Mars Express confirms ancient glaciers in northern Martian mid-latitudes

Perspective view of Deuteronilus Mensae
Click for full image.

The European Space Agency’s orbiter Mars Express has confirmed the presence of large fractured ice sheets suggestive of buried and ancient glaciers. These ice sheets are within one region on Mars located in the mid-latitudes where many such glacial features have been found. They are also in the transition zone between the northern lowlands and the southern highlands.

This landscape shows clear and widespread signs of significant, lasting erosion. As is common with fretted terrain, it contains a mix of cliffs, canyons, scarps, steep-sided and flat-topped mounds (mesa), furrows, fractured ridges and more, a selection of which can be seen dotted across the frame.

These features were created as flowing material dissected the area, cutting through the existing landscape and carving out a web of winding channels. In the case of Deuteronilus Mensae, flowing ice is the most likely culprit. Scientists believe that this terrain has experienced extensive past glacial activity across numerous martian epochs.

It is thought that glaciers slowly but surely ate away at the plains and plateaus that once covered this region, leaving only a scattering of steep, flat, isolated mounds of rock in their wake.

Smooth deposits cover the floor itself, some marked with flow patterns from material slowly moving downhill – a mix of ice and accumulated debris that came together to form and feed viscous, moving flows of mass somewhat akin to a landslide or mudflow here on Earth.

Studies of this region by NASA’s Mars Reconnaissance Orbiter [MRO] have shown that most of the features seen here do indeed contain high levels of water ice. Estimates place the ice content of some glacial features in the region at up to 90%. This suggests that, rather than hosting individual or occasional icy pockets and glaciers, Deuteronilus Mensae may actually represent the remnants of an old regional ice sheet. This ice sheet may once have covered the entire area, lying atop the plateaus and plains. As the martian climate changed this ice began to shift around and disappear, slowly revealing the rock beneath.

Overall, the data coming from both Mars Express and MRO increasingly suggests that there is a lot of buried glacial ice in the mid-latitudes. Mars might be a desert, but it is increasingly beginning to look like much of the planet is a desert like Antarctica, not the Sahara.

Chang’e-4 and Yutu-2 begin 12th lunar day

Chinese engineers have reactivated both their lunar lander, Chang’e-4, and its rover, Yutu-2, for their twelve lunar day on the far side of the Moon.

The lander woke up at 5:03 p.m. Thursday (Beijing Time), and the rover, Yutu-2 (Jade Rabbit-2), awoke at 0:51 a.m. the same day. Both are in normal working order, according to the Lunar Exploration and Space Program Center of the China National Space Administration.

No word on where Yutu-2 will be sent over then next two weeks.

Posting was light during the day today because Diane and I were on a hike that I needed to do for the upcoming planned second edition of my hiking guidebook, Circuit Hikes of Southern Arizona. My boss (me) allowed me to go, since this hike was not pure pleasure, but reconnaissance for one of my books.

Unearthly pit in Martian northern icecap

Giant pit in Martian North polar icecap
Click for full image.

Cool image time! It is spring in the Martian north, and thus the Sun has risen and remains in the sky for most if not all of each day, circling the horizon. As such, it illuminates polar icecap features that are strange and weird and hard to decipher based on our expectations here on Earth.

The photograph to the right, cropped and reduced to post here, is a good example. It was taken on September 20, 2019 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows a pit in the outer regions of the polar icecap, an area where that water icecap remains relatively stable, but that is also at a low enough latitude that summer sunlight can cause some erosion and sublimation of the ice.

The bottom of the pit is the center of the bullseye, with the layered features in the surrounding walls showing the many layers inside the icecap, built up over centuries, then slowly revealed as the ice in this pit slowly sublimated away.

You can get a better sense of what you are looking at by the overview map below.
» Read more

Astronomers think they have pinned down location of Supernova 1987a’s central star

More than three decades after Supernova 1987a erupted, becoming the first supernova in centuries visible to the naked eye, astronomers finally think they have narrowed the location of the neutron star remaining from that supernova.

Astronomers knew the object must exist but had always struggled to identify its location because of a shroud of obscuring dust. Now, a UK-led team thinks the remnant’s hiding place can be pinpointed from the way it’s been heating up that dust.

