BepiColumbo successfully completes Earth flyby

The Earth seen from BepiColumbo

BepiColumbo, the joint European-Japanese mission to Mercury, has successfully completed its fly-by of Earth.

The image to the right is one of the images of Earth it took during the fly-by. The white streak in the upper right is part of the spacecraft.

Mission scientists switched on a number of the duo’s instruments for the Earth pass, to test and calibrate them. Unfortunately, the main camera on Europe’s MPO couldn’t operate because of its position in the stack. But small inspection cameras to the side of Bepi did manage to grab some black & white pictures of the Earth and Moon.

The quote call’s the spacecraft a “duo” because it really is two orbiters presently latched together, the European Mercury Planetary Orbiter (MPO) and the Japanese Mercury Magnetospheric Orbiter (MMO). When it gets to Mercury these will separate.

OSIRIS-REx to do sample-grab rehearsal at Bennu

The OSIRIS-REx science team today released a step-by-step description of the first touch-and-go sample grab rehearsal, planned for April 14, 2020.

During the rehearsal, dubbed “Checkpoint,” they expect the spacecraft to get less than 250 feet from the surface of the asteroid Bennu before pulling away.

Checkpoint rehearsal, a four-hour event, begins with the spacecraft leaving its safe-home orbit, 0.6 miles (1 km) above the asteroid. The spacecraft then extends its robotic sampling arm – the Touch-And-Go Sample Acquisition Mechanism (TAGSAM) – from its folded, parked position out to the sample collection configuration. Immediately following, the spacecraft slews, or rotates, into position to begin collecting navigation images for NFT guidance. NFT allows the spacecraft to autonomously guide itself to Bennu’s surface by comparing an onboard image catalog with the real-time navigation images taken during descent. As the spacecraft descends to the surface, the NFT system updates the spacecraft’s predicted point of contact depending on OSIRIS-REx’s position in relation to Bennu’s landmarks.

Before reaching the 410-ft (125-m) Checkpoint altitude, the spacecraft’s solar arrays move into a “Y-wing” configuration that safely positions them away from the asteroid’s surface. This configuration also places the spacecraft’s center of gravity directly over the TAGSAM collector head, which is the only part of the spacecraft that will contact Bennu’s surface during the sample collection event.

In the midst of these activities, the spacecraft continues capturing images of Bennu’s surface for the NFT navigation system. The spacecraft will then perform the Checkpoint burn and descend toward Bennu’s surface for another nine minutes, placing the spacecraft around 243 ft (75 m) from the asteroid – the closest it has ever been.

They will do a second rehearsal on June 23, getting within 100 feet of the surface. The actual touch-and-go sample grab is now scheduled for August 25.

Masten’s lunar lander wins NASA contract

Capitalism in space: Masten’s XL-1 lunar lander has won a NASA contract to bring a suite of science instruments to the Moon’s south polar regions, the launch targeted for December 2022.

The company also hopes to sell payload space on the lander to other customers.

Masten won a task order for NASA’s Commercial Lunar Payload Services (CLPS) program valued at $75.9 million. Masten will deliver nine science and technology demonstration payloads to the lunar surface near the south pole by December 2022 on the company’s XL-1 lander.

The CLPS payloads, with a mass of about 80 kilograms, will serve as the initial, anchor customer for that mission, Sean Mahoney, chief executive of Masten, said in an interview. He said there are “hundreds” of kilograms of additional payload space available on the lander, and that the company is working to line up additional customers.

Masten is now the third private company with an active contract with NASA to land science payloads on the Moon. Astrobotic and Intuitive Machines are the others, with their missions targeting 2021 for launch.

A river canyon on Mars?

Cool image time! In the most recent download of new images from the high resolution camera of Mars Reconnaissance Orbiter (MRO) were two photos, found here and here, that struck me as very intriguing. Both were titled simply as a “Terrain Sample” image, which generally means the picture was taken not because of any specific request by another scientist doing specific research but because the camera team needs to take an image to maintain the camera’s proper temperature, and in doing so they try to time it so that they can do some random exploring as well.

As it turned out, the two images were more than simply random, as they both covered different parts of the same Martian feature, what looks like a branching dry dendritic river drainage. Below is a mosaic of those two images, fit together as one image, with a wider context image to the right, taken by Mars Odyssey, showing the entire drainage plus the surrounding landscape with the white arrow added to help indicate the drainage’s location.
» Read more

Universe’s expansion rate found to differ in different directions

The uncertainty of science: Using data from two space telescopes, astronomers have found that the universe’s expansion rate appears to differ depending on the direction you look.

This latest test uses a powerful, novel and independent technique. It capitalizes on the relationship between the temperature of the hot gas pervading a galaxy cluster and the amount of X-rays it produces, known as the cluster’s X-ray luminosity. The higher the temperature of the gas in a cluster, the higher the X-ray luminosity is. Once the temperature of the cluster gas is measured, the X-ray luminosity can be estimated. This method is independent of cosmological quantities, including the expansion speed of the universe.

