China names its Mars rover Zhurong, after traditional fire god

The new colonial movement: The Chinese state-run press today announced that it has chosen Zhurong, a traditional Chinese fire god, as the name of the rover that is presently orbiting Mars on its Tianwen-1 orbiter and is targeting a landing sometime in mid-May.

They note that this name matches well with the Chinese name for Mars, “Huo Xing,” or fire star.

The announcement provided little additional information, other than stating that the prime landing site is in the previously announced Utopia Planitia region, which suggests the high resolutions images being taken by Tianwen-1 (unreleased by China) continue to show no reason to change that target.

Ingenuity’s third flight late tonight

First color image from Ingenuity
Click for full image.

According to Håvard Grip, Ingenuity’s Mars Helicopter Chief, the helicopter’s team is now targeting very early Sunday morning for its third test flight.

For the third flight, we’re targeting the same altitude [as flight two], but we are going to open things up a bit too, increasing our max airspeed from 0.5 meters per second to 2 meters per second (about 4.5 mph) as we head 50 meters (164 feet) north and return to land at Wright Brothers Field. We’re planning for a total flight time of about 80 seconds and a total distance of 100 meters (330 feet).

While that number may not seem like a lot, consider that we never moved laterally more than about two-pencil lengths when we flight-tested in the vacuum chamber here on Earth. And while the 4 meters of lateral movement in Flight Two (2 meters out and then 2 meters back) was great, providing lots of terrific data, it was still only 4 meters. As such, Flight Three is a big step, one in which Ingenuity will begin to experience freedom in the sky.

The picture above was the first color image sent down by Ingenuity, taken during the second test flight when the helicopter was seventeen feet in the air and pitched slightly so that it could look east, toward Perseverance. From the caption:

The winding parallel discolorations in the surface reveal the tread of the six-wheeled rover. Perseverance itself is located top center, just out frame. “Wright Brothers Field” is in the vicinity of the helicopter’s shadow, bottom center, with the actual point of takeoff of the helicopter just below the image. A portion of the landing pads on two of the helicopter’s four landing legs can be seen in on the left and right sides of the image, and a small portion of the horizon can be seen at the upper right and left corners.

The data from tonight’s flight will arrive on Earth at around 7:16 am (Pacific) tomorrow.

Polygons and an inexplicable depression in ancient Martian crater floor

Polygons and an inexplicable depression in ancient Martian crater
Click for full image.

Cool image time! The photo to the right, cropped to post here, was taken on February 26, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO) of a small section of the floor of 85-mile-wide Galilaei Crater.

The main focus of the image is the polygonal cracks that cover the flat low areas of the crater floor, interspersed randomly by small mesas and shallow irregular depressions. The depression in this particular image is especially intriguing. It to me falls into my “What the heck?!” category, for I can’t imagine why among this terrain of polygons and pointed mesas there should suddenly be an irregularly shaped flat depression with a completely smooth floor that has no cracks at all.

The polygons are less puzzling. Galilaei Crater is very old, its impact thought to have occurred about 4 billion years ago. Though it sits at 5 degrees north latitude, practically on the Martian equator and thus in what is now Mars’ most arid region, scientists believe that once there was a lot of liquid surface water here. The overview map below illustrates this.
» Read more

Gale Crater’s small mesas were formed by wind, not liquid water

Route through Murray Buttes
The Murray Buttes. Click to see August 11, 2016 post.

The uncertainty of science: Though Curiosity has found apparent evidence of past liquid water during its early travels on the floor of Gale Crater, scientists have now concluded that the first small mesas and buttes it traveled past back in 2016, dubbed the Murray Buttes, were not formed by the flow of liquid water but by wind reshaping ancient sand dunes. From the press release:
» Read more

Bumps and holes in the Martian mid-latitudes

Bumps and holes in the Martian mid-latitudes
Click for full image.

Today’s cool image to the right, taken on January 6, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO) and cropped and reduced to post here, focuses on what appears to be a volcanic bulge on the southeastern edge of the great Tharsis Bulge, home to Mars’ biggest volcanoes.

The terrain gives the appearance of hard and rough lava field, ancient and significantly scoured with time. The bumps and mounds suggest nodules that remained as the surrounding softer material eroded away. The holes suggest impact craters, but their relatively few number suggest that this ground was laid down in more recent volcanic events after the late heavy bombardment that occurred in the early solar system about 4 billion years ago. Since it is thought that the big Martian volcanoes stopped being active about a billion years ago, this scenario seems to fit.