The researchers refer to the area of interest as “the blob”. “It’s so much hotter than its surroundings, the blob needs some explanation. It really stands out from its neighbouring dust clumps,” Prof Haley Gomez from Cardiff University told BBC News. “We think it’s being heated by the hot neutron star created in the supernova.”

It will still likely be 50 to 100 years before the dust clears enough for the neutron star itself to be visible.

Lunar Reconnaissance Orbiter locates crashed Chinese orbiter

Before and after images showing Longjiang-2 impact site

Lunar Reconnaissance Orbiter (LRO) has located the Chinese microsat lunar orbiter Longjiang-2, which was sent to impact the Moon in August 2019 after it completed its technology demonstration mission.

The image above shows the before and after of the location, with the satellite’s remains visible as indicated by the arrow.

Through a careful comparison of pre-existing NAC images, the LROC team was able to locate a new impact crater (16.6956°N, 159.5170°E, ±10 meters), a distance of only 328 meters from the estimated site! The crater is 4 meters by 5 meters in diameter, with the long axis oriented southwest to northeast. Based on proximity to estimated crash coordinates and the crater size, we are fairly confident that this new crater formed as a result of the Longjiang-2 impact.

The picture of the impact site might not be very impressive, but remember, this satellite only weighed about a hundred pounds. The engineering however is impressive, on all counts. First, the Chinese built a tiny cubesat that reached lunar orbit and operated there for more than a year, during which it even took a picture of the Earth. Second, the engineering team of LRO was able to find this tiny impact site for such small spacecraft in less than four months.

First global geologic map of Titan

Global geologic map of Titan
Click for full image.

Planetary scientists today released the first global geologic map of the Saturn moon Titan. The image on the right is a reduced version of the full image.

In the annotated figure, the map is labeled with several of the named surface features. Also located is the landing site of the European Space Agency’s (ESA) Huygens Probe, part of NASA’s Cassini mission.

The map legend colors represent the broad types of geologic units found on Titan: plains (broad, relatively flat regions), labyrinth (tectonically disrupted regions often containing fluvial channels), hummocky (hilly, with some mountains), dunes (mostly linear dunes, produced by winds in Titan’s atmosphere), craters (formed by impacts) and lakes (regions now or previously filled with liquid methane or ethane).

To put it mildly, there is a lot of uncertainty here. Nonetheless, this is a first attempt, and it shows us that the distribution of these features is not homogeneous. The dunes favor the equatorial regions, the lakes the polar regions. Also, the small number of craters could be a feature of erosion processes from the planet’s active atmosphere, or simply be because Cassini’s radar data did not have the resolution to see smaller craters. I suspect the former.

Islands of ice on Mars and Pluto

Ice-filled craters near Martian south pole

In a paper published today in the Journal of Geophysical Research: Planets, scientists describe the identification of 31 ice-filled craters in the high southern latitudes of Mars. The map to the right, from their paper, shows the locations of these craters. The scientists also took a look at Pluto, and found five craters there that had similar features, though these were likely filled with frozen nitrogen, not water ice.

From their abstract:

These new 31 ice deposits represent an inventory of more than 10 trillion cubic meters of solid water, similar to but greater in number and volume than previously studied features near the north pole. Similar features of nitrogen ice may exist in craters on Pluto, suggesting that craters are a favorable location for the accumulation or preservation of ices throughout the Solar System. [emphasis mine]

These results are reinforced by the existence of glacial features found in numerous Martian craters at much lower latitudes, as well as the ice suspected to exist in the permanently shadowed craters on the Moon and Mercury. The processes that put the ice there on these different planets might be fundamentally different, but the results are the same: Ice accumulating within craters.

One aspect of these high latitude craters that remains somewhat unexplained is their asymmetrical distribution around the south pole, favoring the side of the planet south of Mars’ giant volcanoes. Moreover, in looking at the ice deposits within these craters the scientists found that the ice seemed to lie off-center within the craters, favoring a similar direction.

Based on the available data, the scientists theorize that the most likely cause of this asymmetric off-center pattern is wind. From their paper:

Basic physical arguments, mesoscale atmospheric models, and geomorphological observations predict deflection of winds emanating from the south pole by the Coriolis Force. Such deflection results in a general westward trend of winds (i.e., easterlies) in the south polar regions outside the [south pole cap], matching the [ice-filled crater] offsets we observe.

