TESS finds its first Earth
Worlds without end: TESS has discovered its first Earth-sized planet, orbiting a M dwarf star within the habitable zone.
TOI 700 is a small, cool M dwarf star located just over 100 light-years away in the southern constellation Dorado. It’s roughly 40% of the Sun’s mass and size and about half its surface temperature. The star appears in 11 of the 13 sectors TESS observed during the mission’s first year, and scientists caught multiple transits by its three planets.
The star was originally misclassified in the TESS database as being more similar to our Sun, which meant the planets appeared larger and hotter than they really are. Several researchers, including Alton Spencer, a high school student working with members of the TESS team, identified the error.
“When we corrected the star’s parameters, the sizes of its planets dropped, and we realized the outermost one was about the size of Earth and in the habitable zone,” said Emily Gilbert, a graduate student at the University of Chicago. “Additionally, in 11 months of data we saw no flares from the star, which improves the chances TOI 700 d is habitable and makes it easier to model its atmospheric and surface conditions.”
We could also give this story the subhead “the uncertainty of science.” Note how a revision of the star’s mass changed the planet’s. Though I am sure they have improved their estimate of the star, this error illustrates how easy it is to get a final astronomical conclusion wrong. There are always a lot of assumptions long the way, any one of which could have a margin of error significant enough to change the final result.
In other TESS news, the space telescope has also found an exoplanet orbiting a stellar binary system of two stars.
Worlds without end: TESS has discovered its first Earth-sized planet, orbiting a M dwarf star within the habitable zone.
TOI 700 is a small, cool M dwarf star located just over 100 light-years away in the southern constellation Dorado. It’s roughly 40% of the Sun’s mass and size and about half its surface temperature. The star appears in 11 of the 13 sectors TESS observed during the mission’s first year, and scientists caught multiple transits by its three planets.
The star was originally misclassified in the TESS database as being more similar to our Sun, which meant the planets appeared larger and hotter than they really are. Several researchers, including Alton Spencer, a high school student working with members of the TESS team, identified the error.
“When we corrected the star’s parameters, the sizes of its planets dropped, and we realized the outermost one was about the size of Earth and in the habitable zone,” said Emily Gilbert, a graduate student at the University of Chicago. “Additionally, in 11 months of data we saw no flares from the star, which improves the chances TOI 700 d is habitable and makes it easier to model its atmospheric and surface conditions.”
We could also give this story the subhead “the uncertainty of science.” Note how a revision of the star’s mass changed the planet’s. Though I am sure they have improved their estimate of the star, this error illustrates how easy it is to get a final astronomical conclusion wrong. There are always a lot of assumptions long the way, any one of which could have a margin of error significant enough to change the final result.
In other TESS news, the space telescope has also found an exoplanet orbiting a stellar binary system of two stars.













