Two pits at opposite ends of Mars’ big volcanoes

Overview map

Regular readers of Behind the Black know that since 2018 I have regularly documented all the images of pits taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO). (See my last pit post in January for a full list of these previous articles.) The black dots on the map to the right shows the location of all the pits near the volcanoes Arsia and Pavonis Mons that have so far been highlighted here.

The two white dots are the two most recent MRO pits, and are the subject of today’s cool image. They also happen to be the farthest north and south pits so far documented. The southernmost pit, which I am saving till last, is the most interesting.
» Read more

InSight detects additional 3+ magnitude quakes on Mars

Martian quake map as seen by InSight

According to a JPL press release today, the seismometer on the Mars lander InSight detected two new 3+ magnitude quakes in March, both coming from the Cerberus Fossae region, the same region where the bulk of seismic activity has so far been pinpointed on Mars.

The map to the right was presented several weeks ago at the 52nd Lunar and Planetary conference, and could possibly include one of these two new quakes. The timing however of these March quakes is significant:

The new quakes have something else in common with InSight’s previous top seismic events, which occurred almost a full Martian year (two Earth years) ago: They occurred in the Martian northern summer. Scientists had predicted this would again be an ideal time to listen for quakes because winds would become calmer. The seismometer, called the Seismic Experiment for Interior Structure (SEIS), is sensitive enough that, even while it is covered by a dome-shaped shield to block it from wind and keep it from getting too cold, wind still causes enough vibration to obscure some marsquakes. During the past northern winter season, InSight couldn’t detect any quakes at all.

They are beginning to use the lander’s scoop to cover the seismometer and its communications tether with sand to protect both from the wind and temperature fluctuations. Once done they hope to be able to detect quakes during the entire Martian year, though this ability will be further limited by a reduction in power.

Despite the winds that have been shaking the seismometer, InSight’s solar panels remain covered with dust, and power is running lower as Mars moves away from the Sun. Energy levels are expected to improve after July, when the planet begins to approach the Sun again. Until then, the mission will successively turn off the lander’s instruments so that InSight can hibernate, waking periodically to check its health and communicate with Earth. The team hopes to keep the seismometer on for another month or two before it has to be temporarily turned off.

Tianwen-1’s engineers set mid-May for rover landing on Mars

The new colonial movement: The science team for China’s Tianwen-1 orbiter are now targeting mid-May for when they will release and land the as-yet unnamed rover for its landing on Mars.

Wang Chi, director of the National Space Science Center at the Chinese Academy of Sciences, said March 23 that Tianwen 1’s lander and rover are scheduled to touch down on Mars in May.

“The first Chinese Mars mission, Tianwen 1, is now orbiting Mars, and we are landing in the middle of May,” Wang said in a presentation to the National Academies’ Space Studies Board. “We are open to international cooperation, and the data will be available publicly soon.” [emphasis mine]

Though China has generally released the scientific data of its lunar probes eventually, they have done it slowly. In the case of Tianwen-1, they released so far practically nothing, with the only images released being two hi-resolution ground images and a handful of distant global pictures of Mars.

Very peculiar flow features on Mars

Peculiar flows on Mars
Click for full image.

Today’s cool image focuses on one of the weirdest flow features I have yet seen on Mars. The first photo to the right, rotated and cropped to post here, comes from a January 27, 2021 picture by the high resolution camera on Mars Reconnaissance Orbiter (MRO). This cropped section focuses on the middle of three such weird features, two close flows heading downhill on the interior rim of very eroded 28-mile-wide crater. For some reason the flows also have depressions on their crowns. The depressions almost look like someone carved them out with a spackling spatula. In fact, the MRO science team agrees, labeling this image as “Spatulate Depressions with and without Upslope Gullies.”

The second image to the right shows a wider crop of the same picture, and explains the reason for the last half of that label.
» Read more

Ingenuity unfolded and ready for placement on ground

Ingenuity unfolded
Click for full image.

The photo to the right, taken yesterday, shows Perseverance’s Ingenuity helicopter now vertical with its legs deployed, hanging from the bottom of the rover and ready for placement on the ground.

The next step will be drop Ingenuity those last few inches. Once released Perseverance will quickly drive away, as it will no longer be providing power to the helicopter and will instead be blocking its solar panels from sunlight.

Perseverance will then proceed to its lookout post while engineers check out Ingenuity to make sure all is working.

The targeted flight date remains April 8th.

UPDATE: JPL just announced that it is delaying Ingenuity’s flight to April 11th. The announcement was done by a tweet, so provided no explanation as to why JPL decided to delay three days.