This correlation implies that wind is important in … formation and/or evolution [of craters with ice]. For the case where winds control [their] formation, katabatic winds may travel down the east side of crater walls and preferentially deposit ice on the west side of the crater via orographic precipitation as they flow up the west crater wall. This mechanism thus favors local accumulation of ice within craters.

I find it fascinating that the location of ice within craters on Mars might indirectly provide scientists with information about the planet’s global weather patterns. This unexpected connection highlights the need to dismiss no data or feature in trying to understand planetary formation. Unlikely things might answer our questions.

The dance of two Neptunian moons

Scientists have discovered that the orbital interplay between two of Neptune’s moon keep them close together but never touching. Instead, they dance about each other.

In this perpetual choreography, Naiad swirls around the ice giant every seven hours, while Thalassa, on the outside track, takes seven and a half hours. An observer sitting on Thalassa would see Naiad in an orbit that varies wildly in a zigzag pattern, passing by twice from above and then twice from below. This up, up, down, down pattern repeats every time Naiad gains four laps on Thalassa.

Although the dance may appear odd, it keeps the orbits stable, researchers said.

I have embedded below the fold a video that illustrates this.

» Read more

A journey into the depths of Valles Marineris

Valles Marineris

Cool image time! Rather than start with the cool image, let’s begin with the long view. To the right is a wide mosaic of Valles Marineris on Mars, the largest known canyon in the solar system. About 2,500 miles long and 400 miles wide, this canyon is so large that it would cover most of the United States if put on Earth. The Grand Canyon, 500 miles long by 19 miles wide, could easily fit within it and not be noticed. In depth Valles Marineris is equally impressive, with a depth of more than four miles, about four times deeper than the Grand Canyon.

A closer view of the central regions of Valles Marineris

The white cross in the mosaic above is where we are heading. You can see it as the white box in the zoomed in overview to the right. This central part of Valles Marineris is named East Melas Chasma, and the red boxes indicate locations where the high resolution camera of Mars Reconnaissance Orbiter (MRO) has already taken images.

As you can see, we do not yet have many high resolution images of this part of the canyon floor. The white box is the most recent image, and is the subject of today’s post.
» Read more

Upcoming big satellite constellations vex and worry astronomers

Astronomers are expressing increasing distress over the possible negative consequences to their Earth-based telescope observations from the several new giant satellite constellations being launched by SpaceX and others.

[M]any astronomers worry that such ‘megaconstellations’ — which are also planned by other companies that could launch tens of thousands of satellites in the coming years — might interfere with crucial observations of the Universe. They fear that megaconstellations could disrupt radio frequencies used for astronomical observation, create bright streaks in the night sky and increase congestion in orbit, raising the risk of collisions.

The Nature article then details the issues faced by some specific telescopes. Hidden within the article however was this interesting tidbit that admitted the problem for many telescopes is really not significant.

Within the next year or so, SpaceX plans to launch an initial set of 1,584 Starlink satellites into 550-kilometre-high orbits. At a site like Cerro Tololo, Chile, which hosts several major telescopes, six to nine of these satellites would be visible for about an hour before dark and after dawn each night, Seitzer has calculated.

Most telescopes can deal with that, says Olivier Hainaut, an astronomer at the European Southern Observatory (ESO) in Garching, Germany. Even if more companies launch megaconstellations, many astronomers might still be okay, he says. Hainaut has calculated that if 27,000 new satellites are launched, then ESO’s telescopes in Chile would lose about 0.8% of their long-exposure observing time near dusk and dawn. “Normally, we don’t do long exposures during twilight,” he says. “We are pretty sure it won’t be a problem for us.” [emphasis mine]

The article then proceeds with its Chicken-Little spin as if the astronomical world is about to end if something is not done to stop or more tightly control these new satellite constellations.

As indicated by the quote above, it appears however that the threat is overstated. The constellations might reduce observing time slightly on LSST, scheduled for completion in 2022 and designed to take full sky images once every three nights. Also, the satellite radio signals might impact some radio astronomy. In both cases, however, the fears seem exaggerated. Radio frequencies are well regulated, and LSST’s data should easily be able to separate out the satellite tracks from the real astronomical data.