However, the terrain also has hints of possible glacial features, as seen in the large crater-like depression in the image’s center. Below is a zoom in to that crater to highlight the flowlike features in its southern interior.
» Read more

First images of Ingenuity’s second flight

Ingenuity's second flight, April 22, 2021
For full images go here, here, and here.

According to Mimi Aung, the project manager for Ingenuity, they attempted their second flight of the Mars helicopter early this morning, with the following flight plan:

[W]e plan to trying climbing to 16 feet (5 meters) in this flight test. Then, after the helicopter hovers briefly, it will go into a slight tilt and move sideways for 7 feet (2 meters). Then Ingenuity will come to a stop, hover in place, and make turns to point its color camera in different directions before heading back to the center of the airfield to land. Of course, all of this is done autonomously, based on commands we sent to Perseverance to relay to Ingenuity the night before.

No live stream was provided this time. However, the three images above from Perseverance, just downloaded today and taken about nine minutes apart, show Ingenuity before, during, and after that flight. If you compare the first and third images you can see that the helicopter was able to successfully return to the same landing spot.

I expect an announcement of this successful flight to be posted shortly.

UPDATE: JPL has now released an image taken by Ingenuity during its flight.

Perseverance technology experiment produces oxygen from Mars’ atmosphere

An engineering test experiment dubbed MOXIE on the Perseverance rover has successfully produced oxygen from the carbon dioxide in the Martian atmosphere, a technology that will be essential for future human missions.

MOXIE (Mars Oxygen In-situ Resource Utilization Experiment), a small, gold box-shaped instrument on the rover, successfully demonstrated a solid oxide electrolysis technology for converting the Martian atmosphere to oxygen. The atmosphere on Mars is about 95% carbon dioxide.

MOXIE’s first oxygen run produced 5.4 grams of oxygen in an hour. The power supply limits potential production to 12 g/hr — about the same amount that a large tree would produce.

…The oxygen production process starts with carbon dioxide intake; inside MOXIE, the Martian CO2 is compressed and filtered to remove any contaminants. It is then heated, which causes separation into oxygen and carbon monoxide. The oxygen is further isolated by a hot, charged ceramic component; the oxygen ions merge into O2. Carbon monoxide is expelled harmlessly back into the atmosphere.

Human missions to Mars will not just need oxygen to breath. They will need it to provide the fuel for leaving the planet and returning to Earth, since it will be very impractical and expensive to bring everything they need with them. For colonization and planetary exploration to truly happen future space-farers must live off the land.

Glacial layers in a northern crater on Mars

Crater filled with many layered glacial features
Click for full image.

Cool image time! The photo to the right, cropped to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter on March 6, 2021, and shows a mid-latitude crater in the northern lowland plains of Mars with what appear to be layered glacial features filling its interior.

The theory that scientists presently favor for explaining many of the features we see on Mars is based on many climate cycles caused by the wide swings the planet routinely experiences in its obliquity, or rotational tilt. When that tilt is high, more than 45 degrees, the mid-latitudes are colder than the poles, and water ice sublimates southward to those mid-latitudes to fall as snow and cause active glaciers to form. When that obliquity is low, less than 20 degrees, the mid-latitudes are warmer than the poles and that ice then migrates back north.

Such cycles, which are believed to have occurred many thousands of times in the last few million years, will place many layers on the ground in both the mid-latitudes and at the poles. The layers in this crater hint at this.

The overview map below gives some further context.
» Read more

Four more flights for Ingenuity in the next eleven days.

According to MiMi Aung, Ingenuity’s project manager, the test flight campaign for the Mars helicopter Ingenuity has only about eleven days left, during which they will try to complete full flight program of four more test flights.

The helicopter’s one-month test flight campaign officially began April 3, then the Perseverance rover deployed Ingenuity onto the surface of Mars. “We have a 30 day experiment window, so we have two weeks left,” said MiMi Aung, Ingenuity’s project manager at NASA’s Jet Propulsion Laboratory in California.

She said the helicopter will attempt “increasingly bolder flights” that could travel more than 2,000 feet (600 meters) from its takeoff location. “We do want to push it, and I believe we have enough time to squeeze the next four flights in the next two weeks left.”

