Scientists: Liquid surface water might have existed on Mars as recently as 2.3 billion years ago

Map showing locations of salt deposits
Click for full image.

Using orbital data from Mars Reconnaissance Orbiter (MRO), scientists have found salt deposits on Mars where nearby crater counts suggest that the salt water that once held these deposits could have evaporated away as recently as 2.3 billion years ago.

Using [MRO’s] cameras to create digital elevation maps, Leask and Ehlmann found that many of the salts were in depressions – once home to shallow ponds – on gently sloping volcanic plains. The scientists also found winding, dry channels nearby – former streams that once fed surface runoff (from the occasional melting of ice or permafrost) into these ponds. Crater counting and evidence of salts on top of volcanic terrain allowed them to date the deposits.

Past data has suggested that if liquid surface water had existed on Mars, it was gone by three billion years ago.

You can read the scientists’ research paper here.. The maps to the right, figure two from the paper, shows the locations of discovered salt deposits, almost all of which are in the Martian southern cratered highlands of Mars.

Is there uncertainty in these results? My regular readers know that the answer is of course yes. The biggest problem for these Mars researchers is that, despite the surface evidence that liquid water should have once flowed on the surface of Mars, no scientist has yet come up with a satisfactory model of Mars’ past climate that would have made that possible. The planet was either too cold or had too thin an atmosphere, based on other data. And getting it warmer or with a thicker atmosphere involves inventing any number of scenarios that are all questionable, based on what is presently known.

There is also the increasing evidence that glaciers of ice, not water, might have carved those winding, dry channels. If so, many of the assumptions that liquid water existed might simply be wrong, or incomplete. The scientists who wrote this report recognize this importance of ice on Mars, and note in their abstract that

…we think that the water source came from surface runoff, rather than deep groundwater welling up to the surface. The small amounts of water required are most likely from occasional melting of ice.

As always, more data is needed, with the most useful data that will clarify these conclusions being that gathered by future colonists on the surface of Mars itself.

Mars’ youngest lava flow

Mars' youngest lava flow
Click for full image.

Today’s cool image is in some ways another version of my last cool image yesterday. Both are in Mars’s volcano country. Both show what appears to be a lava flow.

Yesterday’s image showed the leftover evidence of a confined flow of lava running in a meandering pattern like a river, and was somewhat distant from the biggest nearby volcanoes. Today’s cool image, to the right and rotated, cropped, and reduced to post here, is instead located smack dab on the inside of what is thought to be Mars’ youngest major lava event, the Athabasca flood lava plain, and in fact is near its outlet, when about 600 million years ago it belched out enough lava in just a matter of a few weeks to cover an area about the size of Great Britain.

The overview map below illustrates this.

» Read more

Freaky badlands on Mars

Freaky badlands on Mars
Click for full image.

Cool image time! The photo to the right, rotated and cropped to post here, was taken on November 18, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Labeled merely as “Danielson Crater Outcrops,” it shows us a perfect example of the strangeness and sometimes very forbidding terrain of Mars.

We are looking at the outcrop tops of many tilted layers, worn into curves semicircles with the convex side all pointing to the southwest. In the hollowed concave-side, dust and sand have accumulated and been trapped, sometimes forming small ripple dunes when there is enough space for the wind to get inside, as seen in the picture’s lower right.

Danielson Crater is 41 miles in diameter. The overview map below provides the context.
» Read more

A cracking and collapsing glacier on Mars

Fractured ice sink hole on Mars?
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on November 4, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a small portion of the floor of a very ancient and eroded unnamed 40-mile-wide crater on Mars.

MRO’s science team labeled this picture simply as a “Fractured Feature.” The section I have focused on in the cropped image is clearly the fractures the scientists were interested in. What is heck caused this?

The location is at 39 degrees north latitude and is located at the very western end and in the center of the 2,000-mile-long mid-latitude strip I call glacier country because practically every photo exhibits evidence of glaciers. Thus, this fractured terrain is almost certainly evidence of ice that partly buried and thus protected from sublimating away.