Rather than demand some limits or controls on this new satellite technology, the astronomical community should rise to the occasion and find ways to overcome this new challenge. The most obvious solution is to shift the construction of new telescopes from ground-based to space-based. In fact, this same new satellite technology should make it possible for them to do so, at much less cost and relatively quickly.

But then, astronomers are part of our modern academic community, whose culture is routinely leftist and therefore fascist in philosophy (even though they usually don’t realize it). To them too often the knee-jerk response to any competition is to try to control and squelch it.

We shall see if the astronomers succeed in this case.

Both methane and oxygen fluctuate in unison seasonally in Gale Crater

The uncertainty of science: According to a new science paper, data from Curiosity on Mars has now found that both methane and oxygen fluctuate in unison seasonally in Gale Crater.

From the paper’s abstract:

[T]he annual average composition in Gale Crater was measured as 95.1% carbon dioxide, 2.59% nitrogen, 1.94% argon, 0.161% oxygen, and 0.058% carbon monoxide. However, the abundances of some of these gases were observed to vary up to 40% throughout the year due to the seasonal cycle. Nitrogen and argon follow the pressure changes, but with a delay, indicating that transport of the atmosphere from pole to pole occurs on faster timescales than mixing of the components. Oxygen has been observed to show significant seasonal and year‐to‐year variability, suggesting an unknown atmospheric or surface process at work. These data can be used to better understand how the surface and atmosphere interact as we search for signs of habitability.

The data shows that the unexpected and so far unexplained seasonal oxygen fluctuation appears to track the same seasonal methane fluctuations. While biology could cause this signature, so could geological processes, though neither can produce these fluctuations easily.

Meanwhile, adding to the uncertainty were results from the two European orbiters, Mars Express and Trace Gas Orbiter. Both have failed to detect a June 19, 2019 dramatic spike in methane that had been measured by Curiosity.

China unveils Mars lander during landing simulation test

The new colonial movement: China today unveiled to the international press its first prototype Mars lander, showing it attempting a simulated controlled descent on a gigantic test stand.

The demonstration of hovering, obstacle avoidance and deceleration capabilities was conducted at a site outside Beijing simulating conditions on the Red Planet, where the pull of gravity is about one-third that of Earth.

China plans to launch a lander and rover to Mars next year to explore parts of the planet in detail.

This is the first time I have heard anything about China sending a lander/rover to Mars in 2020. Previously the reports had discussed only sending an orbiter.

I have embedded video of the test below the fold. It shows the prototype hanging by many wires from the test stand, then dropping quickly, with its engine firing, before stopping suddenly, followed by an engine burst. While impressive, it did not strike me that China is even close to sending this spacecraft to Mars. The test only proved the spacecraft’s ability to do some maneuvering during descent. It did not show that it could land.

That the project’s designer said that landing would take “about seven minutes” also suggests that they are copying the techniques used by JPL to land Curiosity. Considering that JPL’s computers have been repeatedly hacked, including some hacks identified as coming from China, it would not surprise me if China has simply stolen those techniques.

I still expect them to launch an orbiter to Mars in 2020. Whether they also send a lander and rover remains to be seen.
» Read more

Hayabusa-2 begins journey back to Earth

The Hayabusa-2 science team has fired up the spacecraft’s ion engine to leave the asteroid Ryugu and began its begins journey back to Earth.

It will take about six days to exit the gravitational sphere of influence of Ryugu. During that time period they will be continually releasing real time images of the asteroid from the spacecraft’s navigation camera, as it slowly gets farther away.

In mid-December they will fire the spacecraft’s main engines for an arrival near Earth in late 2020. At that point the small return capsule holding the samples from Ryugu will separate and land in the Australian desert. Hayabusa-2, still operational, might then be given a new subsequent mission.

Parker releases first data to public

The solar wind as seen from Parker
Click for full image.

Having completed its first three orbits of the Sun, the Parker Solar Probe science team today made all the data obtained available to the public.

The image to the right was taken during the first close solar flyby in November 2018. It shows solar wind particles streaming past the spacecraft.

Do not expect many spectacular images from Parker. It has a camera, but the mission’s focus is the study of the Sun’s atmosphere and solar wind, neither of which are likely to be very photogenic.

Polygons on Mars

Scallops and polygons on Mars
Click for full image.

