It’s drill time for Perseverance!

The Perservance science team is preparing the rover for its first drill hole and the first collection of a sample to cache so that a future spacecraft can return it to Earth.

They are presently at the general location where they wish to drill, and are looking for the exact right spot.

The sampling sequence begins with the rover placing everything necessary for sampling within reach of its 7-foot (2-meter) long robotic arm. It will then perform an imagery survey, so NASA’s science team can determine the exact location for taking the first sample, and a separate target site in the same area for “proximity science.”

“The idea is to get valuable data on the rock we are about to sample by finding its geologic twin and performing detailed in-situ analysis,” said science campaign co-lead Vivian Sun, from NASA’s Jet Propulsion Laboratory in Southern California. “On the geologic double, first we use an abrading bit to scrape off the top layers of rock and dust to expose fresh, unweathered surfaces, blow it clean with our Gas Dust Removal Tool, and then get up close and personal with our turret-mounted proximity science instruments SHERLOC, PIXL, and WATSON.”

“After our pre-coring science is complete, we will limit rover tasks for a sol, or a Martian day,” said Sun. “This will allow the rover to fully charge its battery for the events of the following day.”

Sampling day kicks off with the sample-handling arm within the Adaptive Caching Assembly retrieving a sample tube, heating it, and then inserting it into a coring bit. A device called the bit carousel transports the tube and bit to a rotary-percussive drill on Perseverance’s robotic arm, which will then drill the untouched geologic “twin” of the rock studied the previous sol, filling the tube with a core sample roughly the size of a piece of chalk.

Perseverance’s arm will then move the bit-and-tube combination back into bit carousel, which will transfer it back into the Adaptive Caching Assembly, where the sample will be measured for volume, photographed, hermetically sealed, and stored. The next time the sample tube contents are seen, they will be in a clean room facility on Earth, for analysis using scientific instruments much too large to send to Mars.

Not all drill samples will be cached in this manner.

With this press release and press conference NASA continued to push the fiction to the press that Perservance’s prime mission is to search for life. That is a lie designed to catch the interest of ignorant journalists who don’t know anything. The rover’s real mission is to study the overall Martian geology in Jezero Crater in order to better under the planet’s present geology as well as the geological history that made it look like it does today.

If the scientists using Perseverance find evidence of life, wonderful, but that is not their prime goal.

Another “What the heck?” photo from Mars

Isolated clump of mounds on Mars
Click for full image.

The cool image to the right, cropped and reduced to post here, was taken a decade ago, on August 25, 2011, by the context camera on Mars Reconnaissance Orbiter (MRO), It shows a flat plain with a sudden clump of mounds or hills at the center.

This is one of those pictures from Mars which I like to call a “What the heck?” image. What caused the mounds, and why are they found only in this concentrated clump, with the rest of the terrain around them generally flat?

Though the context image was taken a decade ago, no follow-up high resolution images were taken of this area until very recently.

Below is the one recent high resolution image taken by MRO on May 12, 2021, cropped and reduced to show the bottom half of the mound clump as shown by the white box. It makes the mystery even more puzzling.
» Read more

Ice-filled craters in Mars’ glacier country?

Craters in Protonilus Mensae
Click for full image.

Today’s cool image returns us to the chaos region dubbed Protonilus Mensae, the middle of three adjacent mensae regions in the northern hemisphere that I like to dub Mars’ glacier country because there is so much evidence of buried ice there.

The photo to the right, cropped to post here, was taken on May 31, 2021 by the high resolution camera of Mars Reconnaissance Orbiter (MRO). Titled “Layered Feature in Crater in Protonilus Mensae,” the section I have posted focuses on several craters, with the one with the central mesa likely the picture’s target. Based on many similar features found in craters in this region, it is somewhat safe to assume that this mesa is made of buried ice.

The overview map below as always provides the context.
» Read more

Cracks, chaos, and maybe caves in one place on Mars

Mosaic of Avernus Cavi fissures
Click for higher resolution. Original images found here and here.