The second flight, where the helicopter will go up about 16 feet and then move sideways about seven feet before landing at its take-off point, could happen tomorrow. The third flight, which will travel as much as 150 feet, will follow soon thereafter.

Video of Ingenuity’s flight, taken by Perseverance

JPL yesterday released a short one minute long video created from images taken by the high resolution mast camera on Perseverance.

You can view the animation here.

Stitched together from multiple images, the mosaic is not white balanced; instead, it is displayed in a preliminary calibrated version of a natural-color composite, approximately simulating the colors of the scene as it would appear on Mars.

Spring arrives on the northern polar cap of Mars

Buzzell dunes and pedestal crater near the Martian north polar ice cap
Click for full image.

Cool image time! It is now spring in the northern hemisphere of Mars, and the first bits of sunlight are finally reaching its north polar ice cap. During the winter, as happens each Martian year, that polar cap of water ice gets covered by a thin mantle of dry ice no more than six feet thick. Moreover, this mantle doesn’t just cover the ice cap, it extends south as far as about 60 degrees latitude, covering the giant sea of dunes that surrounds the ice cap.

When spring comes that mantle begins sublimate away, with its base first turning to gas. When the pressure builds up enough, the gas breaks out through the frozen mantle’s weakest points, usually the crest or base of dunes or ridges, leaving behind a dark splotch caused by the material thrown up from below that contrasts with the bright translucent dry ice mantle.

Each year for the past decade scientists have been using the high resolution camera on Mars Reconnaissance Orbiter (MRO) to monitor this sublimation process. The photo above, taken on February 24, 2021 and cropped, enlarged, and brightened to post here, marks the start of this year’s monitoring program. Dubbed informally “Buzzell” by Candice Hansen of the Planetary Science Institute in Arizona, it shows dunes with a round pedestal crater just right of center. Though almost everything when this picture was taken is still covered by that dry ice mantle, in the lower left is a single splotch, the first breakout of CO2 gas that marks the beginning of the annual disappearance of this dry ice.

Last Martian year I repeatedly posted images of Buzzell to illustrate this annual process. The second image below was taken on April 4, 2019, at about the same comparable time in spring.
» Read more

Ingenuity flies!

Ingenuity takes off!
For full images go here and here.

The first autonomous flight of the helicopter Ingenuity on Mars successfully took place early this morning, according to JPL engineers.

NASA has pulled off the first powered flight on another world. Ingenuity, the robot rotorcraft that is part of the agency’s Perseverance mission, lifted off from the surface of Mars on 19 April, in a 40-second flight that is a landmark in interplanetary aviation. “We can now say that human beings have flown a rotorcraft on another planet,” says MiMi Aung, the project’s lead engineer at the Jet Propulsion Laboratory (JPL) in Pasadena, California.

As shown by the two images taken by Perseverance above, the first flight was very simple. The helicopter simply rose about 10 feet, hovered for about 30 seconds as it swiveled 90 degrees, and then carefully descended back down. I have also embedded the video that JPL scientists have created compiling by high resolution Perseverance images below the fold.

Four more flights will next be attempted in the coming weeks.

Four further flights, each lasting up to 90 seconds, are planned in the coming weeks. In these, Ingenuity is likely to rise up to 5 metres [16 feet] above the surface and travel up to 300 metres [1000 feet] from the take-off point. Each successive flight will push Ingenuity’s capabilities to see how well the drone fares in Mars’s thin atmosphere, which is just 1% as dense as Earth’s.

» Read more

The rovers’ view of Mars

The view from the top of Mont Mercou
Click for higher resolution. For original images, go here and here.

Some cool images to savor from Mars! Above is a panorama from Curiosity, created by me from two images taken by the rover’s left navigation camera today, April 18, 2021. The view is southwest towards the canyon regions where Curiosity will be heading in the coming months. Note the roughness of the ground. Travel is going to be tricky from here on out.

The photo was taken from the top of Mont Mercou, the 20-foot high outcrop that the rover spent several weeks studying at the cliff’s base. The Curiosity science team is presently preparing to drill into the bedrock at the top.

Ingenuity on the floor of Jezero Crater
Click for full image.

The photo to the right, reduced to post here, was taken by Perseverance on April 13, 2021, and looks west across the floor of Jezero crater. The high mountains in the distance are the crater’s rim. The low and much closer hill is the delta that is the rover’s primary geological target.

In the center of the picture is the helicopter Ingenuity. You can also see the tracks of Perseverance’s wheels just below it.