Cool image time! The photograph on the right, cropped to post here, was taken on September 25, 2019 by the high resolution camera on Mars Reconnaissance Orbiter (MRO) and made public in its November image release. It shows the weird but very typical scalloped terrain, with its adjacent polygon pattern of fractures, found routinely in the northern lowland plains of Utopia Planitia on Mars. From an earlier captioned image from 2006 of these same features:

The scalloped depressions are typical features; a smooth layered terrain located between 40 and 60 degrees in both hemispheres. Scalloped depressions probably form by removal of ice-rich subsurface material by sublimation (ice transforming directly from a solid to a gaseous state), a process that may still be active today. Isolated scalloped depressions generally have a steep pole-facing scarp and a gentler equator-facing slope. This asymmetry is interpreted as being the result of difference in solar heating. Scalloped depressions may coalesce, leading to the formation of large areas of pitted terrain.

The polygonal pattern of fractures resembles permafrost polygons that form in terrestrial polar and high alpine regions by seasonal-to-annual contraction of the permafrost (permanently frozen ground). On Earth, such polygons indicate the presence of ground ice.

On Earth these polygons are most often seen in mud, usually suggesting a drying process where the ground contracts with the lose of fluid. On Mars the cracks probably also form from contraction, but not by the lose of fluid but the lose of water ice as it sublimates into a gas.

These polygons and scallops illustrate an important feature of Mars’ vast northern plains. On large scales these plains appear flat and featureless. Up close however many many strange features, like the polygons and scallops in this image, come into view.
» Read more

New Horizons team renames “Ultima Thule” to “Arrokoth”

The New Horizons team has renamed the Kuiper Belt object that the spacecraft flew past on January 1, 2019 from its informal nickname of “Ultima Thule” to “Arrokoth,” which means “sky” in Powhatan/Algonquian language.

This official, and very politically correct, name has apparently gotten the stamp of approval from the IAU.

In accordance with IAU naming conventions, the discovery team earned the privilege of selecting a permanent name for the celestial body. The team used this convention to associate the culture of the native peoples who lived in the region where the object was discovered; in this case, both the Hubble Space Telescope (at the Space Telescope Science Institute) and the New Horizons mission (at the Johns Hopkins Applied Physics Laboratory) are operated out of Maryland — a tie to the significance of the Chesapeake Bay region to the Powhatan people.

“We graciously accept this gift from the Powhatan people,” said Lori Glaze, director of NASA’s Planetary Science Division. “Bestowing the name Arrokoth signifies the strength and endurance of the indigenous Algonquian people of the Chesapeake region. Their heritage continues to be a guiding light for all who search for meaning and understanding of the origins of the universe and the celestial connection of humanity.” [emphasis mine]

It is a good name, especially because its pronunciation is straight-forward, unlike the nickname.

The blather from Glaze above, however, is quite disingenuous. The Algonquian people have had literally nothing to do with the modern scientific quest for “meaning and understanding of the origins of the unverse.” They were a stone-age culture, with no written language. It was western civilization that has made their present lives far better. And it was the heritage of western civilization, not “the indigenous Algonquian people” that made the New Horizons’ journey possible. Without the demand for knowledge and truth, as demanded by western civilization, we would still not know that Arrokoth even existed.

Astronomers discover star fleeing Milky Way at 3.7 million mph

Astronomers have discovered a star that rocketing out of the Milky Way at 3.7 million miles per hour because five million years ago it made a close approach to Sagittarius A* (prounounced “A-star”), the super-massive black at the center of the galaxy.

“The velocity of the discovered star is so high that it will inevitably leave the Galaxy and never return”, said Douglas Boubert from the University of Oxford, a co-author on the study.

Astronomers have wondered about high velocity stars since their discovery only two decades ago. S5-HVS1 is unprecedented due to its high speed and close passage to the Earth, “only” 29 thousand light years away. With this information, astronomers could track its journey back into the centre of the Milky Way, where a 4 million solar mass black hole, known as Sagittarius A*, lurks.

Almost certainly there are many such stars. They are just hard to spot.

Hayabusa-2 to begin return voyage on November 13

In a press conference today the science team for the asteroid probe Hayabusa-2 announced that the spacecraft will begin the first stage of its journey back to Earth tomorrow, using its ion engine to slowly pull away from Ryugu.

That first stage will take a little less than a week. Once the spacecraft gets about 25 miles from Ryugu it will leave its sphere of gravitational influence, when it will then begin its cruise phase back to Earth.

