Scientists propose widespread deep groundwater on Mars

In a new study, scientists are now suggesting that widespread deep groundwater exists on Mars, and is the cause of the recurring slope lineae seen on many Martian slopes.

Previous theories for the cause of lineae proposed both dry and wet processes, all related to either near surface or atmospheric phenomenon. This new hypothesis is different, as it proposes deep groundwater as the source.

“We propose an alternative hypothesis that they originate from a deep pressurized groundwater source which comes to the surface moving upward along ground cracks,” Heggy says. “The experience we gained from our research in desert hydrology was the cornerstone in reaching this conclusion. We have seen the same mechanisms in the North African Sahara and in the Arabian Peninsula, and it helped us explore the same mechanism on Mars,” said Abotalib Z. Abotalib, the paper’s first author.

The two scientists concluded that fractures within some of Mars’ craters, enabled water springs to rise up to the surface as a result of pressure deep below. These springs leaked onto the surface, generating the sharp and distinct linear features found on the walls of these craters. The scientists also provide an explanation on how these water features fluctuate with seasonality on Mars.

This conclusion is most intriguing, but it is far from certain. Scientists have found a lot of lineae. For all of them to come from deep groundwater rising under pressure through fractures seems unlikely.

Nonetheless, this research indicates the growing belief among Mars researchers that water exists everywhere on Mars, and is accessible.

Parker about to do its second close fly-by of Sun

The Parker Solar Probe is now approaching its second close fly-by of the Sun, set to occur on April 4.

During this solar encounter phase, which lasts until April 10, the spacecraft’s four suites of science instruments are fully operational and storing science data collected from within the Sun’s corona. As designed, Parker Solar Probe will be out of contact with Earth for several days during the solar encounter. This allows the spacecraft to prioritize keeping its heat shield, called the Thermal Protection System, oriented towards the Sun, rather than pointing its transmitter towards Earth. Science data from this second solar encounter phase will downlink to Earth over several weeks later in spring 2019.

This fly-by the spacecraft will match the record of 15 million miles set during the first orbit as the closest any human spacecraft has ever gotten to the Sun. Future orbits however will get closer.

Saturn’s rings desposit material on its tiny nearest moons

Pan

A new analysis of data from Cassini has confirmed that the tiny moons orbiting close to Saturn’s rings are repeatedly coated by material from those rings.

The new research, from data gathered by six of Cassini’s instruments before its mission ended in 2017, is a clear confirmation that dust and ice from the rings accretes onto the moons embedded within and near the rings.

Scientists also found the moon surfaces to be highly porous, further confirming that they were formed in multiple stages as ring material settled onto denser cores that might be remnants of a larger object that broke apart. The porosity also helps explain their shape: Rather than being spherical, they are blobby and ravioli-like, with material stuck around their equators. “We found these moons are scooping up particles of ice and dust from the rings to form the little skirts around their equators,” Buratti said. “A denser body would be more ball-shaped because gravity would pull the material in.”

This result is not a surprise. It has been hypothesized since the first images of these weirdly shaped moons (as illustrated by the picture of Pan from March 2017 above) were first beamed back by Cassini. This new analysis just helps confirm it.

I will add that searching through Behind the Black for that image of Pan made me realize how much I miss Cassini. I used to post lots of its images, always spectacular and breath-taking. With it gone, the images from Saturn have stopped, and will not resume for decades to come.

Rivers on Mars?

The uncertainty of science: A new study of Martian geology suggests that rivers ran on the surface are longer and later in the planet’s history than previously thought.

Seeking a better understanding of Martian precipitation, Kite and his colleagues analyzed photographs and elevation models for more than 200 ancient Martian riverbeds spanning over a billion years. These riverbeds are a rich source of clues about the water running through them and the climate that produced it. For example, the width and steepness of the riverbeds and the size of the gravel tell scientists about the force of the water flow, and the quantity of the gravel constrains the volume of water coming through.

Their analysis shows clear evidence for persistent, strong runoff that occurred well into the last stage of the wet climate, Kite said.

The results provide guidance for those trying to reconstruct the Martian climate, Kite said. For example, the size of the rivers implies the water was flowing continuously, not just at high noon, so climate modelers need to account for a strong greenhouse effect to keep the planet warm enough for average daytime temperatures above the freezing point of water.

The rivers also show strong flow up to the last geological minute before the wet climate dries up. “You would expect them to wane gradually over time, but that’s not what we see,” Kite said. The rivers get shorter—hundreds of kilometers rather than thousands—but discharge is still strong. “The wettest day of the year is still very wet.”

They also found that these rivers had been wider than those seen on Earth, which would make sense if there were few if any plant life to fix the banks in place, as on Earth. The lower Martian gravity probably plays an even larger role in this.