Ice under Mars’ biggest volcanic ash field, at the equator?

Wind eddies on Mars
Click for full image.

According to new data obtained from the radar instruments on Mars Reconnaissance Orbiter (MRO) and Mars Express, scientists now think that the Medusae Fossae Formation, Mars’ biggest volcanic ash field and thought by some to be the source of most of the planet’s dust, might have an underground layer of ash that is also ice-rich. From their abstract:

The Medusae Fossae Formation (MFF) on Mars covers a vast area along the boundary between the rugged southern highlands and the smooth northern plains. While the MFF appears to be thick sediments or volcanic ash slowly eroding in the martian winds, how this material was emplaced remains mysterious. Most intriguing is evidence suggesting that some areas of the MFF may contain water ice. In this work we use sounding radar data from the SHARAD instrument on the Mars Reconnaissance Orbiter to probe up to 600 m below the surface and measure the electrical properties of the MFF material. The results suggest that the shallow parts of the MFF deposits are very porous and compress readily under their own weight. To match deeper probing by the Mars Advanced Radar for Subsurface and Ionosphere Sounding instrument on Mars Express requires a second layer of either vast porous deposits or ice‐rich material protected from sublimation by the dry sediments.

The MRO image above, originally posted here in November 2020, shows one example of the typical wind erosion found in the Medusae ash field. Apparently the ground-penetrating radar from orbit now suggests the possibility that there is an ash layer rich in ice, at depths beginning somewhere between 1,000 to 2,000 feet below the surface.
» Read more

Al-Amal reaches science orbit

Cerberus Fossae, as seen by Al-Amal
Click for full image.

Elysium Mons and Cereberus Fossae

The new colonial movement: The United Arab Emirates (UAE) Al-Amal (Hope) Mars Orbiter has now reached its science orbit, and will begin its two years of observations (one full Martian year) of the Martian atmosphere on April 14th.

The photo to the right, cropped to post here, is part of a much larger image covering a good portion of the 600-mile-long fissures dubbed Cerberus Fossae and located Elysium Planitia, the vast lava plains located between the giant volcanoes Elysium and Olympus Mons, where most of the Martian quakes have so-far been detected by InSight. The context map below provides a wider context (the red boxes indicating high resolution Mars Reconnaissance Orbiter images). I think the area covered by this section of Al-Amal’s picture is near the western end of Cerberus Fossae.

The image was posted today in the image gallery for Al-Amal. Unfortunately there is no separate webpage for this particular post, so that link will take a long time to load, as apparently all the images there are large, not thumbnails. From their text:

On 15 March 2021, the Emirates eXploration Imager (EXI) captured a monochromatic image of the Cerberus Fossae, a fracture system that stretches for more than 1,000 km across the Martian surface, with a spatial scale of approximately 180 meters/pixel. The Emirates Mars Mission transitioned from the capture orbit to its science orbit with the successful completion of a 510-second burn of its thrusters. The Hope Probe is now in its final orbit of Mars and ready for its two-year science data gathering – the core aim of the mission. The science phase will commence on 14 April 2021.

The goal of Al-Amal is to study the atmosphere. This camera will provide wide shots, mostly for the purpose of observing the coming and going of cloud features. Nonetheless, this is a nice wide view of Mars.

NASA in contact with China to get the orbital data of its Tianwen-1 Mars Orbiter

Though by law NASA and the scientists cannot exchange data or communications with China due to security concerns, NASA and Chinese officials did exchange communications recently in order to coordinate the orbits of their orbiters presently circling Mars.

Jurczyk noted that NASA’s knowledge of China’s space program is largely limited to publicly available information because of restrictions placed by federal law on its interactions with Chinese organizations. Those restrictions do allow NASA to engage with China if approved by Congress. “Most recently, we had an exchange with them on them providing their orbital data, their ephemeris data, for their Tianwen-1 Mars orbiting mission, so we could do conjunction analysis around Mars with the orbiters,” he said.

In a brief statement to SpaceNews late March 29, NASA confirmed it exchanged information with the China National Space Administration (CNSA), as well as other space agencies that operate spacecraft at Mars. “To assure the safety of our respective missions, NASA is coordinating with the UAE, European Space Agency, Indian Space Research Organisation and the China National Space Administration, all of which have spacecraft in orbit around Mars, to exchange information on our respective Mars missions to ensure the safety of our respective spacecraft,” the agency said. “This limited exchange of information is consistent with customary good practices used to ensure effective communication among satellite operators and spacecraft safety in orbit.”