Mars’ seasonally vanishing carbon dioxide polar cap

Buzzell dunes, March 19, 2019
Click for full image.

Since the onset of the Martian spring in the northern hemisphere back in March of this year, scientists have been busy using the high resolution camera on Mars Reconnaissance Orbiter (MRO) to monitor the expected sublimation and disappearance of the cap of dry ice that falls as snow to become a winter layer mantling both the more permanent icecap of water 7,000 feet deep as well as the giant dune sand seas that surround that northern icecap.

The image on the right was first posted here on Behind the Black on June 6, 2019 as part of a long article describing that northern polar icecap and its annual evolution. It shows a set of dunes that Candice Hansen of the Planetary Science Institute in Arizona, who requested the image, has dubbed “Buzzell.” When that picture was taken in March, the frozen dry ice layer of translucent carbon dioxide still coated the dunes. The image’s darkness is because the Sun has just begun to rise above the horizon at this very high latitude location (84 degrees). The circular feature is likely a buried ancient crater, with the streaks indicating the prevailing wind direction blowing both sand and frost about.

On August 9, 2019 I provided an update on this monitoring, when new images of this same location were downloaded from MRO in April and June. MRO has now taken a new image of Buzzell, on October 2, 2019. Below the fold are all these images so that you can see the sublimation and disappearance of that dry ice layer over time.
» Read more

We are not going to die from climate change

Tony Heller today published this quite thorough review of the failed climate predictions by global warming scientists/activists, while also providing a great summary of the real state of our climate.

You can disagree or question him on one point or another, but the overall data once again illustrates the uncertainty that surrounds climate science. We really do not know what is going on, and any predictions that claim we do are hogwash.

Above all, take a look at the section on the benefits of increased CO2 in the atmosphere. This data is widespread and robust, and has been confirmed by agriculturists for decades. The planet is getting greener and as a result more fertile as there has been an increase in atmospheric CO2.

Meanwhile, the fear-mongers insist the world will end in just over eleven years, based not on any real data but on their emotional desire for catastrophe.

Bennu & Ryugu: Two very old and strange asteroids

Bennu as seen by OSIRIS-REx
Bennu’s equatorial ridge. Click for full image.

This week the science team operating the OSIRIS-REx spacecraft at the asteroid Bennu hosted a joint conference in Tucson, Arizona, with the scientists operating the Hayabusa-2 spacecraft at the asteroid Ryugu. Both gave up-to-date reports on the science so far obtained, as well as outlined upcoming events. I was fortunate enough to attend.

First an overview. Both Bennu and Ryugu are near earth asteroids, with Bennu having an orbit that might even have it hit the Earth in the last quarter of 2100s. Both are very dark, and are rubble piles. Both were thought to be of the carbonaceous chondrite family of asteroids, sometimes referred to as C-type asteroids. This family, making up about 75% of all asteroids, includes a bewildering collection of subtypes (B-types, F-types, G-types, CI, CM, CV, CH, CB, etc), all of which were initially thought to hold a lot of carbon. We now know that only a few of these categories, the CI and CM for example, are carbon rich.

Even so, we actually know very little about these types of asteroids. They are very fragile, so that any that reach the Earth’s surface are not a good selection of what exists. About 90% of the material gets destroyed in the atmosphere, with the remnant generally coming from the innermost core or more robust nodules. We therefore have a biased and limited sample.

It is therefore not surprising that the scientists are finding that neither Bennu nor Ryugu resembles anything else they have ever seen. Both have aspects that resemble certain types of carbonaceous chondrite asteroids, but neither provides a very good fit for anything.
» Read more

Watch the Mercury transit of the Sun from home!

The November 11 transit of Mercury across the face the Sun will be live streamed by the Griffith Observatory in Los Angeles.

It appears that in Los Angeles the transit will have already started at sunrise, with Mercury at that point about a third of its way across the Sun’s face. Regardless, from about 7 am to 10 am (Pacific) the observatory will provide a view.

UPDATE: Images from an event in New Zealand will upload real time telescope images of the transit here.

New InSight image of mole shows collapse of hole

View of InSight drill hole
Click for full movie.

The InSight science image has lifted the lander’s rover arm off the drill hole and taken a new series of images in an effort to discover what caused the mole to pop out during its most recent drilling effort.