This will be the rover’s vantage point when Ingenuity attempts its first test flight in the early morning hours of April 19, 2021. The helicopter will head to the right once it lifts off.

Ingenuity first test flight scheduled for 3:30 am (Eastern) tonight!

The engineering team for the Ingenuity helicopter on Mars have decided to attempt the first test flight tonight, scheduled for 3:30 am (Eastern) in the early morning hours tomorrow.

Data from the first flight will return to Earth a few hours [later] following the autonomous flight. A livestream will begin at 6:15 a.m. EDT (3:15 a.m. PDT) as the helicopter team prepares to receive the data downlink in the Space Flight Operations Facility at NASA’s Jet Propulsion Laboratory (JPL).

NASA propaganda will begin on NASA TV at 3:30 am (Eastern), but the actual live stream of the flight will not air until about 6:30 am (Eastern) on April 19th.

At the first link above the engineers explain their decision to proceed immediately.
» Read more

Ingenuity successfully completes rapid spin test

Ingenuity’s engineers announced this morning that yesterday the helicopter on Mars was able to successfully complete a rapid spin test of its rotary blades.

Today, April 16, on the 154th anniversary of Wilbur Wright’s birth, the Ingenuity flight team received information that the helicopter was able to complete a rapid spin test. The completion of the full-speed spin is an important milestone on the path to flight as the team continues to work on the command sequence issue identified on Sol 49 (April 9).

…The approach that led to today’s successful spin test entailed adding a few commands to the flight sequence. This approach was tested extensively on both Earth and Mars, and was performed without jeopardizing the safety of the helicopter.

They have still not set a date for flight, because they might still decide, after they have analyzed fully the results from this test, to revise the helicopter’s software and upload that change. If not the flight will be relatively soon. If so there will be a longer delay to test that software fully before flight.

InSight pauses science operations to conserve power

The science team for the InSight lander on Mars have been forced to suspend science operations because dust on the solar panels is reducing the available power.

InSight’s solar panels were producing just 27% of their energy capacity in February, when winter was arriving in Elysium Planitia. So NASA decided to start incrementally turning off different instruments on the lander. Soon the robot will go into “hibernation mode,” shutting down all functions that aren’t necessary for its survival.

By pausing its scientific operations, the lander should be able to save enough power to keep its systems warm through the frigid Martian nights, when temperatures can drop to negative-130 degrees Fahrenheit. “The amount of power available over the next few months will really be driven by the weather,” Chuck Scott, InSight’s project manager, said in a statement.

InSight is still in good condition – it’s even using its robotic arm – but the risk of a potentially fatal power failure is ever-present. If the lander’s batteries die, it might never recover.

As with the rovers Spirit and Opportunity, InSight engineers have depended on periodic strong wind events to periodically clean off the solar panels. Unfortunately, these events are somewhat random, and for the past few months none have occurred.

Note: the article at the link says that winter was arriving at InSight’s location in February, but this is incorrect. InSight sits at about 4 degrees north latitude. In February the end of winter was approaching in the northern hemisphere. More to the point, sitting at the equator you wouldn’t really expect InSight to experience much seasonal changes regardless.

It therefore seems that these issues had less to do with the seasons and much more to do with the accumulating dust on the panels.

Evidence of glaciers in the Martian equatorial regions?

Equatorial crater with glacial features?

Cool image time! The photo to the right, cropped and reduced to post here, was taken on February 2, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO) and was labeled as “Exhumed Craters Exhibiting Concentric Fill”.

The term “Concentric Fill” is used by planetary scientists to mark glacial-type features frequently found inside craters at latitudes greater than 30 degrees latitude. This crater however is at 22 degrees north latitude, too close normally to the equator to expect a buried glacier inside it. Any ice at such a latitude is expected to be underground and well protected. A debris covered glacier would likely sublimate away, which I think is why the scientists labeled this “exhumed.” Though there are the concentric features near its inside rim as well as covered by the sand dunes on the crater’s floor, they are assuming this is only evidence of past ice, no longer there. This assumption is strengthened by the splattered but eroded nature of the surrounding terrain. Such splats are typical of high latitude impacts in regions with ample buried ice. The eroded nature of this splat however suggests it is very old and has likely lost its ice.

Then again, this is an assumption.
» Read more

A lonely dry lava spring on Mars

A lonely dry lava spring on Mars
Click for full image.

