other international space agencies who want a piece of the Gateway action. None of it ever had a clear over-arching goal or concept related to the actual exploration of space. All of it was really only designed to justify pork spending in congressional districts.

As much as the Trump administration wants it, I do not see a path for its 2024 Moon landing. Congress, as presently structured, will not fund it, and SLS and Gateway are simply not the projects designed to make it happen.

The confusion at the hearings over Gateway also suggests that if this project gets going, it will only serve to drive a nail into the coffin of all American manned exploration, as run by our federal government. Too many vested interests are fighting over this boondoggle. In the end I think they will rip it apart and then reshape it into a Frankenstein monster.

The only hope for a real American vibrant manned space effort in the near future still appears to me to reside in the private sector’s own manned projects, which right now means SpaceX and its Starship.

New findings from Rosetta: Bouncing boulders and collapsing cliffs

cliff collapse on Comet 67P/C-G
Click for full image.

In reviewing the large image archive taken by Europe’s Rosetta probe while it orbited Comet 67P/C-G from 2014 to 2016, scientists have found more evidence of changes on its surface during its closest approach to the Sun, including a bouncing boulder and the collapse of large cliff.

The image on the right, reduced to post here, shows both wide (top) and close-up (bottom) views of the cliff collapse.

“This seems to be one of the largest cliff collapses we’ve seen on the comet during Rosetta’s lifetime, with an area of about 2000 square metres collapsing,” said Ramy, also speaking at EPSC-DPS today. … “Inspection of before and after images allow us to ascertain that the scarp was intact up until at least May 2015, for when we still have high enough resolution images in that region to see it,” says Graham, an undergraduate student working with Ramy to investigate Rosetta’s vast image archive.

“The location in this particularly active region increases the likelihood that the collapsing event is linked to the outburst that occurred in September 2015.”

These finds are only a sample of a number of similar discoveries since the end of the mission, as scientists pore through the more than 76,000 images in the Rosetta archive.

Hayabusa-2 completes rehearsal for MINERVA-II drop

Hayabusa-2 has successfully completed its rehearsal for its planned drop of its last MINERVA-II bouncer/rover, releasing two reflective targets in order to track how they spiral down to the surface of Ryugu.

Hayabusa 2’s cameras will track the movement of the two navigation aids as they fly in space around Ryugu over the next several days. Scientists expect Ryugu’s tenuous gravity will pull the target markers to the asteroid’s surface within a week.

The release of that last bouncer is now expected in about a month. After spending time obtaining the data from that drop, Hayabusa-2 will then head back to Earth by the end of the year.

Roscosmos knows but will not disclose cause of Soyuz drilled hole

According to a statement by Dmitri Rogozin, the head of Roscosmos, the Russians now know what or who caused the drillhole in a Soyuz capsule, found when air began to leak from ISS in August 2018, but they will not reveal that information.

What happened is clear to us, but we won’t tell you anything”, Rogozin said at a meeting with the participants of a scientific youth conference. … We may have some secrets”, he said.

I wonder if NASA will accept this decision. I also wonder why this doesn’t raise the hackles of NASA’s safety panel, which seems so willing to stall the launch of American manned capsules for far less worrisome safety reasons, thus forcing us to use Russia’s Soyuz capsule instead.

SpaceX offers to buy all nearby property to Boca Chica launchsite

SpaceX has made a purchase offer to all the remaining property owners living in close proximity to its Boca Chica launchsite.

The company has sent a letter to all the owners, stating that the company is

…committed to a fair and equitable process for acquiring this real estate” and, to that end, the company hired an independent firm to appraise each property. … SpaceX is offering you three times the independently appraised fair market value of your property. The offer is good through two weeks from the date of this letter.”

It appears from the article at the link that a number of landowners are unwilling to accept this offer. It appears they to want more money, and also do not like the hard-nosed language of SpaceX’s offer.

Since there are not very many landowners, I would not be surprised if they team-up and get their own negotiating team.