Today’s cool image to the right is a mosaic I have made from two images taken by the context camera on Mars Reconnaissance Orbiter (MRO), showing a most intriguing region on Mars dubbed Avernus Cavi, located in the large volcanic plain called Elysium Planitia between the giant volcanoes Elysium Mons and Olympus Mons, a region I like to call Mars’ volcano country.

The mosaic shows in one picture much of the typical terrain in Avernus Cavi. We see many linear depressions or cracks, created when the ground stretched and cracked at weak points. We also see many depressions that suggest sinkholes, places where the surface sagged down because of a void below ground.

The area of knobs and mesas in the picture’s southeast quadrant is very typical Martian chaos terrain, the later result of long term erosion of these cracks and depressions.

The white box shows the area covered by the image below.
» Read more

The lacy rocks of Mars

Lacy rocks on Mars
Click for full image.

Cool image time! The image to the right, cropped and reduced to post here, was taken on July 16, 2021 by the Mars rover Curiosity, using its high resolution mast camera.

There isn’t much to say. These are alien rocks, created in a place with a gravity only about a third that of Earth’s in a climate that is very different. Their delicate nature suggests we are looking at something that was once more substantial and has since been undergoing erosion.

Nor has it been that unusual to find rocks so dainty on Mars. In fact, the more Curiosity has climbed, the more such things have been visible. And similar things were seen by the rovers Spirit and Opportunity.

How such rocks formed initially in the far past, under what climate conditions, remains the number one mystery on Mars. What is now causing it to flake away into such a finespun gossamer of complexity is as much a mystery, tied more to the climate and geology of Mars today.

This rock sits on the bottom flank of Mt Sharp in Gale Crater, at the highest elevation Curiosity has yet climbed. At this point the rover has just entered a new geological unit, what scientists have dubbed the sulfate unit. The evidence gathered from a distance (that so far appears confirmed by recent observations) suggest that this unit was formed under a fluctuating environment that laid down many layers of sediment as conditions ebbed and flowed.

First attempts to map the layered geology of Mars

layers in Jiji Crater on Mars
Click for full image.

Today’s cool image illustrates well the central task of much of today’s geological research on Mars, using the orbital images to try to map out the visible geological layers seen, and figure out if those layers mark over wide regions specific geological epochs, as they do on Earth.

The photo to the right, cropped and reduced to post here, was taken on May 4, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and featured on July 12th as a captioned image entitled “Layers Blanket a Crater Floor.” From the caption:

This image shows a layered rock formation within Jiji Crater that has eroded into buttes and stair-like layers.

This formation extends west and east. Similar layered rocks are within several craters in Arabia Terra and Meridiani Planum, including [nearby] Sera and Banes craters. The similarities suggest that the same process was forming deposits over a large geographic area long ago. Our image also indicates that much of the formation has eroded away relative to what has remained.

As you can see in the photo, the layers form a neat staircase of terraces descending from the south crater rim to the crater floor. They suggest that once the crater was filled with this material, which over time eroded away.

An image of similar layered buttes and mesas in Sera crater, only about 20 miles away, was featured here on Behind the Black in December 2020 The overview map below shows the relationship between Jiji, Sera, and Banes craters.
» Read more

New images from Zhurong on Mars

Zhurong's view north
Click for full image.

China today released three new images from its Zhurong Mars rover, showing that since their last release in late June the rover has traveled about 1,000 feet to the south to reach the parachute and backshell (or entry capsule), both released just before landing.

The image to the right, cropped and reduced to post here, is the color panorama from that release, looking north. According to a translation of the Chinese press release, provided at this Space.com report, the image shows:

“The complete back cover structure after aerodynamic ablation, the attitude control engine diversion hole on the back cover is clearly identifiable,”

Below is an annotated orbital picture of this location taken by Mars Reconnaissance Orbiter (MRO) in mid-June.
» Read more

Clashing layers in Mars’ largest canyon

Clashing layers on a mountain slope on Mars
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on May 27, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows the clash of different layers on the western slope of a mountain within Mars’ largest canyon, Valles Marineris.