Today’s cool image from Mars takes us to the southern flank of the giant volcano Pavonis Mons. The photo to the right, rotated, cropped, and reduced to post here, shows what appears to be a volcanic vent from more than a billion years ago when it is believed Pavonis was actively erupting. The picture was taken on March 2, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The grade is mostly downhill to the east and south east.

It is very possible that this is the resurgence of a lava tube, the point where the underground flow either emerged to the surface or got so close to the surface that the ceiling was thin enough to later collapse, creating this depression. No pits or skylights are visible in this high resolution picture, however, so whether there is an underground lava tube here is not known, an unknown that is amplified by the wider MRO context camera image below.
» Read more

Ingenuity requires software update before flying

JPL engineers have determined that they need to upload a software update on Ingenuity in order to solve the issue that caused the first high-speed spin test of its rotary blades to end prematurely.

In an update released late Monday by NASA’s Jet Propulsion Laboratory, mission managers said engineers identified a software fix for the “command sequence issue” that ended the high-speed spin-up test Friday.

Officials at JPL, which manages the Ingenuity helicopter project, did not announce a new target date for the rotorcraft’s first test flight. Ground teams hope to determine a new target date next week for the helicopter’s first flight.

According to the original plans, Ingenuity was to get about a 30 day test period, after which Perseverance would move on to its primary Mars science mission. It is not clear at this moment whether that test period will be extended because of these issues. I suspect they will extend it to get as many flight tests as possible, since Perseverance is functioning like a dream and can wait a few extra weeks before beginning what will be years of Martian roving. How often does one get to flight test a helicopter on another world?

The start of avalanche season at Mars’ north pole

A narrow ridge with avalanches
Click for full image.

Every spring for the last seven Martian years scientists have eagerly aimed the high resolution camera on Mars Reconnaissance Orbiter (MRO) at the steep 1,500 to 3,000 foot high scarp at the edge of northern polar ice cap in order to capture images of what is Mars’s most spectacular annual event, the occurrence of tens of thousands springtime avalanches along that scarp.

Well, spring has returned to the northern hemisphere on Mars, and the scientists have begun another monitoring campaign. The photo to the right, cropped to post here, was taken on March 7, 2021 by MRO. It shows a particularly dramatic part of that scarp, a place where the scarp separates two curved alcoves and is thus narrowed down to a ridge about 1,000 feet high.

The nose of the ridge is sloping downward to the northwest, so the horizontal bands on its crest are actually evidence of older and older layers exposed as the elevation drops. The blue and black markings on the left slope are likely evidence of this season’s first avalanches, or might even be avalanches occurring as the picture was snapped! As explained to me by Shane Byrne of the Lunar and Planetary Lab University of Arizona during the last Martian avalanche season,

On Mars half of the images we take in the right season contain an avalanche. There’s one image that has four avalanches going off simultaneously at different parts of the scarp. There must be hundreds to thousands of these events each day.”

The overview map below shows the location of this picture, as well as all the other places the scientists have routinely monitored in the fourteen-plus Earth years since MRO reached Mars orbit.
» Read more

Ingenuity test flight delayed

Due to a software issue identified during testing of the helicopter’s rotary blades, Ingenuity’s engineers have decided to delay its first flight for at least three days.

During a high-speed spin test of the rotors on Friday, the command sequence controlling the test ended early due to a “watchdog” timer expiration. This occurred as it was trying to transition the flight computer from ‘Pre-Flight’ to ‘Flight’ mode. The helicopter is safe and healthy and communicated its full telemetry set to Earth.

They are presently trouble-shooting the issue.

Ingenuity’s flight schedule

Ingenuity’s first flight on Mars is now a go for late on April 11th, with the first data arriving in the early hours of April 12th.

The flight plan should that first flight go as expected is as follows:

The helicopter team has 30 Martian sols (roughly 31 days on Earth) to take the first tentative flights. Assuming Ingenuity survives the first flight, it will rest and transmit data before attempting a second flight with lateral movement. Subsequent flights will happen every three or four Martian sols. The fifth flight — if Ingenuity gets that far — will be a chance to really soar. “The probability is it would be unlikely it will land safely because we will go into unsurveyed areas,” Aung said.

They have unlocked and tested the rotary blades, with all working as planned.

To watch JPL will have a live stream which I will embed on Behind the Black when it goes live at about 3:30 am Eastern on the morning of April 12th.