Scientists propose mission to interstellar comet Borisov

In a paper published on the Cornell arXIiv site for preprint science papers, scientists have posted a paper proposing sending an unmanned probe to the newly discovered interstellar Comet Borisov, arriving in 2045.

You can download the paper here. [pdf]

Their analysis found that we just missed the ideal and most efficient launch date using the Falcon Heavy. If it had launched in July 2018 a two-ton spacecraft could have reached Comet Borisov by next month.

The best alternative option is a launch in January 2030, flying past Jupiter, then the Sun, and arriving in 2045. Because of the mission’s close approach to the Sun to gain speed, the mission would require the type of shielding developed for the Parker Solar Probe. If the Space Launch System was used for launch, a six-ton spacecraft could be sent. With other available rockets the largest possible payload would be 3 kilograms (about 6 pounds), making the probe a cubesat. As they note,

Despite this very low mass, a CubeSat-scale spacecraft could be sent to the interstellar object. Existing interplanetary CubeSats (Mars Cube One) show that there is no principle obstacle against using such a small spacecraft to deep space.

In fact, having a decade and a half before launch guarantees that a cubesat will be able to do this job, because by 2030 the technology for using smallsats for this kind of planetary mission should be fully developed.

The never-ending snowstorm circling Saturn

New data suggests that the water being spewed out of Enceladus’s tiger stripes is depositing so much snow and ice on Saturn’s three inner moons, Mimas, Enceladus and Tethys, that these moons, as well as Enceladus, are about twice as bright in radar than previously thought.

Dr Le Gall and a team of researchers from France and the US have analysed 60 radar observations of Saturn’s inner moons, drawing from the full database of observations taken by the Cassini mission between 2004 and 2017. They found that previous reporting on these observations had underestimated the radar brightness by a factor of two.

Unprotected by any atmospheres, Saturn’s inner moons are bombarded by grains of various origins which alter their surface composition and texture. Cassini radar observations can help assess these effects by giving insights into the purity of the satellites’ water ice.

The extreme radar brightness is most likely related to the geysers that pump water from Enceladus’s internal ocean into the region in which the three moons orbit. Ultra-clean water ice particles fall back onto Enceladus itself and precipitate as snow on the other moons’ surfaces.

Dr Le Gall, of LATMOS-UVSQ, Paris, explained: “The super-bright radar signals that we observe require a snow cover that is at least a few tens of centimetres thick. However, the composition alone cannot explain the extremely bright levels recorded. Radar waves can penetrate transparent ice down to few meters and therefore have more opportunities to bounce off buried structures. The sub-surfaces of Saturn’s inner moons must contain highly efficient retro-reflectors that preferentially backscatter radar waves towards their source.”

While the new results suggest that the surfaces of these moons are much brighter that expected, I find the circumstances they describe far more fascinating: a never-ending snow storm in the orbits around Saturn and landing continually on these moons.

My, isn’t the universe wonderful?

Io volcano erupts like Ol’ Faithful

Having determined that Io’s largest volcano appears to erupt on a regularly schedule, scientists have predicted that a new eruption should occur sometime in the next week or so.

The volcano Loki is expected to erupt in mid-September, 2019, according to a poster by Planetary Science Institute Senior Scientist Julie Rathbun presented today.

“Loki is the largest and most powerful volcano on Io, so bright in the infrared that we can detect it using telescopes on the Earth,” Rathbun said. Based on more than 20 years of observations, Loki undergoes periodic brightenings when it erupts on a relatively regular schedule. In the 1990s, that schedule was approximately every 540 days. It currently appears to be approximately every 475 days. Rathbun discovered the 540-day periodicity, described in her 2002 paper “L. Loki, Io: A periodic volcano” that appeared in Geophysical Research Letters.

These same scientists successfully predicted Loki’s last eruption based on this data, but also warn that there is no guarantee the volcano will do what they say. As stock brokers are required to say, past performance is no guarantee of future results.

More potential Starship landing sites on Mars

Starship landing sites

On August 28, 2019 I broke the story that SpaceX is beginning to obtain images of candidate Starship landing sites from Mars Reconnaissance Orbiter (MRO).