You can read the paper here. The study confirms many other previous studies of Martian surface features, which have repeatedly found evidence that liquid water once existed on Mars. That it found the water flowed later and more extensively only makes more difficult the deeper and probably biggest mystery of Martian geology, however, which is that scientists have not been able to come up with a historic atmospheric model that would allow that liquid water to exist. Mars today is too cold and its atmosphere is too thin for liquid water to flow, and the evidence from the past does not suggest an atmosphere different enough to change that.

It must have been different, but we don’t know how that was possible, based on the data we presently have. And this study makes solving that mystery even more difficult.

Fresh crater in Martian northern lowlands

Fresh impact crater in northern lowlands
Click for full image.

Today’s cool image could be a sequel to yesterday’s. The image on the right, cropped to post here, was one of the many images released from Mars Reconnaissance Orbiter’s (MRO) high resolution camera in March. The release, uncaptioned, calls this a “fresh impact crater.”

In many ways it resembles the craters I posted yesterday, with a splashed look and a crater floor with features that favor the north. Why that divot exists in the northern half of the floor is to me a mystery. The crater floor looks like a sinkhole to me, with material slowly leaking downward at that divot to cause this surface depression. Yet the rim screams impact. And yet, why the double rim? Was this caused by ripples in wet mud when the bolide hit?

Location of fresh impact crater

The crater itself is all by itself deep in those northern plains. You can see its location as the tiny white rectangle slightly to the left of the center in the overview image to the right. The giant Martian volcanoes can be seen at the image’s right edge, almost a quarter of a planet away. This is at a very low elevation on Mars, almost as deep as Hellas Basin.

For some fun context, this location is very close to where Viking 2 landed in 1976. The Mars 2020 rover meanwhile will land at this overview image’s left edge, on the western shore of the oval cut into southern highlands at about the same latitude as Olympus Mons, the largest volcano on the right. And InSight and Curiosity sit almost due south, with Curiosity in the yellow in the transition from green to orange, and InSight to the north in the green.

Strange craters in the Martian northern lowlands

Strange crater in the northern lowlands
Click for full image.

Cool image time! The image on the right, cropped and rotated to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) and released in the monthly image dump provided by the science team. The release had no caption. It merely described this as a “Layered mound in crater.”

That is certainly what is is. However, layering suggests a regionwide process. The crater to the immediate northeast (the rim of which can be seen in the upper corner of this image), does not have the same kind of layering. (Be sure to click on the image to see that other crater.) Its crater floor is instead a blob of chaotic knobs, with the only layering scattered in spots along its north interior rim.

That the layering of both craters favors the north suggests a relationship, but what that is is beyond me. Prevailing winds? Maybe, but I don’t have the knowledge to explain how that process would work.

It is not even certain that these two craters were formed by impact. They are located in the northern lowlands where an intermittent ocean is believed to have once existed, and thus might be remnants of that ocean’s floor. That they both have a muddy appearance reinforces this hypothesis, but once again, I would not bet much money on this theory. The features here could also be expressing the effect of an impact on a muddy seafloor.

In either case the craters imply that the ocean that might have once been here existed a long enough time ago for these craters to form (either by impact or some other process) and then evolve. This has been a relatively dry place for a very long time.

The layering at the Martian poles

Layering in the east side of Burroughs Crater
Click for full image.

Layering in the west side of Burroughs Crater
Click for full image.

In the past month the science teams of both Mars Reconnaissance Orbiter (MRO) and Trace Gas Orbiter (TGO) have released images showing the strange layering found in Burroughs Crater, located near the Martian south pole.

The top image above is the MRO image, rotated and cropped to post here. To the right is a cropped and reduced section of the TGO image.

Though both images look at the inside rim of the crater, they cover sections at opposite ends of the crater. The MRO image of the crater’s east interior rim, with the lowest areas to the right, while the TGO image shows the crater’s northwest interior rim, with the lowest areas on the bottom. As noted at the TGO image site:
» Read more

Jezero Crater: The landing site for the Mars 2020 rover

Jezero Crater delta
Jezero Crater delta

At this week’s 50th Lunar and Planetary Science Conference in Texas, there were many papers detailing the geological, topographical, chemical, meteorology and biological circumstances at the landing sites for the 2020 Martian rovers, Jezero Crater for the U.S.’s Mars 2020 and Oxia Planum for Europe’s Rosalind Franklin.

Most of these papers are a bit too esoteric for the general public (though if you like to delve into this stuff like I do, go to the conference program and search for “Jezero” and “Oxia” and you can delve to your heart’s content).

Oxia Planum drainages

These papers do make it possible to understand why each site was chosen. I have already done this analysis for Rosalind Franklin, which you can read here and here. Oxia Planum is in the transition between the southern highlands and the northern lowlands (where an intermittent ocean might have once existed). Here can be found many shoreline features. In fact, one of the papers at this week’s conference mapped [pdf] the drainage patterns surrounding the landing ellipse, including the water catchment areas, as shown by the figure from that paper on the right.