Such limited communications are actually permitted under the law that Congress passed, as long as they do not involve any exchange of technical information. There has been a push, however, in the planetary community for years to increase direct communications with China, allowing the transfer of all kinds of information, both scientific and technical. Until the law gets changed none of this should happen.

Of course, what matters laws these days? I will not be surprised if the Biden administration, rather than demanding a change in the law, instead begins expanded communications between NASA and China, in complete and utter contempt for the law, with no one objecting.

Martian glaciers flowing off interior walls of Renaudot Crater

Overview map

Cool image time! In the March 1st image release from the high resolution camera on Mars Reconnaissance Orbiter (MRO) were two pictures covering sections of the interior rim of 40-mile-wide Renaudot Crater, located in the northern lowland plains of Mars north of the region I dub Mars’ glacier country.

The map to the right provides the context. The two red boxes in Renaudot Crater show the location of the two images below, with the first being the one to the left. Located at about 42 degrees north latitude, we should expect to see evidence of ice and glacial features here, and that is exactly what both photos show.
» Read more

Deployment process of Ingenuity begins

Ingenuity on the bottom of Perseverance
Click for full image.

Ingenuity vertical under Perseverance
Click for full image.

The photo to the right, cropped and reduced to post here, shows the Ingenuity helicopter attached to the base of the Perseverance rover, with its left end (the white box in the middle) now lowered. Previously the helicopter was stored horizontal against the rover’s base.

This photo was taken yesterday by Perseverance’s Watson camera, which provides images of the rover’s bottom and wheels.

The deployment process has only begun. They need to get that white box vertical and on the ground, then unfold the blades that are attached above it. I suspect as the base is dropped the two blades to the left will remain attached to Perseverance, thus partly unfolding them. I also suspect that full deployment of all four blades (the right two blades are what looks like a post with a bulbous end on the right of the base) will not occur until Ingenuity is fully detached and Perseverance has moved away. My error. I mistook the helicopter’s landing legs for its blades. Two of the legs (on the left) appear deployed, while two (on the right) remain in their stored position.

UPDATE: Ingenuity is now vertical, underneath Perseverance, as shown by the second image to the right.

These images are from yesterday, so these are actions that the rover and helicopter are doing autonomously. It appears from later images that the second set of legs began deploying next.

Baffling ridges on Mars

Baffling ridges on Mars
Click for full image.

Today’s cool image is one of my “what the heck?” photos. The picture to the right, cropped and reduced to post here and taken on September 3, 2020 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), shows a strange dune field of many parallel long dunes, cross-cut by larger ridges.

Are the larger ridges dunes? Or are they some form of volcanic or tectonic ridge, which is also very typical of this region, called Tempe Terra and located in the transition zone between the southern cratered highlands and the northern lowland plains?

Or are they eskers, ridges frequently found in places that were once covered by glaciers? At 35 degrees north latitude, it would not be surprising to see glacial features here, but as far as I can tell, the full image has no obvious such features.
» Read more

Ice-filled crater in Mars’ glacier country

Crater filled with ice
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here and taken on January 7, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), provides us a perfect example of the kind of glacial feature that scientists find routinely in the 30 to 60 degree mid-latitude bands on Mars. In this case the crater is in the northern reaches of a chaos region dubbed Nilosyrtis Mensae, the easternmost mensae region of what I dub glacier country on Mars.

When first identified scientists named this concentric crater fill, a purposely vague term that is only descriptive because they then did not know what it was made of, though they had their suspicions that it was buried glacial ice. Since then radar data has routinely confirmed that there is ice in such filled craters, making this particular glacial feature one of the most prevalent in those mid-latitude bands.

You can see a quite similar ice-filled crater, also in Nilosyrtis, in an earlier post from October 2020. While that earlier crater was on the southern edge of Nilosyrtis, today’s crater is about 300 miles almost due north, near the region’s northern fringe. In between are lots of similar glacial features, sometimes in craters, sometimes flowing off the slopes of mesas, and sometimes flow features in the open canyons between.

Mars’ polar ice canyons are young and the source for mid-latitude ice

Mars' north pole icecap
Mars’ north polar ice cap.

Scientists have now proposed that the giant ice canyons seen at the edges of Mars’ polar ice caps are very young and are also the source of the water that sublimates away when the planet’s rotational tilt (its obliquity) is high, to fall as snow in the mid-latitudes where it forms the glaciers and ice sheets we now find there.