The collapse feature indicates more, however. The circular shape of the fractures suggests that the center of this feature is sinking, with the ice on all sides slipping downward and breaking as it does so. The location however is not in the center of this crater, but near its southern interior rim. Moreover, in a wider image from MRO’s context camera this feature appears to be within what looks like a thick patch of ice filling most of the southeast quadrant of the crater. On it are other similar collapse features.

The data suggests that this ice patch is eroding, but doing so influenced by the rough terrain on which it sits. The sinks suggest the glacial ice is sublimating first over low spots, but this is hardly certain.

Scientists discover that mid-sized dunes near Mars’ north pole move

Mars' North Pole

Scientists using images from Mars Reconnaissance Orbiter (MRO) collected over six Martian years (6.5 Earth years) have found that the mid-sized dunes dubbed mega-dunes near the north pole actually do move from year to year, unlike similar sized dunes elsewhere on the planet.

Megaripples on Mars are about 1 to 2 meters tall and have 5 to 40 meter spacing, where there size falls between ripples that are about 40 centimeters tall with 1 to 5 meter spacing and dunes that can reach hundreds of meters in height with spacing of 100 to 300 meters. Whereas the megaripples migration rates are slow in comparison (average of 0.13 meters per Earth year), some of the nearby ripples were found to migrate an average equivalent of 9.6 meters (32 feet) per year over just 22 days in northern summer – unprecedented rates for Mars. These high rates of sand movement help explain the megaripple activity.

Previously it was believed that such dunes were static planetwide, left over from a time when Mars’ atmosphere was thicker and could then move them more easily. This data however suggests that the winds produced over the north pole when the carbon dioxide in the atmosphere freezes in winter and sublimates back to a gas in summer are sufficient to shift these dunes in the surrounding giant Olympia Undae dune sea.

Strange land forms on the flanks of Mars’ Arsia Mons volcano

Strange landforms on the flanks of Arsia Mons
Click for original image. Click here for the context camera image.

Cool image time! The center of the photo to the right was taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) on September 5, 2021. For posting here I have rotated, cropped, and reduced it, as well as added to each side the lower resolution context camera image of this region.

The ground slopes downhill to the north. Make sure you click on the image to see the full resolution version. In only a few miles the terrain changes from a mound with small knobs to a smooth area with few knobs to a chaotic area where the larger ridges and knobs are the dominant feature, with hollows and canyons in between.

You should also take a look at the full context camera image. Just to the southeast of the above picture is a large depression that looks like it has been filled with lava, with its western rim covered by that flow. Scientists have taken a lot of high resolution pictures of this depression with MRO, trying to decipher its geology.
» Read more

A Martian cliff

A strange Martian cliff
Click for full image.

Many features on Mars immediately make one think of the Grand Canyon and the stark dramatic geology of the American southwest. Today’s cool image on the right, cropped and reduced to post here, is a typical example. Photographed on September 7, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), it shows a dramatic cliff face that I estimate is about 3,000 feet high.

A closer look, however, almost always shows that this Martian terrain is not like the American southwest at all, but alien in its own way.

At the base of this abrupt cliff the terrain suddenly changes to a series of smooth downward fan-shaped flows. The cliff evokes rough boulders, avalanches, and chaotic erosion. The fans evoke a gentle and organized erosion of small particles like dust or sand. The two processes are completely different, and yet here the former is butted right up against the latter.

The fans also appear to flow out of hollows in the rough cliff, suggesting that somehow as the cliff erodes in chunks those chunks break into sand or dust, find the lowest points, and then flow downward like liquid.

How strange. How Martian. And how truly beautiful.

Ice-filled crater on the Martian north polar ice cap

Ice-filled crater on the Martian north pole ice cap
Click for full image.

Cool image time! The photo to the right, cropped to post here, was taken on September 18, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO) and shows a very distinct impact crater on top of the layered deposits of ice mixed with dirt that form the bottom layers as well as surround the visible north pole ice cap on Mars.