With this post I want to focus on Jezero Crater, the Mars 2020 landing site. The image above shows the crater’s most interesting feature, an impressive delta of material that apparently flowed out of the break in the western wall of the crater.

This image however does not tell us much about where exactly the rover will land, or go. To do that, we must zoom out a bit.
» Read more

The changing surface of Comet 67P/C-G

Changes on Comet 67P/C-G after outburst

More results from this week’s 50th Lunar and Planetary Science Conference in Texas! Two presentations today focused on showing the dramatic changes on the surface of Comet 67P/C-G that were documented by Rosetta. The first focused on the changes produced after massive outbursts during the comet’s closest approach to the Sun. The second documented several more evolutionary changes that changed more slowly.

The image to the right comes from the first paper, and shows the changes that took place on the surface following one massive outburst, with the numbers in red indicating unchanged features between the two photographs.

It appears an entire cliff section has disappeared, replaced by a single large giant boulder. Interestingly there is no obvious vent opening for the outburst. Instead, it appears that the eruption occurred below ground, and merely blasted part of the surface into space. As noted in the paper:

We report here on a third cliff collapse that occurred in the southern hemisphere in the Sobek region [7], which corresponds to the neck region in the 67P’s southern hemisphere. Due to the close alignment of the 67P’s
southern summer solstice with perihelion passage, the southern hemisphere is subjected to higher solar input, resulting in higher levels of activity and more intensive erosion. The location of the collapsing cliff in Sobek is consistent with the inferred source region of one of the strong outbursts [previously reported].

The paper also showed evidence of a large boulder more than a 100 feet across moving several hundred feet over a period of seven months.

The second paper showed various changes in a number of depressions and scarps on the smooth flat surfaces near the narrow neck that connected the comet’s two lobes. Examples of this terrain can be seen in high resolution pictures here and here and here and here.

From this data scientist suggest that the neck region is slowly dissolving away, its material in these flat areas flying away because the neck happens to be a region of low gravity.

Lava tubes on Alba Mons

Lava tubes on the western slope of Alba Mons

During oral presentations today at this week’s 50th Lunar and Planetary Science Conference in Texas, scientists revealed [pdf] a map showing what they believe are numerous lava tubes flowing down the western slope of the giant Martian volcano Alba Mons.

The image on the right is taken from their paper. The red lines indicate collapsed tube sections, maroon collapsed sections on a ridge, and yellow volcanic ridges, which I assume are external surface flows. From their paper:

Lava tube systems … occur throughout the western flank, are concentrated in some locations, and are generally radial in orientation to Alba Mons’ summit. Lava tubes are typically discontinuous and delineated by sinuous chains of elongate depressions, which in many cases are located along the crests of prominent sinuous ridges. Lava tube systems occur as both these ridged forms with lateral flow textures and more subtle features denoted by a central distributary feature within the flat-lying flow field surface. Significant parts of the sinuous volcanic ridges show no collapse features, indicating a distinctive topographic signature for Alba Mons’ lava tubes.

Alba Mons is in some ways the forgotten giant volcano on Mars.
» Read more

Yutu-2 heads west!

LRO images of Yutu-2 on the Moon
Click for full image.

A new image from Lunar Reconnaissance Orbiter (LRO) shows the path taken by the Chinese lunar rover Yutu-2 during its second lunar day of travel on the Moon. The LRO images on the right, cropped and reduced in resolution to show here, compares the rovers position at the start and end of February. The white arrow indicates the rover, with its Chang’e-4 lander visible between the three craters to the east. As noted by the LRO science team:

LRO passes over any given place on the Moon at least once every month (in the daylight), allowing the westward progress of the Yutu-2 rover to be seen. At the end of February, Yutu-2 was 69 meters from it’s home base, the Chang’e 4 lander; LROC images show Yutu-2 made 46 meters of westward progress during the month of February.

It appears from these orbital images that they are taking the smoothest route, with the fewest obstacles, away from the lander.

Hayabusa-2 to take close look at planned explosive impact point on Ryugu

Flight plan for Hayabusa-2's rehearsal

Beginning today Hayabusa-2 will do a two-day close approach of Ryugu in order to get good baseline images of the point on the surface where they will fire an explosive projectile in the first week in April. As they note:

Currently, we have scheduled the small carry-on impactor operation (SCI operation) for the first week in April. The purpose of the SCI operation is to create a crater on the surface of Ryugu, and it is important to be able to compare the asteroid surface before and after the SCI operation.

The graph on the right shows the flight plan. I expect they will do the same for this maneuver as they have done with previous close approaches, and provide real-time images as they happen.

Streaky Mars: Slope streaks and recurring slope lineae

New recurring lineae on Mars
Click for source paper [pdf].

Numerous presentations at this week’s 50th Lunar and Planetary Science Conference in Texas have focused on two different changing features on the Martian surface, dubbed slope streaks and recurring slope lineae (or RSLs, an example of an unnecessary and unwieldy acronym that I avoid like the plague).