The image to the right, cropped to post here, was the first in a short movie made from all the images taken over the course of a day. The sequence shows the change in shadows, which helps define the situation in the hole.

This image however I think tells all. It shows that the walls of the hole have collapsed all around the mole, widening it further. It also shows that, once the mole popped out to lean sideways against the left wall, much of that material then fell into the hole, refilling it. These facts are very evident when today’s image is compared with this image from October, taken prior to the most recent drilling effort. The hole has become much wider, there is more material inside it, and the mole is now much farther out.

All these facts bode ill for the mole ever succeeding in drilling down the planned fifteen or so feet to insert a heat probe into the interior of Mars in order to take the first ever measure of the planet’s interior.

An overall assessment of this NASA mission is not very positive. The contribution from its international partners is especially bad. The mission was launched two years late because the French effort to build the seismometer failed. NASA had to subsequently give the job to JPL to get it done. Now the heat sensor is a failure, because the German-built mole has failed to get the heat sensor where it needs to be.

The seismometer and heat sensor were InSight’s only science instruments. This means that we will likely only get results from one.

How to safely watch the November 11 solar transit of Mercury

Link here. The last transit of the Sun by Mercury was in 2016, and the next won’t be until 2032.

The site emphasizes the most important fact: Do not watch this without the proper eye protection! If you fail to heed this warning you will likely go blind, for the rest of your life. However, if you follow the instructions and obtain the proper filters, you can watch most safely.

White House: Cost for each SLS launch is $2 billion

According to the Office of Management and Budget (OPM), the cost for each SLS launch is now estimated to equal $2 billion.

This is the first time anyone in the executive branch has put a number to the SLS per launch cost. NASA has always refused to give a number, for good reason, since this price compares so horribly with even the most expensive private rocket (generally more than $200 million for the biggest members of the Delta rocket family). The Falcon Heavy costs about $100 million, so that to get the same mass into orbit would require two launches, but that would still be only $200 million, one tenth the cost.

The article then notes how this cost is affecting the Europa Clipper mission, which has three launch options, with SLS mandated by Congress.

The powerful SLS booster offers the quickest ride for the six-ton spacecraft to Jupiter, less than three years. But for mission planners, there are multiple concerns about this rocket beyond just its extraordinary cost. There is the looming threat that the program may eventually be canceled (due to its cost and the emergence of significantly lower cost, privately built rockets). NASA’s human exploration program also has priority on using the SLS rocket, so if there are manufacturing issues, a science mission might be pushed aside. Finally, there is the possibility of further developmental delays—significant ground testing of SLS has yet to begin.

Another option is United Launch Alliance’s Delta IV Heavy rocket, which has an excellent safety record and has launched several high-profile missions for NASA. However, this rocket requires multiple gravity assists to push the Clipper into a Jupiter orbit, including a Venus flyby. This heating would add additional thermal constraints to the mission, and scientists would prefer to avoid this if at all possible.

A final possibility is SpaceX’s Falcon Heavy rocket, with a kick stage. This booster would take a little more than twice as long as the SLS rocket to get the Clipper payload to Jupiter, but it does not require a Venus flyby and therefore avoids those thermal issues. With a track record of three successful flights, the Falcon Heavy also avoids some of the development and manufacturing concerns raised by SLS vehicle. Finally, it offers the lowest cost of the three options.

The fact that Congress is requiring the use of SLS for a cost of $2 billion, a rocket that might not even be ready in time, when Europa Clipper could be launched on two other already operational rockets at about a tenth of the cost illustrates well the overall corruption and incompetence that permeates Congress. They really aren’t interested in the interests of the nation. They’d rather distribute money to big contractors and local interests, even if it costs the taxpayer billions and risks the mission’s success.

Sightseeing Central Butte on Mars

Central Butte in foothills of Mt Sharp

Overview showing perspective of panorama

Curiosity has now roved to the very foot of Central Butte, where it has been taking close-up and panorama images of the butte and its geological layers. The panorama above was created from three Curiosity navigation images taken on Sol 2577 (November 6, 2019), here, here, and here.

The overview on the right, based on Curiosity’s position about ten sols ago slightly farther from the butte, still indicates roughly with the yellow lines the area photographed in this panorama. The dotted red line indicates Curiosity’s initial planned route.