I purposely cropped the high resolution image so that the crater is off center to show the dark streaks that appear to blow away from the crater to the northwest, west, and southwest. This asymmetric pattern suggests the wind direction at this location generally flows to the west, but the pattern might also be caused by lighting effects. The location is at 82 degrees north latitude, and the Sun was only 31 degrees high when the picture was taken, causing long shadows. Also, in the full image, you can see a whole strip of similarly oriented streaks, suggesting that these are slope streaks descending a slope going downhill to the northwest.

The overview map below also provides important information about this location.
» Read more

Ice canyons at the Martian north pole

Ice canyons at the Martian north pole
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was taken on July 24, 2021 by the high resolution camera of Mars Reconnaissance Orbiter (MRO) and shows one small portion of the edge of Mars’ north pole ice cap.

The many layers in that ice cap are clearly evident, with some darker because they were probably laid down at a time when the Martian atmosphere was more filled with volcanic ash. According to the presently accepted theory, the layers show the cyclical climate patterns of Mars, caused by the large shifts in its obliquity, or the tilt of the planet along its rotational axis, ranging from 11 to 60 degrees. Presently Mars is tilted 25 degrees, similar to Earth’s 23 degrees. The two extremes cause the planet’s water ice to shift back and forth from the mid-latitudes to the poles, causing the layers.

The height of this layered cliff face is probably about 1,500 feet, though that is a very rough estimate. Notice also that this image shows an ice canyon running from the left to the right and flowing into a much larger ice canyon to the right. The top cliff is probably about a third the height of the bottom cliff.

The overview map below shows gives the context, not only in place but also in time.
» Read more

The badlands on the floor of Valles Marineris

The badlands on the floor of Valles Marineris
Click for full image.

Cool image time! The recent discovery that there might be a near surface reservoir of ice on the floor the canyon Valles Marineris, near the Martian equator, immediately brought this location to the forefront as a possible site for establishing colonies. The weather will be less harsh than higher latitudes, the low elevation means a thicker atmosphere, and the terrain will be more appealing than the boring flat northern lowlands.

The picture to the right, cropped and reduced to post here, illustrates however the likely difficulties of landing and living on the floor of Valles Marineris. Taken on July 26, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), the photo shows just one small area of the floor of Ius Chasm, the western part of Valles Marineris and about 300 miles to the east of that water reserve.

In this one picture we can see trapped sand dunes in hollows, eroded depressions, mottled terrain resembling stucco, and innumerable cliffs and sinks and plateaus. For the first manned spacecraft to land on Mars, this is not a good first choice. Even later, when the first bases have been built, this terrain would still be forbidding for the early colonists to land in and traverse.

The overview map below shows exactly where this picture is relative to the rest of the Valles Marineris.
» Read more

Slope streaks in frozen lava flows on Mars

Slope streaks on frozen lava
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was taken on June 5, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a ridgeline at the base of the giant volcano Pavonis Mons, with slope streaks on ridge’s north and south sides.

Slope streaks are a mysterious phenomenon unique to Mars. While they resemble an avalanche, they do not change the topography of the surface at all. They appear to occur randomly year round, fading slowly with time. Also, while most are dark, scientists have also spotted bright slope streaks as well.

Slope streaks also only appear on surfaces covered with a layer of fine dust, something that is obviously the case in the cool image to the right. There is so much dust on the surface here that bedrock only appears at the top of the ridge, peeking out in only a few places.

The location of this image, as shown in the overview map below, adds some additional details.
» Read more

Cracking glaciers on Mars

Cracking glaciers on Mars
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was released today as the picture of the day for the high resolution camera on Mars Reconnaissance Orbiter (MRO). Located in the 2,000 long northern mid-latitude strip that I dub Mars’ glacier country, it shows many of the numerous glacial features that are routinely found in images taken in this region. According to Dan Berman, senior scientist at the Planetary Science Institute in Arizona, who wrote the caption,

This observation shows a lobe-shaped debris apron emanating from a massif (shown in the upper left of the image) in the Protonilus Mensae region in the Northern Hemisphere of Mars. These aprons are composed of nearly pure water ice with a layer of debris on the surface protecting the ice from sublimation (going directly from a solid to gaseous state). This image shows different terrain types on the apron that indicate the presence and flow of ice, from smoother polygonal terrain closer to the massif, to rougher, patterned ground commonly called “brain terrain.” Also visible on the apron are a series of linear pits.