These apparently are considered two different phenomenon (with some overlap), something I had not recognized previously. For example, one presentation [pdf] this week described slope streaks as:

…gravity-driven dark or light-toned features that form throughout the martian year in high-albedo and low-thermal-inertia equatorial regions of Mars. The distinctive features originate from point sources on slopes steeper than ~20°, follow the topographic gradient, extend or divert around small obstacles, and propagate up to maximum lengths of a few kilometers. The streaks brighten with time, sometimes become brighter than their surroundings, and fade away over timescales of decades. [emphasis mine]

An example can be seen here. This is in contrast to the recurring slope lineae, shown in the image above, which another paper [pdf] described as:

…dark linear features that occur on the surface of steep slopes in the mid-latitudes of Mars. These areas are warm, occasionally exceeding temperatures of 273-320 K. [Lineae] recur over multiple years, growing during warm seasons and fading away during colder seasons. Their apparent temperature dependency raises the possibility that liquid water is involved in their formation. [emphasis mine]

I have highlighted the key differences. While slope streaks are long lived and change slowly, lineae change with the Martian seasons. And the slope streaks appear to exist at lower latitudes. These difference means that the formation process of each must be also different.

The problem is that scientists still don’t know what causes either, though they have many theories, involving both wet and dry processes.

Most of the presentations at the conference this week focused on the recurring lineae, which I suspect is because of their seasonal aspect. This feature strongly suggests a water-related source for the lineae, and everyone who studies Mars is always focused on finding sources on Mars where liquid water might be found. Also, slope streaks appear more often in dunes, which also strongly suggests a dry process. One paper, however, did a comparison study of lineae with one specific kind of dune slope streak to see if the freatures might be related.

The most interesting result [pdf] for all these papers documented the apparent increase in recurring lineae following the global dust storm last year. The image at the top of that post is from this paper, and shows a fresh lineae where none had been prior to the storm. From the paper’s abstract:
» Read more

Land of mesas

Ariadnes Colles
Click for full image.

Cool image time! The Mars Odyssey science team today released the image on the right, cropped and rotated to show here, of a region on Mars named “Ariadnes Colles.”

The term colles means hills or knobs. The hills appear brighter than the surrounding lowlands, likely due to relatively less dust cover.

This is certainly a place with lots of hills, or to be more precise, mesas, as many of them seem to be flat topped.

The lack of dust cover on the tops is probably because, like on Earth, the winds blow much better once you get a bit above the surface. (This is why sailing ship builders kept adding higher and higher sails to their ships, until the top sails of clipper ships rose a hundred-plus feet above the deck.) These better winds clean off the mesa tops, just as they did to the solar panels on the rovers Opportunity and Spirit several times during their long missions.

Ariadnes Colles is another example of Martian chaotic terrain. Since this region is located deep in the cratered and rough southern highlands of Mars, the erosion that created these mesas was likely not water-flows. Was it wind? Ice?

Your guess is as good as anyone’s.

Confirmed: Ryugu is a rubble pile

Close-up of Ryugu's surface
Click for source paper [pdf].

At a special session today dedicated to results from the Hayabusa-2 probe to the asteroid Ryugu at the 50th Lunar and Planetary Science Conference in Texas, scientists confirmed from numerous data and images that the asteroid has a low density, is covered with boulders and pebbles, is very porous, and is thus a rubble pile that is held together by gravity, barely.

From their lead presentation [pdf]:

The estimated total porosity is even higher than that of rubble-pile asteroid Itokawa (44 ± 4%), indicating that asteroid Ryugu is also a rubble pile. This is consistent with a theory arguing that all Solar System bodies with diameter of ~1 km should be rubble piles and might have formed from reaccumulation of fragments generated by catastrophic disruption events of ~100-km sized parent bodies.

They also posit that the asteroid’s diamond shape is caused by the asteroid’s 3.5 hour rotation, which causes its weak rubble pile structure to be easily pulled to the equator, and then outward.

Another paper [pdf] did crater counts, and found that there are fewer large craters than one would expect.

The density of large craters (D>100 m) on Ryugu is lower than the empirical saturation level and its slope is steeper than that of the saturated distribution, suggesting that craters larger than 100 m are not saturated and the size distribution reflects the crater production function. However, craters smaller than 100 m are significantly under-saturated, suggesting that some crater erasure processes such as seismic shaking and armoring effect are active on the Ryugu surface. Based on cratering chronology model for the main belt, the surface age of Ryugu is estimated to be 5–200 [million years] from the size–frequency distribution of craters larger than 100 m.

In other words, this rubble pile is constantly being shaken by its rotation and time and later impacts, which steadily rewrites the surface.

If this asteroid was headed to Earth, I imagine the only safe solution to prevent disaster would be to slowly and gently deflect it so it only flies past. To do this will require an arrival far in advance of the schedule impact, to give time for the deflection process to work.