The scientist have labeled this a “possible angular unconformity.” In geology an unconformity generally refers to a gap in a series of layers, a period when instead of the layers being deposited they are being eroded away, leaving no record for that time period. An angular unconformity adds tilting to the older layers, which after erosion are then covered by new layers that are oriented somewhat differently.

Based on these definitions, what the scientists suspect is that the brighter layers to the left and lower down the mountain are older. After a period of erosion new layers were deposited on top at a different angle, forming the stripe of layers going from center left up to center right.

The swirly nature of the material on the top of the ridge suggests to me that these layers might be volcanic in nature, but that’s a pure uneducated guess. What some scientists do believe (but have not yet conclusively proven) is that the lower older layers are sediments laid down by an ancient lake that once filled the canyon here.

The overview map below provides a wider view and some context.
» Read more

Ingenuity’s view of Jezero Crater during its 9th flight

Ingenuity looks across Jezero Crater
Click for full image.

Overview map
Click for interactive map.

Cool image time! The photo above, cropped, enhanced, and reduced to post here, was taken on July 5, 2021, about thirty seconds after Ingenuity had taken off on its 9th flight on Mars. I have increased the contrast slightly to bring out the features. This is a raw image, so I do not think the colors are accurate, and I also do not know why the middle of the image is brighter than the edges.

The red lines on the map to the right indicates the general area this image captures. Essentially, once the helicopter reached its flying altitude after liftoff the engineers had it tilt so that it could see the route it was about to take to the southwest. As they noted in their description of this flight,

We began by dipping into what looks like a heavily eroded crater, then continued to descend over sloped and undulating terrain before climbing again to emerge on a flat plain to the southwest.

I think that crater is visible on the left edge of this picture.

So far 180 raw images from Ingenuity have arrived at JPL. There might be a few more, but I think this is the bulk from the flight. Of these, all but nine are black and white and point straight down. The nine color images seem tilted up towards the horizon to various degrees, though the image above is the only one that captures the horizon itself and the distance mountains of Jezero Crater’s rim.

Curiosity looks across at the alien landscape of Gale Crater

Curiosity's view across Gale Crater
Click for full image.

Most of the images from Curiosity that I have posted recently have been of the spectacular mountain scenery looking south at Mount Sharp itself. Today’s cool image, taken on July 6, 2021 by the rover’s right navigation camera and cropped to post here, instead looks north, out across the floor of Gale Crater to its distant rim about twenty miles away.

The rover is likely not to move for a week or so, as it has just completed drilling its first drillhole since it moved up into the next geological layer, dubbed the sulfate unit. Because of this they have been using the rover’s cameras to take a lot of pictures of the surrounding terrain, including several high resolution mosaics.

The two overview maps below show what the cool image above is looking at.
» Read more

Springtime on Martian dunes near the north pole

Dunes near the Martian north pole, in the spring

Cool image time! The photo to the right, rotated and cropped to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) on April 27, 2021. It shows a strange scattering of dunes on a flat plain. The red at the top of each dune probably indicates exposed dust and sand. The white fringe is likely either water frost or the leftover mantle of dry ice that is deposited in the polar regions each winter down to 60 degrees latitude, and disappears with the coming of spring, sublimating back into carbon dioxide gas.

There are a lot of puzzles here. The overview map below provides some context, but only some.
» Read more

Sublimating scallops on Mars

Giant scallop on Mars
Click for full image.

Today’s cool image, shown in a rotated, cropped, and reduced version to the right, gives us a close-up look at one of the giant scallops found in the high mid-latitudes of the northern lowland plains of Mars, specifically in Utopia Basin north of the landing sites of both Perseverance and Zhurong. In fact, this particular image is only a few miles north of one of my previous cool images, Giant scallops on Mars, posted in December 2019.