Protonilus Mensae is the central mensae region in that mid-latitude strip of glaciers.The overview map below shows the location of this photo in that region. Also below is a close-up of the linear pits and cracked terrain surrounding that oblong mound, as indicated by the white rectangle.
» Read more

Visible clean water ice on Mars

Crater with ice scarp
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, is today’s picture of the day for the high resolution camera on Mars Reconnaissance Orbiter (MRO). Taken on September 13, 2021, it shows an exposed scarp on the southern inner wall of a small 800-foot-wide crater.

What makes that scarp intriguing is its blue color. As noted by Shane Byrne of the Lunar and Planetary Lab University of Arizona, who wrote the caption:

This north-facing cliff appears to expose icy material that’s similar to other pole-facing scarps showing buried ice elsewhere on the planet. These cliffs give us a cut-away view of the buried ice in that location and can help answer questions about what the Martian climate was like when this ice formed.

The crater itself sits inside a much larger crater, as shown in the wider picture below.
» Read more

Strange eroded glacial flows in unnamed crater on Mars

Eroded glacial flows in unnamed crater on Mars
Click for full resolution image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on November 1, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a series of strange glacial-like flows coming off the western slopes of the central peak of a 40-mile-wide unnamed crater, located smack dab in what I call Mars’ glacier country, that 2,000 long mid-latitude strip where almost every image shows evidence of glaciers.

The cropped section to the right doesn’t really do these strange flows justice. Make sure you click on the image to see the full resolution version. There are numerous separate flows coming off that central peak. Each appears to show that as time passed, each flow traveled a shorter distance down the mountain, leaving a moraine behind at higher and higher points.

The overview map below provides the context.
» Read more

Sculptured lava south of Olympus Mons?

Sculptured lava?
Click for full image.

Time for a cool image! The photo to the right, rotated, cropped, and reduced to post here, was taken on September 8, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a region of strangely sculptured terrain located several hundred miles south of Olympus Mons.

It appears the prevailing winds are to the west. The question is whether the wind is shaping a hard lava surface, over eons, or is shaping instead layers of dust or volcanic ash quickly and seasonally. At this location either is possible. In fact, we might even be seeing evidence of both at the same time.

The overview map below shows that the location is just outside the Medusae Fossae Formation, the largest volcanic ash deposit on Mars.
» Read more

Volcanic vent on Mars

Overview of Arsia Mons pits

To understand today’s cool image we really should start from a distance and zoom in. The overview map to the right focuses in on the two southernmost giant volcanoes in the string of three that sit to the east of Mars’ biggest volcano, Olympus Mons, and to the west of the planet’s biggest canyon, Valles Marineris.

The black dots mark the locations of the many high resolution photos taken by Mars Reconnaissance Orbiter that I have featured previously on Behind the Black. Many are isolated openings with no related geological features. Others appear to be skylights into a more extensive lava tube, hinted at by either a continuing surface depression or a series of similar skylights.

The white dot marks the location of today’s cool image, about 350 miles south of Arsia Mons’ caldera.
» Read more

Craters in the soft Martian northern lowland plains

Craters in the soft Martian northern lowland plains
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was a featured image today from the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The caption, written by Carol Weitz of the Planetary Science Institute in Arizona, focused on the wind patterns created within these craters.

These impact craters in the northern middle latitudes have interesting interiors: all of them have wind-blown (aeolian) ripples.

Outside of the craters and along the crater floors, the ripples are all oriented in the same direction. However, along the walls of some of the larger craters, the ripples are situated radially away from the center, indicating the winds moving inside the larger craters can be influenced by the topography of the crater wall.

Additionally, many of the larger craters have layered mesas along their floors that are likely sedimentary deposits laid down after the craters formed but prior to the development of the aeolian ripples.