Snow on Mars?

Snow on Mars?
Click to see full image.

At today’s presentations at the 50th Lunar and Planetary Science Conference in Texas, scientists showed images and data [pdf] suggesting that many of the Martian gullies found on cliff faces are formed when the dust layer protecting underlying snow gets blown away and the exposed snow/ice then melts.

The image on the right was taken by the high resolution camera of Mars Reconnaissance Orbiter (MRO) in 2009, and has been cropped to post here. The white streaks are what they suggest is exposed ice/snow.

From their paper [pdf]
» Read more

Hayabusa-2 schedules explosion on Ryugu

The Hayabusa-2 science team has scheduled April 5 for when it will use the spacecraft to fire an explosive device into Ryugu to create a crater and debris cloud.

The probe is scheduled to detach a device loaded with explosives some 500 meters away from Ryugu. The device will set off the explosives using a timer some 40 minutes later and launch a copper “impactor” weighing about 2 kilograms into the asteroid’s surface.

The target point is several hundreds of meters away from where the space probe first touched down. The mission will require the spacecraft to move quickly to the other side of the asteroid so it won’t get hit by flying shards from the blast. A detached camera will shoot the moment of impact.

JAXA will analyze the size and shape of the crater, and how rocks fly off in a bid to collect underground samples for possible clues to the origin of the solar system.

This is different than the touchdown last month, as the spacecraft itself will not get close to the asteroid.

A pond on Bennu

Pond on Bennu
Click for full resolution.

The OSIRIS-REx science team has released new high resolution images of one particular area on Bennu’s northern hemisphere. The image on the right, cropped and reduced to post here, shows what they label a “pond of regolith,” seen as the relatively smooth area in the upper left.

This is not literally a pond, but instead is a low-lying spot where smaller particles have settled over time, producing a flattish area that looks, and in some ways, resembles a pond or puddle, only in this case the material isn’t water but fine-grained dust or pebbles.

On March 19 the science team will be presenting their initial results at a special session at the 50th Lunar and Planetary Science Conference in Texas. That same day they will hold a press conference summarizing the most interesting aspects of those results. Stay tuned.

New analysis supports catastrophic floods and intermittent ocean on Mars

The intermittent ocean at the outlet to Marineris Valles

A new analysis of Martian data once again suggests that an intermittent ocean once existed in the planet’s northern hemisphere, and that it was fed by catastrophic floods coming down from the volcanoes through Marineris Valles.

“Our simulation shows that the presence of the sea would have attenuated cataclysmic floods, leading to shallow spillovers that reached the Pathfinder landing site and produced the bedforms detected by the spacecraft,” said [lead scientist Alexis Rodriguez].

The team’s results indicate that marine spillover deposits contributed to the landscape that the spacecraft detected nearly 22 years ago, and reconcile the mission’s in situ geologic observations and decades of remote-sensing outflow channel investigations.

The sea bears an uncanny resemblance to the Aral Sea on Earth in that in both instances they lack distinct shoreline terraces. Its rapid regression over shallow submerged slopes resulted in rates of shoreline front retreat too fast for the terraces to form. The same process could partly account for the long-recognized lack of northern plains shorelines.

“Our numerical simulations indicate that the sea rapidly became ice-covered and disappeared within a few thousand years due to its rapid evaporation and sublimation. During this time, however, it remained liquid below its ice cover,” said PSI Senior Scientist Bryan Travis, a co-author in the paper.

The map above shows the outlet region to the west and north of Marineris Valles. (The paper from which it is adapted is available on line here.) It shows that inland sea, created by the catastrophic floods. Because it sits at a lower elevation than the plains to the north, the floods that entered it ponded there, where they dried up. Only when the floods were at their highest did the water spill out into the northern plains.

In reading the paper, it confirms many of the suppositions I myself have made in my frequent posts analyzing numerous Mars Reconnaissance Orbiter (MRO) images, such as the lack of a clear shoreline because the ocean was short-lived. As it dried up its edge left patches of shoreline, at different elevations and in pondlike patterns, almost like the beach debris left behind by the tide.

The paper also shows that some of my guesses were not quite correct. For example, this new analysis says that the catastrophic floods only partly carved out the chaos terrain of Hydraotes Chaos, rather than do it all as I supposed here. Instead, the floods contributed, but much of the erosion occurred when the short-lived inland sea existed here, eroding away at the mesas from all sides.

Read it all. Though this remains a simulation based on what is presently very incomplete data and thus has many uncertainties, it will give you a much deeper understanding of what we presently theorize about the past geological history of Mars.

A gathering of dust devils

Dust devil tracks
Click for full resolution image.

A bunch of cool images! The European Space Agency (ESA) today released more than a dozen Martian images taken by the camera on its Trace Gas Orbiter spacecraft.