The image was taken on February 3, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). While such scallops are not unusual in the mid-latitudes, their formation process is not well understood. As I noted in the 2019 post, ” scientists believe [pdf] the formation process is related to the sublimation of underground ice.”

According to [one hypothesis] scallop formation should be ongoing at the present time. Sublimation of interstitial ice could induce a collapse of material, initially as a small pit, then growing [away from the equator] because of greater solar heating on [that] side. Nearby scallops would coalesce together as can be seen to have occurred.

This hypothesis is not proven, and today’s cool image raises questions about it. Though the bright material at its center suggests exposed ice, supporting the idea that sublimation of ice near the surface created the scallop, the scallop scarps seem more extended and distinct to the south, not the north as this hypothesis proposes. Sunlight should hit the northern scarps more, which suggests they should retreat more instead of the southern scarp.

The overview map below provides the context.
» Read more

First images from Ingenuity’s 9th flight today

Ingenuity landing, July 5, 2021

Ingenuity has apparently completed its 9th flight on Mars, its most challenging yet attempted. Based on the six images so far released from that flight, all taking during its landing, it appears the flight was successful. Or at least, the helicopter landed without incident or damage.

The photo to the right was the last picture taken just before touch down. From the caption:

NASA’s Ingenuity Mars Helicopter acquired this image using its navigation camera. This camera is mounted in the helicopter’s fuselage and pointed directly downward to track the ground during flight.

The dark shadow of the helicopter is clearly visible. If you want to see the entire sequence of six images, go to the Ingenuity raw image website and pick the “latest images” filter in the right column. At present it shows this sequence, though I am certain as the day passes images from the entire flight will start appearing.

As noted at the first link above, the flight was to be more than twice as long as any previous flight while flying over the roughest terrain. There was the real risk that its software would become confused by that terrain.

Next Ingenuity flight to push envelope significantly

Ingenuity's 9th flight plan
Click for full image.

The engineers running the Mars helicopter Ingenuity revealed today that they will be attempting their most ambitious flight for the helicopter’s ninth flight, presently scheduled for no earlier than July 4th.

I have annotated the map to the right to show Ingenuity’s present position and its approximate landing area.

Without question this flight will be the riskiest taken by Ingenuity so far, more than doubling the flight distance achieved on any previous flight. More important, it will be flying over terrain far rougher than it was initially designed for.
» Read more

More parachute problems for Europe’s Franklin Mars rover

During a parachute drop test in late June, following a redesign of the parachute with U.S. help, engineers for the ExoMars Rosalind Franklin Mars rover found the chute still experienced problems that tore it during deployment.

They actually performed two drop tests, a day apart, using two different parachutes, with the first test apparently going off without a hitch. However, according to the press release:

“The performance of the second main parachute was not perfect but much improved thanks to the adjustments made to the bag and canopy. After a smooth extraction from the bag, we experienced an unexpected detachment of the pilot chute during final inflation. This likely means that the main parachute canopy suffered extra pressure in certain parts. This created a tear that was contained by a Kevlar reinforcement ring. Despite that, it fulfilled its expected deceleration and the descent module was recovered in good state.”

I have embedded below the fold the only video released by the European Space Agency. It is not clear whether this is from the first or second test. Near the end it appears that the pilot chute above the main chute might be separated, but the video ends before that can be confirmed.

Though ESA has apparently improved the chute’s performance significantly since its earlier failures that contributed to the delay of ExoMars from last year to 2022, they still haven’t gotten the chute completely right. Fortunately they still have time to get it fixed before that ’22 launch.
» Read more

Perseverance’s most recent view of Jezero Crater

Panorama by Perseverance, Sol 130, July 2, 2021
Click for full resolution.

Overview map
Click for interactive map.

Cool image time! The panorama above, reduced to post here, is made from two navigation camera images on the Mars rover Perseverance, found here and here.