The image to the right, reduced to post here, shows the entire north pole ice cape on the left, with its spiral canyons. The two inserts on the bottom show for scale Hawaii’s Big Island and the Grand Canyon. From the release:

“Erosion formed a huge ice canyon system, and that erosion is a source of the long-known mid-latitude mantles on Mars,” said Rodriguez, lead author of “North polar trough formation due to in‑situ erosion as a source of young ice in mid‑latitudinal mantles on Mars” that appears in Nature Scientific Reports.

The troughs are arranged in a vast spiral pattern covering an area the size of Texas. We find that their growth lateral to katabatic wind (wind that carries high-density colder air from a higher elevation down a slope) directions produced widespread simple intersections, from which the highly complex spiral arrangement emerged, Rodriguez said. “The spiral pattern seen in the troughs is basically an erosional byproduct,” he said. “As the pits grow and intersect over a pre-existing dome-shaped polar cap, the spiral pattern emerges.

“It has long been proposed that sublimation of water ice from the north polar cap during high-obliquity cycles was an essential source of the planet’s mid-latitude icy plains. Our finding identifies the troughs as direct evidence of those sublimation phases,” Rodriguez said.

These spiral trough features formed very recently, in geologic terms: between a few million and 50,000 years ago, Rodriguez said.

This hypothesis, if true, is very important in understanding the long term geological history of Mars. The present theory is that when the obliquity rises to as high of 60 degrees, compared to today’s 25 degrees (similar to Earth’s), the mid-latitudes are colder than the poles, and the ice at the poles then migrates to the mid-latitudes. This paper gives us the place at the poles where the icecap shrinks as that ice sublimates away.

Knowing that these polar canyons are young and the source of the mid-latitude ice scientists can now begin to write the geological history of the polar ice caps themselves. They can also use this information to maybe determine whether the caps are presently in a steady state, as now believed, or growing or shrinking.

The youth of these canyons also suggests that any mid-latitude ice from them is also young, and thus more likely pure water unpoisoned by the toxic perchlorates found in many places on the Martian surface. It will thus be easier to obtain pure drinkable water from them.

Layers upon layers of Martian volcanic ash

Layers upon layers of Martian volcanic ash
Click for full image.

Today’s cool image provides I think a hint at the vast amount of time that has passed on Mars, allowing uncounted major events to occur which each lay down a bit of the geological history, a history that is now piled up on the surface so deeply that it will take decades of research to untangle it.

The photo to the right, cropped and reduced to post here, was taken on December 23, 2020 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the layered nature of the Medusae Fossae Formation, the largest volcanic ash deposit on Mars (about the land area of India) and thought by some to be the source of most of the dust across the entire red planet.
» Read more

Scientists: Mars is losing water seasonally through its atmosphere

The uncertainty of science: Two new studies using data Europe’s Trace Gas Orbiter and Mars Express orbiters have found that Mars is losing water seasonally through its atmosphere.

The studies also found that global dust storms accelerate the process.

Anna and colleagues found that water vapour remained confined to below 60 km when Mars was far from the Sun but extended up to 90 km in altitude when Mars was closest to the Sun. Across a full orbit, the distance between the Sun and the Red Planet ranges from 207 million to 249 million km.

Near the Sun, the warmer temperatures and more intensive circulation in the atmosphere prevented water from freezing out at a certain altitude. “Then, the upper atmosphere becomes moistened and saturated with water, explaining why water escape rates speed up during this season – water is carried higher, aiding its escape to space,” adds Anna.

In years when Mars experienced a global dust storm the upper atmosphere became even wetter, accumulating water in excess at altitudes of over 80 km.

But wait, didn’t planetary scientists just announce that Mars hasn’t lost its water through the atmosphere, but instead lost it when it became chemical trapped in the planet’s soil? Yup, they did, but that was a model based on new ground data. This new result is based on atmospheric data.

Or to put it another way, the model was incomplete. While it could be true that a large bulk of Mars’ water is trapped chemically in the ground, that is not proven, only hypothesized. What has been proven, and is now confirmed by these two studies, is that, depending on weather and season, the water of Mars does leak into its upper atmosphere where it can escape into space, never to return.

What remains unknown is how much water escaped into space, and when. Moreover, the ground-based model could still be right, even if it is true that Mars is losing water through its atmosphere. At the moment the data is too incomplete to answer these questions with any certainty.

Meanwhile, this press release once again gives the false impression that the only water left on Mars is at its poles (and in this case, only the south pole). This is not accurate, based on numerous studies finding evidence of buried ice and glaciers everywhere on the planet down to the 30th latitude, in both the north and south hemispheres. Mars might have far less water now than it did billions of years ago, but it still has plenty, and that water is not found only at the poles.