Lava flooded mountains on Mars

Lava-flooded mountains on Mars
Click for full image.

Overview map

Today’s cool image to the right, rotated, cropped, and reduced to post here, was taken in January 2012 by the context camera of Mars Reconnaissance Orbiter (MRO). The location is a small section of the Tartarus mountain range that is cut by the Cerberus Fossae fissures, all located in Elysium Planitia, the large volcanic lava plain that lies between Mars’ big volcanoes. The white cross on the overview map below marks the location of the photo.

I picked this photo because it quickly shows us in one picture many of the typical features one finds in that lava plain.

For example, the distinct fissure that cuts across the mountains near the top of the picture is the northernmost large fissure of Cerberus Fossae. In my initial post on Cerberus I mistaken thought its large and many hundreds of miles-long fissures might be evidence of underground lava tubes. Since then I have learned while the depressions may signal underground voids, they are not a lava tubes but graben, cracks formed by the movement of the terrain on each side. The cracks opened when past volcanic activity caused the ground to swell upward, stretching and splitting it.

The dark splotch in the flat area just south of the fissure remains me of the maculae found in these lava plains to the west of Olympus Mons, splotches that for still undetermined reasons dust devils like to congregate, blowing off the red dust so that the dark basalt lava becomes visible. No high resolution image of this spot has yet been taken, so this is a pure guess on my part.

The mountains near the bottom of the photo illustrate the ancient lava flood that inundated these mountain peaks. The white box shows the area covered by the recent MRO high resolution image that I include below.
» Read more

Mars’ icy high latitudes

Mars' icy high latitudes
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on November 29, 2020 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Labeled simply as “periglacial survey,” it is one of almost two hundred such images taken by MRO over the years, almost all of which are in the high latitudes above 60 degrees, with most being in the southern hemisphere. Most appear to be close to or above Mars’s Arctic Circle, which means these are locations that will see little or no sunlight for a portion of the year.

I have been unable to contact the scientists doing this survey, so I will have to make an educated guess as to its purpose and goals. “Periglacial” refers to the outer fringes or margin of a glacier or large ice sheet. Thus, in the context of this survey, the scientists appear to be studying places where they think the Martian high latitude ice sheets are beginning to sublimate away. Today’s photo is a good example. It is located at 67 degrees south latitude, in the southern cratered highlands but in an area that appears to be relatively free of craters. Instead, the terrain appears somewhat flat with only periodic depressions and scarps. The MRO context camera photo below of the same area, rotated, cropped, and expanded to post here, illustrates this.
» Read more

Perseverance as seen from orbit

Perseverance landing site prior to landing
Click for full image.

Perservance on the ground
Click for full image.

Cool image time! The two photos to the right show the landing site for the Perseverance rover in Jezero Crater on Mars. The first image was taken in 2016 by the high resolution camera on Mars Reconnaissance Orbiter. The second image was made available today in the monthly release of photos taken that camera on MRO.

The arrow points to a small white streak that is not visible in the 2016 photo. A closer look reveals that the streak is actually two fanlike white deposits expanding outward in opposite directions from a central point.

What we are seeing are the exhaust fans blown onto the Martian surface by the retro-jets on the Sky crane that was lowering Perseverance to the ground. The rover was put down at the centerpoint, and was still at that spot on March 2nd when this photo was acquired.

The highest resolution version of this image requires special software, so in this version you cannot see the rover itself. Nor can you see the Sky crane after it crashed landed or the parachutes.

The new photo was taken one week after the first high resolution image from MRO, as part of what will become a routine periodic monitoring of the site, along with obtaining mapping information for picking the rover’s upcoming route They will also probably use both images to try to locate both the Sky crane and parachutes, on the ground.

Watching Ingenuity’s flight

NASA has now announced the planned flight time for its Ingenuity helicopter now on the Martian surface, including information for watching the live stream of the attempt.

A livestream confirming Ingenuity’s first flight is targeted to begin around 3:30 a.m. EDT Monday, April 12, on NASA Television, the NASA app, and the agency’s website, and will livestream on multiple agency social media platforms, including the JPL YouTube and Facebook channels.

I will embed the JPL live stream on Behind the Black when it goes live.

Meanwhile, Perseverance’s weather station is now functioning, providing its first weather reports from Jezero Crater.