The map to the right, taken from the “Where is Perseverance?” website and annotated further by me, shows with the yellow lines what I think (but am not sure) is the area seen in the panorama.

The navigation cameras on Perseverance are more wide angle than the navigation cameras on Curiosity, in order to cover a larger area. They thus produce a slight fisheye distortion, illustrated by the curve of the horizon.

The large mountain in the center right is likely the crater rim. You can also see the knobs to the left as indicated on the overview map. The rover is now about halfway to the southernmost planned spot it is expected to reach within the floor of Jezero Crater, which is about a half to three quarters of a mile further south.

The terrain seems quite desolate and barren, which of course is no surprise, because that is what it is like on all of the surface of Mars. No plant life, just rocks and dirt. While Curiosity is now in the mountains, Perseverance remains on the crater floor, so the points of interest (from the mere tourist’s perspective) are small or far away.

Al-Amal detects Martian aurora

Aurora on Mars

The United Arab Emirates Al-Amal Mars orbiter has detected evidence of a Martian aurora that would be visible at night for short periods.

The ultraviolet images to the right have been reduced slightly to post here.

These three images of atomic oxygen emission at a wavelength of 103.4 nm from the planet Mars were obtained by the Emirates Mars Ultraviolet Spectrometer instrument on 22 April, 23 April, and 06 May 2021 respectively. The full set of data collected during these observations include far and extreme ultraviolet auroral emissions which have never been imaged before at Mars. The beacons of light that stand out against the dark nightside disk are highly structured discrete aurora, which traces out where energetic particles excite the atmosphere after being funneled down by a patchy network of crustal magnetic fields that originate from minerals on the surface of Mars.

Though Mars does not have a magnetic field, it is believed that sections of the planet’s crust are magnetized, and under the right conditions can guide the charged particles from the Sun’s solar wind to the night side to hit the atmosphere where they break up and produce the aurora. Because there is no magnetic field however the particles are not guided by the field lines to the poles, but to different spots at all latitudes, depending on circumstances.

Scientists solve methane data conflict on Mars

Using the methane detector on the rover Curiosity scientists now think they have solved the mystery why Curiosity has detected methane in the atmosphere near the surface while Europe’s Trace Gas Orbiter fails to detect any methane at all.

[Planetary scientist John E. Moores from York University in Toronto], as well as other Curiosity team members studying wind patterns in Gale Crater, hypothesized that the discrepancy between methane measurements comes down to the time of day they’re taken. Because it needs a lot of power, TLS [Curiosity’s methane detector] operates mostly at night when no other Curiosity instruments are working. The Martian atmosphere is calm at night, Moores noted, so the methane seeping from the ground builds up near the surface where Curiosity can detect it.

The Trace Gas Orbiter, on the other hand, requires sunlight to pinpoint methane about 3 miles, or 5 kilometers, above the surface. “Any atmosphere near a planet’s surface goes through a cycle during the day,” Moores said. Heat from the Sun churns the atmosphere as warm air rises and cool air sinks. Thus, the methane that is confined near the surface at night is mixed into the broader atmosphere during the day, which dilutes it to undetectable levels. “So I realized no instrument, especially an orbiting one, would see anything,” Moores said.

Immediately, the Curiosity team decided to test Moores’ prediction by collecting the first high-precision daytime measurements. TLS measured methane consecutively over the course of one Martian day, bracketing one nighttime measurement with two daytime ones. With each experiment, SAM sucked in Martian air for two hours, continuously removing the carbon dioxide, which makes up 95% of the planet’s atmosphere. This left a concentrated sample of methane that TLS could easily measure by passing an infrared laser beam through it many times, one that’s tuned to use a precise wavelength of light that is absorbed by methane.

“John predicted that methane should effectively go down to zero during the day, and our two daytime measurements confirmed that,” said Paul Mahaffy, the principal investigator of SAM, who’s based at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. TLS’ nighttime measurement fit neatly within the average the team had already established. “So that’s one way of putting to bed this big discrepancy,” Mahaffy said.