Following that route Curiosity will eventually climb up onto the plateau beyond this butte, approaching that higher terrain farther to the west. Once they do, however, they will no longer have access to the geological layers below the surface. Central Butte gives them a window into those layers, which is why they are going to spend some time at this location, first by taking a few sols looking at the butte at this point, then circling around to study its back side.

NASA to fly more year-plus missions to ISS

Leaving Earth: In an effort to shift the research focus on ISS toward learning how to do interplanetary missions, NASA wants to fly more year-plus missions to the station.

Crewmembers usually spend about six months aboard the ISS before coming back down to Earth. But that’s far shorter than a Mars mission would be; the trip to the Red Planet takes eight to nine months one way with current propulsion technology. So, NASA wants more data about the effects of long-duration spaceflight on the physiological and psychological health of astronauts. (The ISS isn’t a perfect Mars analog in this respect, of course; it resides within Earth’s protective magnetosphere and is therefore exposed to less-damaging radiation than a Mars-bound craft would be.)

To date, the agency has launched just one yearlong ISS mission, sending Scott Kelly to live on the orbiting lab from March 2015 to March 2016. Russian cosmonaut Mikhail Korniyenko took part in this flight as well, spending 342 days in space, just like Kelly. NASA has also extended two other astronauts’ ISS stays into the “Mars transit” range: Peggy Whitson racked up 289 days of continuous flight in 2016 and 2017, and Christina Koch, who arrived on the orbiting lab in March, is now scheduled to come down in February 2020.

But these three data points aren’t enough, said [Julie Robinson, NASA’s chief scientist for the ISS Program],. “What we’re saying now is we want to really bump that up a notch and add 10 more subjects to that U.S. database,” she said.

The ISS Program has approved that plan, which NASA can start implementing once a private astronaut taxi is up and running, Robinson added.

NASA should have been doing this from the beginning, The Russians have always wanted to do longer missions, and have been frustrated by NASA’s resistance. That the agency is now pushing to focus ISS research on learning how to do interplanetary travel is wonderful news. It means that we will finally be using ISS properly.

TESS completes 1st survey of southern sky

The TESS science team today released its first full panorama of the southern sky, revealing everything the space telescope has imaged since launch in one image.

The glow of the Milky Way — our galaxy seen edgewise — arcs across a sea of stars in a new mosaic of the southern sky produced from a year of observations by NASA’s Transiting Exoplanet Survey Satellite (TESS). Constructed from 208 TESS images taken during the mission’s first year of science operations, completed on July 18, the southern panorama reveals both the beauty of the cosmic landscape and the reach of TESS’s cameras. “Analysis of TESS data focuses on individual stars and planets one at a time, but I wanted to step back and highlight everything at once, really emphasizing the spectacular view TESS gives us of the entire sky,” said Ethan Kruse, a NASA Postdoctoral Program Fellow who assembled the mosaic at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Within this scene, TESS has discovered 29 exoplanets, or worlds beyond our solar system, and more than 1,000 candidate planets astronomers are now investigating.

A reduced version of this image wouldn’t show anyone its beauty or significance. I have embedded below the fold the short video at the link which shows it quite nicely. The video also summarized the mission quite well.
» Read more

U.S. formally begins exit from Paris climate agreement

On Monday the Trump administration fulfilled one of Trump’s campaign promises and formally began the year-long process to exit the Paris climate agreement.

Secretary of State Mike Pompeo announced the move in a statement. “President Trump made the decision to withdraw from the Paris Agreement because of the unfair economic burden imposed on American workers, businesses, and taxpayers by U.S. pledges made under the Agreement,” Pompeo said. “The United States has reduced all types of emissions, even as we grow our economy and ensure our citizens’ access to affordable energy….The U.S. approach incorporates the reality of the global energy mix,” he added, arguing “innovation and open markets” will drive emissions reductions.

There is ample data that indicates the U.S. is beating the targets of the Paris accord, even though Trump made it clear very shortly after taking office that the government would no longer require its implementation.

The article is amusing in its biased effort to provide a soapbox for every special interest (from environmentalists to Democrats) to express their horror at Trump’s decision. Like most
mainstream outlets, it devotes practically no effort to give the whole story.

1 101 102 103 104 105 274