Ingenuity to fly on Mars no earlier than April 8th

NASA and the Perseverance engineering team announced yesterday their specific plans for the first flights oft he Ingenuity helicopter, setting the flight date as no earlier than April 8th.

They are presently driving Perseverance to its “airfield,” a 33×33 foot area. The deployment then will take six days, because there are a number of steps involved to position and place the helicopter on the ground properly.

Once the team is ready to attempt the first flight, Perseverance will receive and relay to Ingenuity the final flight instructions from JPL mission controllers. Several factors will determine the precise time for the flight, including modeling of local wind patterns plus measurements taken by the Mars Environmental Dynamics Analyzer (MEDA) aboard Perseverance. Ingenuity will run its rotors to 2,537 rpm and, if all final self-checks look good, lift off. After climbing at a rate of about 3 feet per second (1 meter per second), the helicopter will hover at 10 feet (3 meters) above the surface for up to 30 seconds. Then, the Mars Helicopter will descend and touch back down on the Martian surface.

Several hours after the first flight has occurred, Perseverance will downlink Ingenuity’s first set of engineering data and, possibly, images and video from the rover’s Navigation Cameras and Mastcam-Z. From the data downlinked that first evening after the flight, the Mars Helicopter team expect to be able to determine if their first attempt to fly at Mars was a success.

The data from this first attempt will determine what they do next.

UPDATE: Below the fold is an illustration of that planned first flight, showing that they hope to send the rover toward the north, take some images, and then fly it back to its airfield, with a second landing site option at the far end of its flight.
» Read more

Twisted and tilted bedrock in Martian crater

tilted strata in Martin Crater
Click for full image.

Cool image time! The photo to the right, rotated cropped, and reduced to post here, is only a small example of the strangely tilted and twisted strata in the central peak region of 38-mile-wide Martin Crater on Mars. The full image shows more.

The picture was taken on January 12, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The section I’ve cropped out shows a series of stratified strata that are are not only significantly tipped from the horizontal, but have also been bent and deformed.

The crater itself is located about 260 miles south of Valles Marineris, as shown on the overview map below.
» Read more

Perseverance dumps debris shield in preparation for Ingenuity deployment

Dumped debris shield under Perseverance
Click for full image.

On March 21st the Perseverance engineering team released the debris shield that had been attached to the bottom of the rover to protect the Ingenuity helicopter during its journey to Mars, and thus began the deployment process for releasing the helicopter itself.

The photo to the right, cropped and reduced to post here, shows that debris shield on the ground. The rover will next drive away from this spot and find the flat area where the helicopter will be placed on the ground for its April flight.

A visit to Cydonia on Mars

Strange geology in Cydonia on Mars
Click for full image.

Cool image time! The Cydonia region on Mars, located at around 30-40 degrees north latitude in the northern lowland plains just beyond the transition zone up to the southern cratered highlands, is well known to many on Earth because it was here that the Viking-1 orbiter took a picture of a mesa that, because of the sun angle, made its shadows resemble a face. Thus was born the “Face on Mars” that consumed the shallow-minded among us — and thus the culture, media, and Hollywood — absurdly for decades, until Mars Global Surveyor took the first high resolution image and proved without doubt what was really obvious from the beginning, that it was nothing more than a mesa.

Cydonia however remains a very intriguing region of Mars, mostly because it is home to a lot of strange geology, as shown by the photo to the right, rotated, cropped, and reduced to post here. Taken on January 16, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), it shows some of that strange and inexplicable geology.

While Cydonia is inside that 30-60 degree latitude band where MRO has imaged numerous glacial-type features, I do not know if many such features have been found there. Except for the pits and depressions in the photo’s lower right — which suggest decay in an ice sheet — little else at first glance in the picture clearly invokes any of the obvious glacial features one comes to expect. There appear to be what might be lobate flows in the image’s center going from the west to the east, but if they are glacial, they are so decayed to as leave much doubt.

The overview image below shows where Cydonia is on Mars, and helps explain partly what is found here.
» Read more

Clouds over Gale Crater

Clouds over Gale Crater
Click for full image.

Cool image time! In today’s download of new images from Curiosity was a large number looking at the sky. by one of the rover’s navigation cameras. As noted in the science team’s most recent update, their aim was to “watch for clouds in the sky at twilight.”

They were apparently very successful. The picture to the right, reduced to post here, is one example. The other pictures show these clouds and other clouds as they change over time.