While this explains the data conflict, it does not yet explain where the methane is coming from. It is suspected it is coming from underground, but why and from what is still unclear. Nor do scientists yet understand why it doesn’t accumulate enough in the atmosphere for Trace Gas Orbiter to detect it. Something is causing the methane to break up sooner than expected.

Dust covering solar panels threatens to end InSight mission

The InSight science team has revealed that the amount of dust that presently covers the solar panels on the Mars lander has now reduced their available power by about 80%, and if a dust devil doesn’t soon blow the dust off they will have to shut the spacecraft down sometime in the next ten months.

“The dust accumulation on the solar arrays has been considerable. We have about 80% obscuration of the arrays,” said Bruce Banerdt, principal investigator for the InSight mission at NASA’s Jet Propulsion Laboratory (JPL) in Southern California, according to SpaceNews.

Banerdt showed the impact of the declining power levels during a June 21 meeting of NASA’s Mars Exploration Program Analysis Group. When InSight landed near the Martian equator in November 2018, he said, the robot was generating roughly 5,000 watt-hours of power. Today that level is less than 700 watt-hours.

None of this is a surprise. Both the Opportunity and Spirit rovers faced the same problems. Both however were able to recover because periodically a dust devil would fly over the rover and clear the dust from the solar panels.

InSight however has not so far been lucky. While it has seen many nearby dust devils with its camera, none has come close enough to sweep the solar panels clean.

As the power has declined they have shut off various systems in order to keep the lander’s prime instrument, its seismometer, operating continuously. Engineers have also been using the scoop on the lander’s robot arm to try to dislodge some of the dust, with only a very very limited success. If the panels are not cleared soon, however, engineers will eventually be forced to shut everything down.

Paisley terrain on Mars

paisley terrain on Mars
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, is actually a somewhat old image from the high resolution camera on Mars Reconnaissance Orbiter (MRO). It was taken more than a decade ago, on December 28, 2010, and featured as a captioned image one month later. I post it now because it was recently featured as MRO’s picture of the day, and thought it deserved a new look. As the caption from 2010, written by planetary scientist Alfred McEwen, noted,

Remember those paisley shirts during the summer of love in 1967? If so, this terrain may look somewhat familiar.

How did this terrain really form? One theory is that it’s a landslide deposit, perhaps associated with draining an ancient lake.

The overview map below might help make sense of this theory.
» Read more

Scientists question existence of liquid water lake under Martian south pole

The uncertainty of science: A re-analysis of the ground-penetrating radar data that suggested there was a liquid water lake under the Martian south pole has found that it might not be liquid water at all, but either “clays, metal-bearing minerals, or saline ice.”

The abstract can be read here.

The radar data, obtained by the European orbiter Mars Express, definitely shows a layer of bright reflection suggesting a layer of something different below the icecap. The research team decided to find out if other things besides liquid water could cause the difference.

They were able to determine what level of electric conductivity the material below the ice would need to have to match the observed signal from MARSIS. Then, they identified materials that are both conductive and present on Mars including clays, metal-bearing minerals and saline ice. “Salty ice or conductive minerals at the base of the ice sheet are less flashy, but are more in line with the extremely cold temperatures at Mars’ poles,” Bierson said.

While not explicitly excluding a liquid brine, the results open new potential explanations for the observed strong radar reflections, some of which do not require liquid brine beneath the Martian south polar ice cap.

Nothing is proven, one way or another. This research has simply underlined the uncertainty of the liquid water claim. We simply do not know what caused the bright radar reflection. All we know for certainty is that it is there.

China releases more images & videos from Zhurong

Zhurong panorama looking north, June 27, 2021
Click for full image.

Overview map
Click for full image.

China today released a new panorama as well as several videos taken by its Mars rover Zhurong.