Many news sources, skilled in their ability to rewrite press releases, saw my article and immediately posted stories essentially repeating what I had found, including my geological reasoning. Some did some more digging and, because they came out a few days later they were able to take advantage of the next MRO team image release, issued on August 30th, to find a few more candidate site images.

Those additional images included the remaining stereo images for all the images in my August post, indicated by the white boxes in the overview map above. They also included two new locations, indicated by the black boxes. One was of one more location in the easternmost hills of Erebus Montes. The other was a stereo pair for one entirely different landing location, farther to the west in the mountains dubbed Phlegra Montes, a location that SpaceX had previously been considering, but until this image had not been included in its MRO image requests.

The grey boxes in the map above show the approximate locations of images not yet officially released by MRO. Though unreleased, their existence is still public knowledge, as they are listed as already acquired images in the HiWish database. Below are links to the three upcoming new images (the second stereo images for locations #1 and #2 are not included)

Both the Phlegra Montes location and #3 above appear to be looking at soft slushy material that might have a lot of water just below the surface.
» Read more

Hayabusa-2 dropping orbiting target marker

In preparation for the release and landing of Hayabusa-2’s second MINERVA-II2 tiny rover/bouncer, the spacecraft today began a close-approach to the asteroid Ryugu, where it will release two target markers.

Once released, Hayabusa-2 will back off to observe these markers as they spiral down into Ryugu, landing sometime around September 23.

This operation is a rehearsal for the release and landing of MINERVA-II2, which like the first two bouncers back in September 2018 will bounce along the asteroid’s surface, taking pictures and gathering data.

Update on effort to save heat probe on InSight

Link here. The article, written in late August by one of the German scientists in charge of the heat probe on the Mars lander InSight, gives a detailed look at the effort to figure out what is blocking the Mole, the digging tool designed to pound the heat probe as much as 15 feet into the ground.

They had discovered previously is that the ground had collapsed around the drill shaft, creating a very wide hole. The Mole however needed the friction caused by the surrounding dirt to push downward, and thus didn’t have it.

They have since used InSight’s scoop at the end of the robot arm to push at the ground around the hole in an effort to fill the hole. As of mid-August this has managed to fill the hole about half way.

This report was written on August 27, just before contact with Mars was lost for two weeks because the Sun had moved between the Earth and Mars. Communications have now resumed, so I expect they will also resume their efforts to fill the hole enough that they might then try to resume the digging effort.

Hat tip to Doug Messier of Parabolic Arc, who by the way is right now running his annual fund-raising drive for the website. Please consider donating.

UAE’s first manned flight launches this week on Soyuz

This article provides a nice detailed Arab perspective on the upcoming September 25 launch of the United Arab Emirates’ (UAE) first manned mission, sending one of their jet fighter pilots on a Soyuz to ISS for about a week.

The article not only also reviews the entire history of past Arab astronaut missions in space, the first on an American shuttle in 1985 and the second on a Soyuz in 1987, it summarizes the present-day space-related efforts throughout the Arab world, not just in the UAE. Good information in advance of this week’s upcoming launch.

Test cubesat to launch to Gateway lunar orbit

NASA has awarded a $13.7 million contract to Advanced Systems to build a cubesat to test placement and operation in the orbit the agency wishes to place its Lunar Gateway space station.

The Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) is expected to be the first spacecraft to operate in a near rectilinear halo orbit around the Moon. In this unique orbit, the CubeSat will rotate together with the Moon as it orbits Earth and will pass as close as 1,000 miles and as far as 43,500 miles from the lunar surface.

The pathfinder mission represents a rapid lunar flight demonstration and could launch as early as December 2020. CAPSTONE will demonstrate how to enter into and operate in this orbit as well as test a new navigation capability. This information will help reduce logistical uncertainty for Gateway, as NASA and international partners work to ensure astronauts have safe access to the Moon’s surface. It will also provide a platform for science and technology demonstrations.