I am further intrigued by the rimless nature of these craters, as well as the lack of significant rocky debris at their edges. They all look like the bolides that created them impacted into a relatively soft surface that, rather than break up into rocks and boulders, melted, flowed, and then quickly refroze into these depressions.

The location, as always, provides us a possible explanation.
» Read more

Snow on Martian dunes

Snowy dunes near the Martian north pole
Click for full image.

Close-up of snowy dunes
Click for full image.

Cool image time! The first photo to the right, rotated, cropped, and reduced to post here, was taken on September 19, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows what appears to be snow nestled in the hollows of many dunes.

The second photo, cropped to post here, shows in high resolution the area in the white box.

Is that snow water, or dry ice? The location is very far north, 76 degrees latitude, so it could be either. Since the photo was requested by Candice Hansen of the Planetary Science Institute in Arizona, I emailed her to ask. Her answer:

Early in the spring all the bright stuff is dry ice. As it gets later in the spring it is probably still mostly dry ice but with HiRISE images alone we cannot really distinguish the composition of the ice. In-between the dunes it is almost certainly bare ground late in the spring, but since the dunes are dark the surface just looks bright in contrast

This picture was taken in summer, which suggests the snow is probably water, not dry ice. Yet, all the snow is found in the north-facing hollows, places that will remain mostly in shadow at this high latitude, 76 degrees north. Thus, it is possible that the snow is the last remaining traces of the thin dry ice mantle that covers the Martian poles down to about 60 degrees latitude during the winter, and sublimates away in summer.

Hansen had requested a whole bunch of similar images of such snowy dunes. As she explained,
» Read more

A volcanic extrusion on the floor of Valles Marineris?

A volcanic extrusion on the floor of Valles Marineris?
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on August 31, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the science team labels a “possible contact between two units.”

I think that contact is the point where that eroded mountain touches the surrounding smooth canyon floor. The mountain itself looks to me to be a very eroded extrusion of lava that was placed there from below a very very long time ago, covered later by material, and now exposed for a long enough period that its surface appears to have been carved by wind and even possibly flowing water or ice.

Because it is lava it is more resistant to erosion, which is why it sits higher than the smooth terrain around it. Even though both experienced the same processes of wear over time, the mountain’s surface was only carved away partly, while the material that had been in the floor was washed away entirely.

This is all a guess. However, a look below at the overview map, showing this mountain’s location on Mars, as well as MRO’s wider view from its context camera, I think strengthens my hypothesis.
» Read more

Frozen lake bed in the Martian high latitudes?

Frozen lakebed in the Martian high latitudes?
Click for full image.

Today’s cool image comes from today’s Mars Reconnaissance Orbiter’s (MRO) high resolution picture of the day, rotated and cropped to post here. The original was taken back on March 28, 2017.

What formed those strange circular ridges and the many small cracks and hollows? The caption provided is somewhat vague and I think confusing:

This formation looks like a crater from a meteor impact rather than an ancient caldera of a volcano. Connected to the crater is a carved-out area that resembles a lake bed. At high resolution, we might be able to determine the likelihood of a water lake bed or lava bed. This observation will give insight into some of the interesting geology of this area.

The crater this caption is referring to is not visible in the image provided. It can be seen to the west of this location, in the MRO context camera picture below.
» Read more

The strange surface of Mars’ north pole icecap

Mars' north pole icecap
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and annotated to post here, was taken on September 17, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows us a very small section of Mars’ north pole icecap.

What are we looking at? The picture was taken in summer, so by this point the thin mantle of dry ice that falls as snow in the winter and covers the north pole down to about 60 degrees latitude has sublimated away. This surface thus is water ice interspersed with Martian dust.

Yet, unlike the Antarctic icecap on Earth, the ice surface is not smooth and flat. Instead, this Martian ice has a surface that is a complex arrangement of hollows and ridges, all about the same size. Why?

And what are the two larger white spots? What caused them and why are they the only differently-sized objects in the picture?

The full resolution close-up, found at the image website, provides some answers to these questions.
» Read more

Two skylights into connected Martian lava tube?