In addition to a snapshot of InSight and its landing area, “The images selected include detailed views of layered deposits in the polar regions, the dynamic nature of Mars dunes, and the surface effects of converging dust devils.” The release also included images showing details of two of Mars’ giant volcanoes, Olympus Mons and Ascraeus Mons.

The image I have highlighted to the right, reduced to post here, shows a spot on Mars where for some unknown reason dust devils love to congregate.

This mysterious pattern sits on the crest of a ridge, and is thought to be the result of dust devil activity – essentially the convergence of hundreds or maybe even thousands of smaller martian tornadoes.

Below is a side-by-side comparison of this image (on the right) with a Mars Reconnaissance Orbiter (MRO) image taken in 2009 (on the left).
» Read more

Trump’s budget will not “destroy” or “gut” science

Our terrible press does it again. Yesterday the Trump administration released its proposed 2020 federal budget [pdf], and as usual the pro-government propagandists in the media got to work to lobby against it.

This proposed budget will do none of these things.

These articles all fail to apply even the slightest and tiniest bit of context to their analysis. The budget numbers proposed by the Trump administration might reduce the budgets of some science agencies from what they had gotten the year before, but overall the proposed budgets remain gigantic, far more than received by these same agencies only a few years before.

You don’t believe me? Let me open your eyes.
» Read more

New research detects increase in Bennu’s rotation

New research using ground-based observations has detected a slight increase over time in the daily rotation of the asteroid Bennu.

The new research finds the asteroid’s rotation is speeding up by about 1 second per century. In other words, Bennu’s rotation period is getting shorter by about 1 second every 100 years.

While the increase in rotation might not seem like much, over a long period of time it can translate into dramatic changes in the space rock. As the asteroid spins faster and faster over millions of years, it could lose pieces of itself or blow itself apart, according to the study’s authors.

…The change in Bennu’s rotation could be due to a change in its shape. Similar to how ice skaters speed up as they pull in their arms, an asteroid could speed up as it loses material.

Nolan and his co-authors suggest the reason for the increase in Bennu’s rotation is more likely due to a phenomenon known the YORP effect. Sunlight hitting the asteroid is reflected back into space. The change in the direction of the light coming in and going out pushes on the asteroid and can cause it to spin faster or slower, depending on its shape and rotation.

Truth is, this is not a very significant finding. Asteroids don’t weight much, and thus have very weak gravitational fields. It is therefore very easy to change their orbit and rotation, as well as add or subject material from them.

In this sense, the conclusion above is likely incorrect. What they have found is that the asteroid’s rotation increased at a pace of about 1 second per century, during their study period. Their data only covers the period from 1999 to 2005. Bennu could easily slowed its rotation, or increased it even more, during other times.

Martian massive landslides

Though scientists have found some evidence of slow erosion and change on the Martian surface, it is today generally inactive. While the weak wind of Mars’ thin atmosphere continues to work its will, and the likely presence of underground frozen water acts to shift the surface shape as the seasons come and go, none of this happens quickly.

Essentially, Mars is a quiet place.

Once however catastrophic events took place, gigantic floods flowing down to the east from the planet’s huge volcanoes to carve out Marineris Valles, the solar system’s largest known canyon. As that water rushed eastward it ripped the terrain apart quickly, creating deep side canyons, drainage valleys, and chopped up regions now dubbed as chaos terrain, multiple mesas separated by numerous fissure-like canyons.

Overview of Marineris Valles and landslide

The overview map on the right shows Valles Marineris and its drainage to the east and north into the vast northern plains of Mars. It also shows the location of one of the largest regions on Mars of chaos terrain, dubbed Hydraotes Chaos, located close to the mouth of this gigantic drainage system more than 2,500 miles long.

Massive Martian landslide
Click for full image.

Recently scientists have used the high resolution camera on Mars Reconnaissance Orbiter (MRO) to begin taking images of the massive landslides on the face of the mesa north of Hydraotes Chaos that was hit directly by these floods. The location of the most immediately interesting of these landslide images is also indicated on this overview image.

To the right is that image, rotated, cropped, reduced, and annotated to post here. The white boxes indicate two full resolution sections that I highlight below at full resolution.

This image shows that full cliff. The total drop from the plateau at the top to the floor where Hydraotes Chaos is located to the south is approximately 8,200 feet, almost exactly comparable to the depth of the north rim of the Grand Canyon.

The image shows numerous evidence of avalanches and erosion, both at its base and at its rim. None of these avalanches likely occurred during those catastrophic floods, but long afterward.
» Read more

Hayabusa-2 to get close to Ryugu again to observe next touchdown point

Hayabusa-2’s engineering team has decided it will on March 8 do a close approach to within 75 feet of its next planned touchdown target site in order to inspect it.