While proving the capability of cubesats for these unmanned planetary probes is all to the good, I must once again point out that making this orbit a way station on the way to the Moon actually makes it more difficult to get there. More fuel and equipment is required to transfer to the Moon once you are in Gateway’s planned orbit.

Based on our past experience with NASA boondoggles like this, Gateway will therefore act as a drag on future American lunar exploration. While other nations (China, India) will be landing on the surface, we will repeatedly find that our surface missions are delayed because of the added complexity of going from Earth to Gateway and then to the surface.

First high quality image of interstellar comet

Comet Borisov
Click for full image.

The Gemini Observatory on Mauna Kea has successfully taken the first high resolution image of comet C_2019 Q4, unofficially Comet Borisov (after its discoverer), the first interstellar comet ever discovered.

The image to right, cropped to post here, is that image. It clearly shows the growth of a coma and possible tail, indicating that as it is approaching the Sun it is releasing material from its surface.

Right now the comet is visually very close to the Sun, when looked at from the Earth, making observations difficult. As in the next few months it drops towards its closest approach of the Sun, and the Earth circles around in its own orbit, the viewing angle will improve.

LRO to image Vikram landing site next week

The Lunar Reconnaissance Orbiter (LRO) science team plans to take high resolution images of the Vikram landing site when the orbiter flies over that site on September 17, thus allowing them to release before and after images.

Noah Petro, LRO’s project scientist at NASA’s Goddard Space Flight Center, said that the orbiter is due to fly over the Vikram landing site Tuesday, Sept. 17. “Per NASA policy, all LRO data are publicly available,” Petro wrote in an email. “NASA will share any before and after flyover imagery of the area around the targeted Chandrayaan 2 Vikram lander landing site to support analysis by the Indian Space Research Organization.”

Officials with India’s space agency ISRO have said they have photographed Vikram with their orbiter, Chandrayaan-2, but they have not released these images as yet. Their have also been reports from India stating that their images suggest the lander is still in one piece, but these reports are not confirmed.

LRO’s images should clarify the situation. The images should also help tell us what exactly happened after Indian engineers lost contact with Vikram shortly before landing.

More delays for China’s Long March 5

Chinese officials have now admitted that the next launch of China’s biggest but troubled rocket, the Long March 5, will not occur until December 2019 at the earliest.

Moreover, the first launch of Long March 5B, the new version of the rocket developed following the Long March 5 failure on its second launch in 2017, won’t happen until 2020. This is the version they plan to use to launch their space station modules, and these delays probably thus delay start of the in-orbit assembly of their space station by two years, to 2022.

These rocket delays also threaten the launch of China’s Chang’e-5 lunar sample return mission and their first Mars orbiting mission, which has a firm summer 2020 launch window which if missed will delay the mission’s launch for two years.

These reports also for the first time officially explain the engine trouble that caused the Long March failure on its second launch in July 2017.

Addressing the causes of the failure has required a lengthy process of redesign and testing of the YF-77 liquid hydrogen-liquid oxygen propellant engines. Two YF-77 engines power the rocket’s first stage, with an oxidizer turbopump isolated as the fault behind the 2017 launch failure.

The Space News article very strangely headlines the completion of the core module for China’s space station, when the real story here is the continuing delays in getting Long March 5 off the ground. Without that rocket none of China’s big space plans can proceed. Yet the article buries this scoop many paragraphs down. I wonder why.

China’s Long March 4B launches three satellites

China yesterday used its Long March 4B rocket to launch three satellites into orbit.

This was the first Long March 4 launch since May, when the third stage of a Long March 4C rocket failed. The main payload was a remote sensing satellite with both civilian and military applications. The second satellite was to provide ocean data and weather, with the third a cubesat testing new space communications and the use of a drag sail for de-orbiting.

The leaders in the 2019 launch race:

15 China
14 Russia
10 SpaceX
6 Europe (Arianespace)

The U.S. continues to lead China 19 to 15 in the national rankings.