I don’t have much more to add, other than to say it is quite breath-taking to be able to sit here on Earth and routinely gaze at the weather on Mars.

UPDATE: I do have one more thing to say. If you have any skills at programming and want to figure out how to process the raw images from Curiosity and Perseverance to bring out their color, you might find the video at this link of interest: How Can You Color Process Mars Rover’s Images In DaVinci Resolve?

I am not a computer programming geek, so some of its details went over my head. Nonetheless, it opened a window into the photo-engineering used to turn the rovers’ black-and-white digital data into color.

Hat tip to Patrick Inhofer, who calls himself the photon wrangler at MixingLight.com.

Volcanic badlands on Mars

Volcanic badlands on Mars
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was taken on January 29, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a particularly ugly region of rough terrain located about 900 miles to the southwest of the giant volcano Arsia Mons, the southernmost of the chain of three giant volcanoes between Olympus Mons and Valles Marineris. The picture sits inside the floor of a very old and degraded 185-mile-wide crater dubbed Koval’sky.

The section I cropped out was picked at random, because the entire full image looked like this. Though only a handful of images have been taken of the floor of Koval’sky Crater by MRO’s high resolution camera, all show similar rough terrain. In June 2017 the MRO science team posted one of those few such photos with the following caption:
» Read more

SpaceX narrows Mars landing site for Starship to four prime locations

The prime and secondary Martian landing sites for Starship

Capitalism in space: During this week’s 52nd Lunar and Planetary Science Conference, one poster [pdf] caught my eye as something significant. It was titled “SpaceX Starship Landing Sites on Mars.” The map to the right is figure 1 from that poster, annotated slightly by me based my earlier stories about SpaceX’s use of the high resolution camera on Mars Reconnaissance Orbiter (MRO) to research potential Martian landing sites for its Starship spacecraft. The stars indicate MRO images, most of which were described and linked to in my last major post about this SpaceX effort in November 2019.

The red spots covering some stars are the big story: SpaceX has narrowed its choice for its Starship landing site to four prime locations (indicated by the bright red spots) and three backup locations (indicated by the dark red spots). The images under the red spots numbered 2, 4, and 6 were linked to in my November 2019 post. The images under red spots marked by a “D” are earlier images taken by MRO when SpaceX was researching a potential Dragon landing site. The images under red spots labeled 1P and MRO are subsequent images taken by MRO since November 2019, with the 1P image previously linked to in a post in April 2020 entitled “The icy Phlegra Mountains: Mars’ future second city.”

The poster outlined why the prime candidate sites — PM1, EM16, AP1, and AP9 — were favored. For example, PM-1 in the Phlegra Mountains “…has the lowest latitude and elevation of the group, a clear association with LDAs [lobate debris aprons that resemble glacial features], well developed polygons, and has the highest SWIM [Subsurface Water Ice Mapping] score for geomorphic indicators of ice.”

EM 16 “…has a clear association with an LDA with nearby brain terrain and the strongest radar return for shallow ice and the highest combined SWIM score.”

AP1 “…appears to be the safest site and has a moderate combined SWIM score for ice.”

AP9 “…has the thickest ice from radar returns and geomorphology indicating shallow ice. It has the highest combined SWIM score for ice, but appears slightly rocky and rough.”

Below the fold are images, rotated, cropped, and reduced to post here, of the four primary landing sites, as well as links to the full images of all four plus the three back-up sites (AP8, EM15, and PM7).
» Read more

A drainage channel on Mars

A drainage channel on Mars
Click for full image.

Today’s cool image from Mars highlights what is probably the biggest geological conundrum the red planet presents for planetary scientists. The photo to the right, rotated, cropped, and reduced to post here, was taken on February 1, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Though I have cropped it, I have cropped out very little, because the entire meandering drainage valley is its most interesting feature, and that takes up almost the entire image.

The photo was simply labeled by the camera team a “terrain sample northwest of Sytinskaya Crater”, so I suspect this was taken not in connection with any specific research but because they must use the camera at a regular intervals to maintain its temperature, and when they have gaps in their schedule they try to pick spots of interest in areas that have not had many high resolution photos taken. In this case however I suspect the location choice was very far from random, as they clearly wanted to capture this drainage system, in its entirety.

I called this merely a drainage channel without indicating what caused the channel, be it liquid water, ice, or wind, because in this case that is a main question. At first glance an Earthman will immediately suspect water, which is what scientists supposed for the last half century. The problem with that conclusion is that the Martian atmosphere is too cold and thin for liquid water to exist on its surface, and though there seems to be plenty of evidence that liquid water once existed there, no scientist has yet come up with a completely accepted climate model that allows for such conditions in anytime in Mars’ past.