The DO-S01 operation schedule is shown in Figure 2. The spacecraft will begin descending on March 7 at 13:27 (JST, onboard time: times below are stated similarly) at a speed of 0.4m/s. The speed will then be reduced to 0.1 m/s around 23:47 on the same day. Continuing descent at this rate, we will reach our lowest altitude at around 12:22 on March 8 and then immediately begin to rise. The altitude of this lowest point will be about 23m. Please note that the times stated here are the planned values but the actual operation times may differ.

As before, they will upload navigation images as this approach is happening.

InSight hits a rock

Engineers have called a pause in InSight’s drilling operation to insert a heat sensor as much as 16 feet into the Martian soil because it appears the drill has hit a large obstruction.

It penetrated to a depth between 18cm and 50cm into the Martian soil with 4,000 hammer blows over a period of four hours, explained Tilman Spohn, HP3’s principal investigator from the German space agency (DLR). “On its way into the depths, the mole seems to have hit a stone, tilted about 15 degrees and pushed it aside or passed it,” he added. “The mole then worked its way up against another stone at an advanced depth until the planned four-hour operating time of the first sequence expired.”

Prof Spohn said there would now be a break in operations of two weeks while the situation was assessed.

When these facts were first reported on March 1st, the press release did not make it clear at that time that the hammer drill was actually blocked. If it cannot drill down further, this will put a crimp in the heat sensor’s ability to measure Mars’s internal temperature. Right now it is only about a foot down, which on Earth would still have it influenced by surface temperatures.

Possible cure for AIDS?

In the past week researchers have revealed that two different patients have apparently had the AIDS HIV virus eliminated from their bodies.

The virus infects cells of the immune system, which are made in the bone marrow. A man known as the “Berlin patient” was the first person to become HIV-free after cancer treatment, back in 2007. To treat his leukaemia – a cancer of the immune system – he was given a treatment that involved killing nearly all his immune cells with radiotherapy or drugs, and then replacing them with cells from a donor. This donor was naturally resistant to HIV, thanks to a rare but natural mutation in a gene called CCR5.

Since then, no one else had had HIV eliminated from their body in the same way, until a second case was announced on Monday. This person, known as the London patient, was given bone marrow from a donor with the CCR5 mutation as a treatment for Hodgkin’s lymphoma, another immune cell cancer. He was advised to stop taking the antiviral drugs that keep the virus in check about a year afterwards. Eighteen months later, the virus hasn’t returned.

A possible third case was then announced today, at the Conference on Retroviruses and Opportunistic Infections in Seattle.

The more than dozen year gap between the first cure and the two this week is partly because it takes so long to perform the treatment and then confirm the virus is gone. Moreover, this treatment can only be given to a limited number of patients, because of the risks involved.

Nonetheless, if this cure is proven viable, it will be a great triumph for modern science.

New method to turn CO2 into coal

Scientists have developed a new relatively low-cost method for turning atmospheric carbon dioxide into solid carbon that then be used as a synthetic fuel.

“By using liquid metals as a catalyst, we’ve shown it’s possible to turn the gas back into carbon at room temperature, in a process that’s efficient and scaleable,” [Dr. Torben Daeneke, a research scientist at RMIT University.] said. The liquid metal catalyst was developed by the researchers with specific surface properties, making it extremely efficient at conducting electricity, while chemically activating the surface.

According to the press release: “The carbon dioxide is dissolved in a beaker with an electrolyte liquid and a small amount of the liquid metal, which is then charged with an electric current. The CO2 slowly converts into solid flakes of carbon, which are naturally detached from the liquid metal surface, allowing the continuous production of carbonaceous solid.”

And, yes, the process has the potential to yield a future energy source. The carbon produced may be able to be used as an electrode.

This is excellent news, for a lot of reasons. At the same time, I always find this effort to use technology to grab and convert atmospheric carbon dioxide somewhat ironic. We already have a very efficient biological tool for doing this, called plant life, which is presently thriving worldwide because of the increased CO2 in the atmosphere. The more you plant, the more oxygen you create. And what’s more, it gives you a lot more food to eat. Why do anything else?

Hat tip reader John Vernoski.

New analysis suggests photon could make dark matter unnecessary

The uncertainty of science: A new analysis by physicists that assumes a very very low mass for the photon, the particle that transmits light, could very well explain the motions of stars in galaxies and make dark matter unnecessary.

Professor Dmitri Ryutov, who recently retired from the Lawrence Livermore National Laboratory in California, USA, is an expert in plasma physics. He was awarded the American Physical Society’s (APS) 2017 Maxwell Prize for Plasma Physics for his achievements in the field. Physicists generally credit Ryutov with establishing the upper limit for the mass of the photon. As this mass, even if it is nonzero, is extremely small, it is usually ignored when analyzing atomic and nuclear processes. But even a vanishingly tiny mass of the photon could, according to the scientists’ collaborative proposal, have an effect on large-scale astrophysical phenomena.