Two skylights into a connected Martian lava tube?
Click for full image.

Cool image time! The photo to the right, cropped and annotated to post here, was taken on September 1, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). I have annotated it to note the two apparent skylights that appear aligned along a north-south depression.

The grade is downhill to the north. If you look at the full image you will see that this north-south depression extends for a considerable distance beyond the edges of the cropped image above, with that depression appearing to dissipate to the north into a series of parallel very shallow depressions, almost like the lava had flowed out of the tube and formed branching surface rivulets heading south.

The overview map shows that this tube is on the northern flanks of the volcano Arsia Mons.
» Read more

Holes in snowy ice on Mars?

Holes in snowy ice on Mars?
Click for full image.

Cool image time! Today we return to the regions surrounding Milankovic Crater in the high northern latitudes of Mars. The photo to the right, cropped and reduced to post here, was taken on June 1, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a spray of impact craters where the bolides apparently landed in relatively soft material. The location itself is about 10 miles to the southeast of the 74-mile-wide crater, and sits within its rim ejecta blanket.

The label for the image says this is showing “crater modification,” which suggests that the rimless nature of these craters became so after their creation. This location, at 54 north latitude, is in a region of Mars where scientists have found a lot of evidence of near surface ice. For example, within Mikankovic Crater itself they have identified numerous scarps with clearly seen pure ice layers.

If ice is close to the surface here, then the ground could be like soft snow on Earth, especially because Mars’ lighter gravity would not compress that ice as much. Think about what happens when you toss pebbles into soft snow. They fall through, and leave behind holes not unlike the ones we see in this picture. Later, sunlight would begin to modify the holes so that their edges grow outward, once again exactly as we see here.

The overview map below as always gives some context, which in this case has less to do with Mars but with Elon Musk and Starship.
» Read more

Layered glaciers in Mars’ glacier country

Layered glacier in Mars' glacier country
Click for full image.

Cool image time. The photo to the right, cropped and reduced to post here, was taken on August 30, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows two different impact craters in a glacial region dubbed Nilosyrtis Mensae, located in the northern mid-latitudes in the 2,000 mile long strip chaos terrain that I have labeled glacier country because practically every image finds them there.

The splash apron surrounding the larger crater is typical of craters in Martian regions where ice is thought to be near the surface.

What makes this picture interesting is that the glaciers appear layered. You can see evidence of this in the mounds inside both craters. Those mounds appear to represent earlier periods when there was more ice here. Since then the mounds have partly sublimated away.

You can also see evidence of layers in the material surrounding the nearby larger mounds.

The map below shows us where this image is, relative to all of glacier country as well as the rover Perseverance in Jezero Crater.
» Read more

A collapsing north wall in Valles Marineris

Mass wasting in Valles Marineris
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on July 17, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label as an alluvial fan.

I have also seen them label this kind of avalanche as mass wasting, where the material moves down slope suddenly in a single mass.

The image shows the aftermath of such an event, after a large blob of material broke free from the mountainside and slid almost as a unit downhill to settle more than two miles away on the floor of the canyon. The distance traveled and the blobby nature of the flow both reveal how the lower Martian gravity changes the nature of such events, compared to what you might see on Earth. The flows can travel farther, and can hold together as a unit easier.

The overview map below not only provides the context, but it tells us that such events are remarkably common in this place.
» Read more

The icy Phlegra Mountains on Mars

Overview map

Cool image time! The Phlegra Mountains on Mars are probably the iciest mountains on the red planet, something I noted previously in an April 2020 essay, highlighting a half dozen images from the high resolution camera on Mars Reconnaissance Orbiter (MRO) that showed that iciness. As I stated:

Here practically every photograph taken by any orbiter appears to show immense glacial flows of some kind, with some glaciers coming down canyons and hollows [#1], some filling craters [#2], some forming wide aprons [#3] at the base of mountains and even at the mountains’ highest peaks [#4], and some filling the flats [#5] beyond the mountain foothills.

And then there are the images that show almost all these types of glaciers, plus others [#6].