The rover Opportunity found that some channels it explored might have been carved by wind, though to our human eyes it seems unlikely that a meandering tributary system such as this could have been carved by wind. The possibility however must not be dismissed out of hand, since Mars is an alien planet and alien things (to Earth) happen there.

The overview map below might provide some context.
» Read more

What it sounds like when Perseverance moves

NASA has released audio recorded by one of Perseverance’s microphones as the rover completed one of its earliest drives.

NASA released two versions of the audio — one 90-second file edited and processed to filter out background noise, and another 16-minute clip with raw, unfiltered sound.

…Perseverance recorded the sounds during a 90-foot (27.3-meter) drive March 7, according to NASA. The rover’s top speed is a little less than 0.1 mph, or about 152 meters per hour.

The longer, raw audio clip includes a high-pitched scratching noise. The origin of the sound remains a mystery. “Perseverance’s engineering team continues to evaluate the source of the scratching noise, which may either be electromagnetic interference from one of the rover’s electronics boxes or interactions between the mobility system and the Martian surface,” NASA said in a statement. “The EDL microphone was not intended for surface operations and had limited testing in this configuration before launch.”

You can hear the recordings at the link.

In addition, the science team has picked the location where Perseverance will deploy the Ingenuity helicopter. A briefing will be held next week on March 23rd to outline the schedule for its test flight, now set for sometime in early April.

Quakes on Mars as seen by InSight

Martian quake map as seen by InSight

After completing its first full Martian year on the surface of the Red Planet, the scientists for the lander InSight today gave a report [pdf] of their results at this year’s annual 52nd Lunar and Planetary Science Conference, normally held in Texas but being done virtually this year out of terror of the coronavirus.

All told the lander’s seismometer has, as of just a few days ago, detected just over 500 quakes. The map to the right, showing the most distinct quakes and their locations, was adapted from a different presentation [pdf] at the conference. The numbers indicate the sols after landing when these quakes were detected.

This is essentially the region on Mars that I call volcano country. Some of the lava flood plains here are the youngest on Mars. To the east just beyond the edge of the map is the Tharsis Bulge, which holds Olympus Mons and the string of three giant volcanoes to its east. South of Cereberus Fossae but north of the yellow-colored cratered highlands is the vast Medusae Fossae Formation, the largest volcanic ash deposit on Mars.

The quakes suggest they are occurring as large blocks shift along faults, creating fissures and cracks that geologists call grabens. The long fissures of Cereberus Fossae are considered an example of grabens, so this activity suggests that shifting is still going on in the region.

In addition to outlining the location of the detected volcanoes, the presentation today summarized these other discoveries made by InSight about Mars’ interior structure:

  • The crust of Mars has likely two or three layers either 12 or 24 miles thick, with a total thickness no more than 45 miles. This is much thinner than most scientists had expected.
  • The mantle layer below the crust is estimated at about 250 to 375 miles thick, with a temperature between 1,600 to 1,700 degrees Kelvin. While quite hot, this is a cooler mantle than expected.
  • The core of Mars is somewhere between 1,100 to 1,300 miles in diameter, with a outer layer made of liquid. These results are at the high end of pre-mission expectations.

As already admitted, it was noted that the heat sensor experiment will not be able to provide the interior temperature of Mars, as its digging mole was unable to dig into the ground the 9 to 15 feet planned.

Scallops of Martian ice

Scallops of Martian ice
Click for full image.

Cool image time! The photo to the right, cropped to post here, was yesterday’s captioned image from the MRO science team. From the caption, written by Shane Byrne of the Lunar and Planetary Lab University of Arizona,

About a third of Mars has water ice just below the dusty surface. Figuring out exactly where is vital for future human explorers. One of the ways scientists do this is to look for landforms that only occur when this buried ice is present. These scallops are one of those diagnostic landforms.

A layer of clean ice lies just below the surface in this image. As the ice ablates away in some spots the surface dust collapses into the hole that’s left. These holes grow into the scallops visible here as more and more ice is lost.

You can see those holes near the top of the scallop’s slopes.
» Read more

New hypothesis: Mars didn’t lose water, it got trapped chemically in its crust

Using data from the many orbiters, landers, and rovers sent to Mars, scientists yesterday proposed a new model for the loss of water on Mars, suggesting that instead of escaping through its thin atmosphere it was instead chemically trapped in the planet’s crust.