Avalanche season at the Martian north pole

Avalanche on-going at the edge of Mars' north pole icecap
Click for full resolution image.

As the Martian spring started to unfold in April 2019, the focus of many Martian planetary scientists immediately shifted to the northern polar icecap, where they fully expected, based on previous experience, some spectacular events to occur.

I have already reported on this year’s initial observations of the sublimation of the carbon dioxide frost layer. That frost layer, generally less than six feet thick, falls as dry ice snow with the coming of winter, then sublimates away each spring. Since the arrival of Mars Reconnaissance Orbiter (MRO) in 2006 and its discovery of this process by its high resolution camera, these scientists have been monitoring the disappearance of that frost layer from Martian year to Martian year.

That sublimation process also brings with it other spectacular changes, including the coming of frequent avalanches along the high cliff scarps, ranging in heights from 1,500 to 3,000 feet, that comprise the edge of that north pole icecap. The image above, reduced to post here, shows one of the many avalanches found this spring and photographed as they were actually happening. It looks down at the cliff that runs from the left to the lower right of the image, with its top being the flat plateau in the lower left. From the caption, written by Dr. Candice Hansen of the Planetary Science Institute in Tucson, Arizona,

Every spring the sun shines on the side of the stack of layers at the North Pole of Mars known as the north polar layered deposits. The warmth destabilizes the ice and blocks break loose.

When they reach the bottom of the more than 500 meter tall cliff face [about 1,600 feet], the blocks kick up a cloud of dust. (In the cutout, the top layer of the north polar cap is to the lower left.) The layers beneath are different colors and textures depending on the amount of dust mixed with ice.

The linear many-layered look of that cliff face is due to the many layers believed to exist within the permanent water icecap of Mars. To give some perspective, this cliff is several hundred feet taller than the World Trade Center after completion. Those falling blocks are dropping farther than the bodies that horribly fell from the Trade Center the day it was hit by airplanes flown by Islamic terrorists on September 11, 2001.

The map below shows most of the eastern half of that icecap, with the white boxes showing the various places MRO has spotted such avalanches.
» Read more

Communications restored with Curiosity

The most recent Curiosity drill hole
Click for full resolution image.

With Mars moving out from behind the Sun yesterday, the Curiosity science team has successfully reestablished communications with the rover.

The focus of Curiosity’s activities since returning to operations after conjunction, now that Mars has safely moved out from behind the sun, is to finish up the analyses associated with the drilling campaign at “Glen Etive 1.”

The image to the right, cropped and reduced to post here, was among the first images downloaded from the rover once communications were reestablished. It was taken by a camera at the end of the robot arm that the scientists had positioned above the hole in order to get a close-up.

Before continuing up the mountain they now plan a second drill hole close-by, to better constrain the data at this location obtained from this first hole.

New Hubble image of Saturn

Saturn taken by Hubble in 2019
Click for full image.

Astronomers have used the Hubble Space Telescope to snap a new high resolution image of Saturn. That image, cropped and reduced to post here, can be seen on the right.

The image was part of a new Hubble program to obtain regular images of the outer planets, begun in 2018.

[The Saturn images] reveal a planet with a turbulent, dynamic atmosphere. This year’s Hubble offering, for example, shows that a large storm visible in the 2018 Hubble image in the north polar region has vanished. Smaller storms pop into view like popcorn kernels popping in a microwave oven before disappearing just as quickly. Even the planet’s banded structure reveals subtle changes in color.

But the latest image shows plenty that hasn’t changed. The mysterious six-sided pattern, called the “hexagon,” still exists on the north pole. Caused by a high-speed jet stream, the hexagon was first discovered in 1981 by NASA’s Voyager 1 spacecraft.

As beautiful as this Hubble photograph is, I cannot help but be saddened by it. It is now the best image of Saturn we will get until 2036 at the earliest, when a NASA mission to Titan finally arrives.

Video of the Japanese launchpad fire

I have embedded below the fold the video of the launchpad fire on September 10 that forced Japan to scrub the launch of its H-2B rocket carrying its HTV unmanned cargo freighter to ISS.