The overview map above not only shows the locations of these six images in black, it also shows in red two of SpaceX’s four prime candidate landing sites for its Starship spacecraft. Note that #3 above is one of those sites.

The white rectangle in the Phlegra Mountains marks the location of today’s cool image below, taken on June 11, 2021 by MRO’S high resolution camera.
» Read more

Dry Martian chaos

Dry chaos on Mars
Click for full image.

On Mars, one of the most common kinds of landscape is called chaos terrain. Made up of mesas, buttes, and cross-cutting random canyons, this geology is not seen on Earth, and when first identified by scientists in early orbital pictures in the 1970s, it baffled them. While it is clear that some form of erosion process caused it, the scientists did not have enough data then to figure out what that process was.

Today scientists have a rough theory, based on what they now know about Mars’ overall geology and its climate and orbital history. The canyons of chaos terrain were originally fault lines where either water or ice could seep through and widen. See this January 2020 post for a more detailed explanation.

Most of the cool images I have posted of chaos terrain have been in places in the mid-latitudes that are covered with glaciers. See for example this December 2019 post of one particular mesa in glacier country, with numerous glaciers flowing down its slopes on all sides. That mesa is quite typical of all such mesas in the mid-latitudes.

Today’s cool image above, cropped to post here, takes us instead to the Martian very dry equatorial regions. The photo was taken on May 17, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and like mid-latitude chaos, it shows a collection of random mesas with canyons cut almost randomly between.

Unlike the mid-latitudes, however, there is no evidence of glaciers here. Instead, the canyons and mesa slopes are covered with dust, shaped into wind-blown dunes.

As always, the overview map below gives us some context.
» Read more

A gecko on Mars

Gecko on Mars
Click for full image.

Today’s cool image is also today’s picture of the day from the science team of the high resolution camera on Mars Reconnaissance Orbiter (MRO. That picture, rotated, cropped, and reduced to post here, can be seen to the right. As the caption authors Sharon Wilson and Sarah Sutton write:

The smooth volcanic surfaces in the Gordii Fossae region are sometimes interrupted by long, narrow troughs, or fissures. These fissures form when underground faults, possibly involving magma movement, reach the near-surface, allowing material to collapse into pits or an elongated trough. This fissure appears to have erupted material that flowed onto the surface.

If you use your imagination, this trough resembles a gecko with its long tail and web-shaped feet!

This impression is even more evident in the wider image taken by MRO’s context camera below.
» Read more

Dusty chaos in Martian canyons

Outcrops in dusty chaos on Mars
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was taken on May 30, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the dusty dry floor of the chaos region of rough terrain in a side canyon of Valles Marineris, near its outlet. The color strip and the bright outcrops suggest that this terrain contains interesting minerals and resources. To determine exactly what those materials are however requires more information not available in this photo.

This ancient chaos terrain is the leftover eroded sea floor of a intermittent inland sea, leftover water from the catastrophic floods that are theorized to have flowed out of Valles Marineris and carved its gigantic canyons.

The overview map below shows this hypothesized sea.
» Read more

Ancient fossil river in the very dry equatorial regions of Mars

Inverted Channel on Mars
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on August 29, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label an “inverted channel in Arabia Terra,” a small example of the more than 10,000 miles of fossilized rivers in this region on Mars that scientists have identified using MRO.

They are made of sand and gravel deposited by a river and when the river becomes dry, the channels are left upstanding as the surrounding material erodes. On Earth, inverted channels often occur in dry, desert environments like Oman, Egypt, or Utah, where erosion rates are low – in most other environments, the channels are worn away before they can become inverted. “The networks of inverted channels in Arabia Terra are about 30m high and up to 1–2km wide, so we think they are probably the remains of giant rivers that flowed billions of years ago. [emphasis mine]

Since this fossilized river is located at 11 degrees north latitude, smack in the middle of the dry equatorial regions of Mars, it has certainly been a dry desert for a very long time. You can see how barren the terrain appears by looking at the wider view afforded by MRO’s context camera below.
» Read more

1 15 16 17 18 19 32