The videos show the rover’s landing as well as two short videos taken from the remote camera it had dropped off shortly after deployment from its lander, the first showing the rover moving away and the second showing it turning in place.. China also released sound recorded during that deployment, as the rover rolled down the ramps. The sound was of course enhanced, but it does allow scientists to learn something about the atmosphere of Mars.

The image above is a cropped section from the panorama. The map to the right, taken on June 11th by the high resolution camera on Mars Reconnaissance Orbiter (MRO), has been annotated by me to show the area I think is seen by this section of that panorama, looking due north. (For a higher resolution version that clearly shows the rover’s tracks since leaving the lander, go here.)

Many of Mars’ geological mysteries, all in one photo

Knobs, streaks, and lava channels on Mars
Click for full image.

Today’s cool image is fun because it contains a plethora of Martian mysteries, all packed into a very small space. The photo to the right was taken on April 29, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). I have rotated, cropped, and reduced it to post here.

The uncaptioned picture was labeled “Small Channel Winding between Knobs in Tartarus Colles.” The knobs, which can be seen on either side of the thin channel within the canyon, are actually a major Martian puzzle. Tartarus Colles has a lot of them, and planetary geologists are not really sure how they formed. One 2009 paper [pdf] suggested that the cones were formed by the violent interaction of lava and ice. This earlier paper [pdf] hypothesized that both water and lava had to be flowing over the surface at the same time, producing the steam and the energy that popped the lava cones, kind of like the small convection bubbles seen when tomato sauce simmers.

The scientific literature however is not deep, and there appears to be much uncertainty about this conclusion.

The photo however contains other major Martian puzzles.
» Read more

Curiosity’s mountainous view

Curiosity's view uphill on June 23, 2021
Click for full resolution panorama. Note: Navarro Mt is about 450 feet high.

The travels of Curiosity at the base of Mount Sharp continue. In the past week, since my last update on June 16th, the rover has moved west past the entrance to Gediz Vallis to now sit at the base of Raphael Navarro Mountain, as shown by the panorama above. To get a sense of how far the rover has traveled in the past week, compare this panorama with the one posted then. It is also clear now that they are slowly returning to their planned route, and will not push up into Gediz Vallis as I speculated in that post.

The panorama is created from three photos taken by Curiosity’s navigation camera, found here, here, and here.

The map below the fold gives the context.
» Read more

Chinese official outlines that country’s Mars exploration plan

The new colonial movement: According to an official from China’s prime rocket manufacturer, China is now beginning to plan for the manned exploration of Mars.

Wang Xiaojun, head of the state-owned China Academy of Launch Vehicle Technology (CALT), outlined the plans in his speech themed “The Space Transportation System of Human Mars Exploration” at the Global Space Exploration Conference (GLEX 2021) via a virtual link, the academy told the Global Times on Wednesday.

After reviewing the successful mission of the Tianwen-1 probe mission, the country’s first interplanetary exploration that achieved a successful orbiting, landing and roving the Red Planet all in one go, Wang introduced the three-step plan for future Mars expedition.

At the primary stage, or the technology preparation phase, androids will be launched whose mission include a Mars sample return mission and the exploration of a Mars base site. Next will be a manned Mars mission, and the building of a Mars base will be carried out. The third stage will be attempting shuttling large scale Earth-Mars cargo fleet and large scale development of the Red Planet.

The timetable for such mission launches will be 2033, 2035, 2037, 2041 and 2043, among others, the academy said.

While this is very far in the future, you can’t make it happen if you don’t get started early. China’s government is clearly looking at getting started, and appears to be following the same timetable approach it did for its space station. They began planning it about a decade ago, and are now launching and assembling it.

China’s decision to aim for Mars proves that the competition to get there is heating up considerably, and is likely their response to Elon Musk’s determined effort to make it possible.

Ingenuity completes 8th flight, moving south with Perseverance

Perservance's location, June 17, 2021
Click for interactive map.