New data challenges the long-held theory that all of Mars’s water escaped into space

Billions of years ago, the Red Planet was far more blue; according to evidence still found on the surface, abundant water flowed across Mars and forming pools, lakes, and deep oceans. The question, then, is where did all that water go?

The answer: nowhere. According to new research from Caltech and JPL, a significant portion of Mars’s water—between 30 and 99 percent—is trapped within minerals in the planet’s crust. The research challenges the current theory that the Red Planet’s water escaped into space.

First, this is only a model. It proves nothing, and carries many assumptions based on our limited knowledge. We mustn’t accept it at face value.

Second, the first sentence quoted above from this Caltech press release is an example of a trick the scientists have played that our ignorant press has fallen far. What the press release implies superficially is that Mars is now a barren dry place, with little water. Researchers (and readers of Behind the Black) know however that this description is not accurate, that the planet apparently has a lot of water still, only that it is confined as buried ice to latitudes above 30 degrees. Only the equatorial regions appear dry, but not the rest of the planet.

Regardless, this new hypothesis is important if true, as it will help provide an explanation for the Red Planet’s entire geological and climatic history. It might even help solve the mystery of the liquid water that appears to have once existed there, on a planet whose atmosphere is too thin and cold to allow for such a thing.

A cracking Martian glacier?

A cracking Martian glacier?
Click for entire image.

Cool image time! The photo to the right, cropped to post here, was taken on December 4, 2020 by the high resolution camera on Mars Reconnaissance Orbiter (MRO)

I have cropped it to show at full resolution the area that contains what the scientists apparently consider the most interesting feature in this image, which they have labeled as “pits forming lines.” These are the vertical cracks and strings of holes that can be seen in this glacier-like flow. In addition, you can see that the cracking is not just vertical, but also extends out in horizontal directions, though the widest cracks are all vertical.

The next image below, which is a lower resolution crop of the full photo, shows a wider view to provide a better picture of the glacier itself.
» Read more

How the blobby craters on Mars help map the planet’s existing accessible water

Distorted blobby crater rim in Utopia Planitia
Click for full image.

Today’s cool image on the right, rotated, cropped, and reduced to post here, is part of a series of cool images that have repeatedly shown the blobby and squishy look of crater impact sites in the Martian northern lowland plain dubbed Utopia Planitia. Taken on January 2, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), it shows the southeast rim of a very distorted crater that appears filled with glacial material and is also surrounded by an apron of smooth material.

At 42 degrees north latitude, it is somewhat expected to find evidence of glacial-like features in such a crater. Moreover, throughout the 30 to 60 degree mid-latitude band in Utopia Planitia are found numerous such blobby craters (other examples found here, here, and here), all suggesting that the impact occurred on a flat plain with a layer of water ice close to the surface. The heat of the impact melted that ice layer. In such a circumstance, the crater rims were easily deformed because as liquid water (for a short time) it could flow into any number of shapes.

At least that’s my theory. According to Colin Dundas of the U.S. Geological Survey’s Astrogeology Science Center in Arizona,

The exact processes that create the patterns are still debated. The flattened/degraded rims are not necessarily related to this morphology, as such craters can have sharp rims, so they may relate to post-impact modification.

In other words, later erosion after the crater formed could have rounded the rim and maybe even distorted it from a circle.

Regardless, the processes that made this crater rim look as it does were clearly widespread, as shown in the wider view below, provided by the context camera on MRO.
» Read more

Curiosity faces the mountains

A cropped section from Perseverance's 1st panorama
A cropped section from Perserverance’s 1st panorama.
Click for full image.

Though the present excitement over the spectacular images and sounds coming down from Perseverance is certainly warranted, what must be understood is that this rover is presently only at the beginning of its journey, and is thus sitting on relatively boring terrain, from a merely visual perspective. The scientists might be excited, but to the general public, all we really are seeing is a flat dusty desert with some scattered rocks on the floor. In the far distance can be seen some hills and mountains (Jezero Crater’s rim), but they are very far away.

Curiosity, which the press and the public has largely forgotten about, is actually just beginning what will likely be the most breath-taking part of its journey. As I noted in my last rover update last week, Curiosity is now at the very base of Mount Sharp, and is about to enter the mountain’s canyons and initial slopes. For its past eight-plus years of roving it has been on the flat floor of Gale Crater, followed by some weaving among the smallest foothills of Mount Sharp. The views have been intriguing and exciting from a research perspective, but hardly breath-taking from a picture-taking point of view.

That is now changing. The picture below, taken by Curiosity just this week, gives us a taste of what is to come.
» Read more

1 33 34 35 36 37 78