While visiting Johannes Gutenberg University Mainz (JGU), Ryutov, his host Professor Dmitry Budker of the Helmholtz Institute Mainz (HIM), and Professor Victor Flambaum, Fellow of the Gutenberg Research College of Mainz University, decided to take a closer look at the idea. They were interested in how the infinitesimally small mass of the photon could have an effect on massive galaxies. The mechanism at the core of the physicists’ assumption is a consequence of what is known as Maxwell-Proca equations. These would allow additional centripetal forces to be generated as a result of the electromagnetic stresses in a galaxy.

Are the effects as strong as those exerted by dark matter?

“The hypothetical effect we are investigating is not the result of increased gravity,” explained Dmitry Budker. This effect may occur concurrently with the assumed influence of dark matter. It may even – under certain circumstances – completely eliminate the need to evoke dark matter as a factor when it comes to explaining rotation curves. Rotation curves express the relationship between the orbital speeds of stars in a galaxy and their radial distance from the galaxy’s center. “By assuming a certain photon mass, much smaller than the current upper limit, we can show that this mass would be sufficient to generate additional forces in a galaxy and that these forces would be roughly large enough to explain the rotation curves,” said Budker. “This conclusion is extremely exciting.” [emphasis mine]

They readily admit that this first analysis is very preliminary, and causes some additional theoretical problems that conflict with known data. Nonetheless, this simple idea could eliminate the need for the additional dark matter particle that physicists have had trouble explaining or even finding.

In fact, I am somewhat baffled why physicists had not proposed this decades ago. It provides a much more straightforward explanation for the higher rotational curves in the outer parts of galaxies, and does not require any new physics.

New project to map shallow water sources on Mars

Scientists at the Planetary Science Institute (PSI) in Arizona have begun a new project to map the near-surface ice deposits in the low elevation regions of the Martian northern hemisphere.

Two teams led by Putzig and Morgan were contracted by NASA to pursue separate mapping efforts of subsurface ice deposits in Arcadia Planitia. After their mid-term reports showed significant synergy, the teams were combined in a joint project called “Subsurface Water Ice Mapping (SWIM) on Mars,” which extends the coverage of the mapping project from an experimental swath over Arcadia Planitia to all other low elevation regions across the Martian Northern Hemisphere. “Water ice will be a critical resource for human explorers on Mars, not only for life support but also for generating fuel to power equipment on the ground and rockets for the return journey to Earth,” said Putzig, a Senior Scientist at PSI. “Maps that identify the nature and availability of potential water resources will help determine where humanity will establish its first outposts on Mars.”

The SWIM team is producing new maps of the likelihood of subsurface ice deposits over these regions by combining radar, thermal, neutron, altimetry, and image data from several Mars-orbiting spacecraft. The team is also employing newly developed techniques that include using radar returns to infer the presence of ice within the top 5 meters of the crust and applying advanced radar processing to improve resolution at depth and to estimate the purity of ice in the subsurface.

Unlike most planetary research, this project is not aimed specifically at understanding the geology of Mars. Instead, it appears focused on the needs of future human exploration and settlement, finding easily accessible water sources in the northern hemisphere of Mars. The spots they identify will likely be the first Martian real estate of significant value.

NASA cancels overbudget instrument for Europa clipper

Because its budget had ballooned to three times its original estimate, NASA has decided to cancel a science instrument for its Europa Clipper probe to Jupiter’s moon.

[Thomas Zurbuchen, NASA associate administrator for science] said in the memo that, at the time of the February review, ICEMAG’s estimated cost has grown to $45.6 million, $16 million above its original cost trigger and $8.3 million above a revised cost trigger established just a month earlier. That cost was also three times above the original estimate in the ICEMAG proposal. “The level of cost growth on ICEMAG is not acceptable, and NASA considers the investigation to possess significant potential for additional cost growth,” Zurbuchen wrote in the memo. “As a result, I decided to terminate the ICEMAG investigation.”

The contrast between how NASA operates in its unmanned planetary science programs with how the agency operates in its manned programs is striking. The agency’s planetary program is probably its most successful achievement, and has been for decades. Spacecraft almost always get built close to budget, launch on time, and accomplish amazing things when their arrive at their planetary targets, either the Moon, Venus, Mars, Jupiter, Saturn, or Pluto and beyond. Part of the reason for this success is a willingness by NASA to make hard decisions, such as the one above, even if it might ruffle some political feathers. The result is that everyone focuses on getting the job done, on budget and on time. They know that if they screw up, as the ICEMAG team did here, they might find themselves on the chopping block.

In contrast, as I noted in my previous post, NASA allows things to get out of control in its manned program. In fact, they might consider this a feature of the system, not a bug. The goal is not to accomplish anything, but to funnel cash to the states and districts of elected officials. The result is that nothing ever flies, or if it does, it does so very late, very over budget, and often with technical difficulties. Worse, the focus on pleasing corrupt lawmakers like Senator Richard Shelby (R-Alabama) means that NASA is often hostile to the success in manned space by others, such as SpaceX.

1 116 117 118 119 120 279