On June 21, 2021 the Mars helicopter Ingenuity successfully completed its eighth flight, leapfrogging south past the rover Perseverance.

During the flight, Ingenuity remained aloft for 77.4 seconds, flew 525 feet (160 meters), and landed about 440 feet (133.5 m) away from its companion, the Perseverance rover, according to a tweet from NASA’s Jet Propulsion Laboratory in California, which operates the helicopter.

The map to the right, annotated by me from the interactive map provided by the Perseverance team, shows the helicopter’s approximate new position, labeled #8 in green. The other green numbers show its previous landing spots after earlier flights.

The white line shows Perseverance’s travels through June 17th. The yellow dashed line shows their planned route over the next few months. Perseverance was just slightly north of Ingenuity on that date. It has likely traveled further south since then.

Zhurong’s travels during first three weeks on Mars

Zhurong's travels through June 11th
Click for full image.

The science team for the high resolution camera on Mars Reconnaissance Orbiter (MRO) today released a new image showing the path that China’s rover , Zhurong, has taken from its landing on May 14th through June 11th.

The photo to the right, cropped and reduced to post here, is that photo. If you look close you can see the rover’s track skirting the edge of the bright blast mark put on the surface by the lander’s engines during touchdown. Though my scale bar is approximate, it does show that in those four weeks the rover traveled about 150 to 200 feet. However, half of that distance was crossed in the five days from June 6th to June 11th (as shown by the two different MRO images at these links), which means the pace is picking up.

The rover’s nominal three-month mission ends in mid-August, only two months from now. However, none of us should be surprised if the mission gets extended for as long as the rover continues to function.

A sample of typical but strange Martian northern lowland plain geology

Typical lowland features on Mars
Click for full image.

Cool image time! The photo to the right, rotated, cropped and reduced to post here, was taken on April 18, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a nice sample of the typical glacial-filled craters found often in the mid-latitudes between 30 to 60 degree latitudes, surrounded by a lot of erosion features representative of these lowland northern plains.

The biggest crater is very symptomatic of what scientists have dubbed concentric crater fill, a feature that they believe reveals that there is buried ice water glaciers here, protected by a thin layer of debris. The apron of brighter material surrounding the crater could be a splash feature created during impact and now more obvious because it has been revealed as sublimation and erosion lowered the terrain nearby.

The location is north of the Cydonia region in Acidalia Planitia, several thousand miles to the northeast of the region where Viking 1 landed in 1976 and Mars Pathfinder landed in 1997, as shown in the overview map below.
» Read more

A confused river of ice on Mars

A river of ice on Mars
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on March 4, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what MRO’s science team labeled a “Landform in Source Region of Harmakhis Vallis.”

They are being very correct and careful with that label. The landform here is quite clearly reminiscent of a glacier, but because they don’t yet have confirmation of its watery nature, as good scientists they can’t call it that.

I however am a mere journalist, so I am free to speculate more wildly. Sure looks like glaciers to me, the ice flowing downhill from the left to the right and flowing around that central mound.

The overview map below gives a wider context, but also makes the behavior of the glaciers here far more puzzling.
» Read more

The Mountains of Mars

The mountains of Mars
Click for full resolution. The highest mountain on the right is about 450 feet high.

Even as the rover Perseverance is beginning its first science campaign on the floor of Jezero Crater, the rover Curiosity about 3,000 miles to the east has begun its climb into the mountains of Mars that surround the central peak of Gale Crater, Mount Sharp.

The mosaic above, made from two images taken by the rover’s right navigation camera (here and here), shows what Curiosity sees ahead. Since my last update on June 4th describing Curiosity’s future travels, the rover’s science team has pushed forward directly uphill towards the entrance to the canyon Gediz Vallis, visible as the gap between the mountains to the right and left in the above mosaic.

The overview map below shows the rover’s approximate present position, with the yellow lines indicating what the above photo is looking at.
» Read more

1 31 32 33 34 35 80