[E]ngineers now have atmospheric data from three different locations on the Red Planet – Perseverance, Curiosity, and NASA’s InSight lander, which hosts the Temperature and Wind sensors for InSight (TWINS). The trio will enable a deeper understanding of Martian weather patterns, events, and atmospheric turbulence that could influence planning for future missions. In the near term, MEDA’s information is helping decide the best atmospheric conditions for the Ingenuity Mars Helicopter flights.

As Ingenuity achieved pre-flight milestones, a MEDA report from the 43rd and 44th Martian days, or sols, of the mission (April 3-4 on Earth) showed a temperature high of minus 7.6 degrees Fahrenheit (minus 22 degrees Celsius) and low of minus 117.4 degrees Fahrenheit (minus 83 degrees Celsius) in Jezero Crater. MEDA also measured wind gusts at around 22 mph (10 meters per second).

Those numbers are about normal for Jezero Crater at 18 degrees north latitude in the spring.

Study: a Martian crater lake fed by glacial run-off

Map of crater lake and run-offs
From figure 1 on the research paper.

A new study of a 33-mile-wide Martian crater in its southern cratered highlands has found evidence that a lake had once existed on the crater floor, and was fed entirely by glacial run-off in a cold climate, coming from its interior walls, not from outside the crater.

In a study published in Planetary Science Journal, a research team led by Brown Ph.D. student Ben Boatwright describes an as-yet unnamed crater with some puzzling characteristics. The crater’s floor has unmistakable geologic evidence of ancient stream beds and ponds, yet there’s no evidence of inlet channels where water could have entered the crater from outside, and no evidence of groundwater activity where it could have bubbled up from below.

So where did the water come from?

The researchers conclude that the system was likely fed by runoff from a long-lost Martian glacier. Water flowed into the crater atop the glacier, which meant it didn’t leave behind a valley as it would have had it flowed directly on the ground. The water eventually emptied into the low-lying crater floor, where it left its geological mark on the bare Martian soil.

You can read the full paper here. The crater is considered very old, which means this evidence dates from a very early Mars when the climate was very different. As the scientists note in their conclusion:
» Read more

Ingenuity survives first night on its own on Mars

Completing another a major engineering hurdle, the Ingenuity helicopter successfully survived its first night on Mars, unprotected by the power and shielding of the Perseverance rover.

“This is the first time that Ingenuity has been on its own on the surface of Mars,” said MiMi Aung, Ingenuity project manager at NASA’s Jet Propulsion Laboratory in Southern California. “But we now have confirmation that we have the right insulation, the right heaters, and enough energy in its battery to survive the cold night, which is a big win for the team. We’re excited to continue to prepare Ingenuity for its first flight test.”

Engineers will spend the next two days fine-tuning Ingenuity’s thermal and power systems. Then on April 7th they will begin testing the helicopter’s rotary blades and their motors. If all goes right, the actual flight will occur on April 11th.

Colorful mesa in the Martian northern lowland plains

Colorful mound in Martian northern lowland plains
Click for full image.

Cool image time! The photo to the right, rotated and cropped to post here and taken on January 15, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), shows the colorful top of a small mesa in the northern lowland plains of Mars and about 300 miles north of the planned landing zone for Europe’s Franklin rover, scheduled to launch in 2022.

What makes this mesa stand out is the bright and colorful areas on its slopes. The colors are false, but they indicate [pdf] certain things. The yellow is likely dust covered rock. The pinkish rock is also likely dust-covered, but made up of coarser material. The bluish strip running along the mesa’s northern slope is possibly frost or ice, not unlikely as this mound is at 25 degrees north latitude and was taken during winter. The slope faces north, which would put it in shadow much of the time during winter.

The colors however only hint at what is there.
» Read more

Ingenuity released from Perseverance

Ingenuity on the ground
Click for full image.

Perseverance engineers have now confirmed that the Ingenuity helicopter was successfully released below the rover earlier today, and the rover immediately moved away to expose the helicopter to sunlight so that its solar panels can charge its batteries.

The photo to the right, cropped to post here, was taken by one of Perseverance’s rear hazard avoidance cameras, shortly after the release and move. They will now begin about a week of check-outs to make sure Ingenuity is functioning properly, even as they drive Perseverance a distance away to a lookout point where it can safely observe the helicopter’s test flight on Mars, presently targeted for April 11th. If successful this will be the first powered flight ever achieved on another world.

1 32 33 34 35 36 78