Al-Amal detects Martian aurora
The United Arab Emirates Al-Amal Mars orbiter has detected evidence of a Martian aurora that would be visible at night for short periods.
The ultraviolet images to the right have been reduced slightly to post here.
These three images of atomic oxygen emission at a wavelength of 103.4 nm from the planet Mars were obtained by the Emirates Mars Ultraviolet Spectrometer instrument on 22 April, 23 April, and 06 May 2021 respectively. The full set of data collected during these observations include far and extreme ultraviolet auroral emissions which have never been imaged before at Mars. The beacons of light that stand out against the dark nightside disk are highly structured discrete aurora, which traces out where energetic particles excite the atmosphere after being funneled down by a patchy network of crustal magnetic fields that originate from minerals on the surface of Mars.
Though Mars does not have a magnetic field, it is believed that sections of the planet’s crust are magnetized, and under the right conditions can guide the charged particles from the Sun’s solar wind to the night side to hit the atmosphere where they break up and produce the aurora. Because there is no magnetic field however the particles are not guided by the field lines to the poles, but to different spots at all latitudes, depending on circumstances.
The United Arab Emirates Al-Amal Mars orbiter has detected evidence of a Martian aurora that would be visible at night for short periods.
The ultraviolet images to the right have been reduced slightly to post here.
These three images of atomic oxygen emission at a wavelength of 103.4 nm from the planet Mars were obtained by the Emirates Mars Ultraviolet Spectrometer instrument on 22 April, 23 April, and 06 May 2021 respectively. The full set of data collected during these observations include far and extreme ultraviolet auroral emissions which have never been imaged before at Mars. The beacons of light that stand out against the dark nightside disk are highly structured discrete aurora, which traces out where energetic particles excite the atmosphere after being funneled down by a patchy network of crustal magnetic fields that originate from minerals on the surface of Mars.
Though Mars does not have a magnetic field, it is believed that sections of the planet’s crust are magnetized, and under the right conditions can guide the charged particles from the Sun’s solar wind to the night side to hit the atmosphere where they break up and produce the aurora. Because there is no magnetic field however the particles are not guided by the field lines to the poles, but to different spots at all latitudes, depending on circumstances.