I set up the video to start just prior to the appearance of the fire, at 10 minutes in. Its appearance is quite dramatic. The video then continues for about twenty more minutes, showing the fire-fighting effort that brings the fire under control.

Japan’s space agency JAXA has still not released any further information about what caused the fire, the damage, or when they might reschedule the launch.
» Read more

Relativity gets another launch contract

Capitalsm in space: The smallsat rocket company Relativity has signed another launch contract, this time with Momentus, a company making orbital smallsat tugs capable of transporting smallsats to higher orbits.

The launch agreement, announced during Euroconsult’s World Satellite Business Week here, covers one launch of Relativity’s Terran 1 rocket in 2021 with an option for up to five additional launches. The companies did not disclose the terms of the agreement, but Relativity offers the Terran 1 for a list price of $10 million.

The 2021 launch will fly Momentus’ Vigoride Extended tug, capable of carrying up to 350 kilograms of satellites. The tug will transport the satellites from an initial low Earth orbit to geostationary orbit using its water plasma thruster technology.

This is Relativity’s fourth launch contract, all signed prior to their first test launch. Right now they hope to start test flights late in 2020, with their first operational flights in 2021.

Momentus meanwhile adds a capability to all these smallsat rockets, essentially providing them an upper stage that will get the smallsats they launch from low Earth orbit to geosynchronous orbit.

Interstellar comet discovered?

An amateur astronomer has discovered what appears right now to be an interstellar comet making its approach into the solar system.

[I]mages show that the incoming object sports a faint but distinct coma and the barest hint of a tail — something ‘Oumuamua lacked — and thus appears to be a comet. Astronomers are no doubt eager to get spectra of the new find to determine what compounds might be escaping from its surface.

Based on current observations, C/2019 Q4’s eccentricity is about 3.2 — definitely hyperbolic. Objects on hyperbolic orbits are unbound to the Sun. They’re most likely to hail from beyond the solar system, flying in from great distances to pay our neighborhood a brief visit before heading off for parts unknown.

If this result holds up, astronomers have an unprecedented opportunity to study a potentially interstellar object in great detail over a long span of time. Based on the comet’s current magnitude (~18) and distance from the Sun (2.7 a.u.), it appears to be a fairly large object — perhaps 10 km or more across, depending on the reflectivity of its surface.

There remains a great deal of uncertainty about comet’s path, which will be better resolved with time and better data.

If it is a comet from beyond the solar system, it will be a spectacular goldmine for scientists, because its coma and tail will allow them to gather a great deal of information about its make-up, far more than they were able to gather about Oumuamua.

More parachute problems for ExoMars 2020?

Space is hard: Eric Berger at Ars Technica reported yesterday that the parachute issues for Europe’s ExoMars 2020 mission are far more serious that publicly announced.

The project has had two parachute failures during test flights in May and then August. However,

The problems with the parachutes may be worse than has publicly been reported, however. Ars has learned of at least one other parachute failure during testing of the ExoMars lander. Moreover, the agency has yet to conduct even a single successful test of the parachute canopy that is supposed to deploy at supersonic speeds, higher in the Martian atmosphere.

Repeated efforts to get comments from the project about this issue have gone unanswered.

Their launch window opens in July 2020, only about ten months from now. This is very little time to redesign and test a parachute design. Furthermore, they will only begin the assembly of the spacecraft at the end of this year, which is very very late in the game.

When the August test failure was confirmed, I predicted that there is a 50-50 chance they will launch in 2020. The lack of response from the project above makes me now think that their chances have further dropped, to less than 25%.

Japan scrubs launch due to launchpad fire

Japan today scrubbed the launch of its unmanned HTV cargo freighter to ISS due to a launchpad fire that broke out only three and half hours before liftoff.

There is as yet no word on the cause of the fire, or how much damage it caused. Nor have they said anything about rescheduling the launch.

This would have been Japan’s second launch in 2019, a drop from the average of 4 to 6 in the last five years.

1 240 241 242 243 244 477