Once they estimated the X-ray luminosities of their clusters using this technique, scientists then calculated luminosities using a different method that does depend on cosmological quantities, including the universe’s expansion speed. The results gave the researchers apparent expansion speeds across the whole sky — revealing that the universe appears to be moving away from us faster in some directions than others.

The team also compared this work with studies from other groups that have found indications of a lack of isotropy using different techniques. They found good agreement on the direction of the lowest expansion rate.

More information here.

The other research mentioned in the last paragraph in the quote above describes results posted here in December. For some reason that research did not get the publicity of today’s research, possibly because it had not yet been confirmed by others. It now has.

What this research tells us, most of all, is that dark energy, the mysterious force that is theorized to cause the universe’s expansion rate to accelerate — not slow down as you would expect– might not exist.

Update: I’ve decided to embed, below the fold, the very clear explanatory video made by one of the scientists doing that other research. Very helpful in explaining this very knotty science.

Comet ATLAS appears to be breaking apart

Comet ATLAS, which astronomer hope could be the brightest comet in decades, is unfortunately showing evidence of breaking up, which if so could short circuit any spectacular comet show.

In a recent Astronomical Telegram, astronomers Quanzhi Ye (University of Maryland) and Qicheng Zhang (Caltech) report that photographs taken on April 2nd and April 5th of the comet revealed a marked change in the appearance of its core or pseudo-nucleus from starlike and compact to elongated and fuzzy. A second team of astronomers led by I. A. Steele (Liverpool John Moores University) confirmed the discovery. This change in appearance is “consistent with a sudden decline or cessation of dust production, as would be expected from a major disruption of the nucleus,” wrote Zhang and Ye.

An elongated nucleus is often a bad sign and could mean the comet’s headed for disintegration much like what happened to Comet Elenin (C/2010 X1) prior to its September 2011 perihelion passage when its core crumbled and the object rapidly dissipated. Addition evidence of ATLAS’s breakup comes from an unexpected shift in the direction of its orbital motion caused by “non-gravitational” forces. Fragmentation exposes fresh ice to sunlight which quickly vaporizes. The expanding gases act like a natural rocket engine and gently push the comet from its appointed path.

The article outlines in detail how bright ATLAS could become, because of its size and orbit and proximity to Earth as it passes closest to the Sun in late May. Assuming it does not disintegrate, it could end up brighter than Venus. Or not. Predicting the eventual brightness of a newly discovered comet is more guesswork than science. That the comet might be falling apart suggests its eventually brightness will be less that hoped.

Weird flat plateau on Mars

Weird flat plateau on Mars
Click for full image.

Cool image time! The image to the right, rotated, cropped, and reduced to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) on December 15, 2020, and was actually a follow-up observation from an earlier image taken by the camera on Europe’s Trace Gas Orbiter (TGO), according to Dr. Livio Tornabene of the University of Western Ontario. As he explained in an email:

The team is rather polarized with their verdict on what exactly the feature is… while at first glance it appears to be a lava flow, it very well could be that these deposits eroded to yield this flow/lobate like appearance and isn’t lava at all. So as someone that is both involved with [TGO] and [MRO], I noticed that the lobate feature causing quite the debate had no coverage from [MRO].

It appears that some scientists think that instead of lava, this is a mud flow. Research presented [pdf] during the 2019 Lunar & Planetary Conference in Texas found evidence that mud could flow like lava under the right conditions.

At this point neither Tornabene nor anyone working on the TGO team have yet analyzed this new MRO image to see if they can answer this question. That this feature is located in a region just to the southeast of Marineris Valles where there is evidence both of volcanic activity and sedimentary deposition, makes answering the question even more challenging.

The data from TGO indicated [pdf] that the plateau was about 30 to 65 feet thick. Based on crater counts the age is thought to be between 1.6 to 1.9 billion years old.

What struck me about the plateau is that though it really does look like a flow, it also appears remarkably flat and smooth. Even more puzzling is that, according to the TGO paper, the plateau slopes downhill very gently (a 1% grade) to the south, not to the north as suggested by the shape of the flow. Maybe later geological events tilted the entire feature after it solidified, thus changing the grade?

Meanwhile that channel near the bottom of the image crosses through the grade and the flow, as if it was cut after the flow was placed. In other words, the flow and channel were formed separately, at different times.

Ah, the mysteries of planetary geology. If only we could just go there with a geologist’s hammer. These questions would then be so much more simple to answer.

Big sections break off of interstellar Comet 2I/Borisov

The uncertainty of science: New observations of the interstellar Comet 2I/Borisov as it exits our solar system indicate that large fragments have recently broken from it, and that the comet might possibly be on the verge of breaking up.

Astronomers have seen evidence of two fragments, but the data suggests these are relatively small compared to the entire comet. On the other hand,

Before perihelion, Jewitt’s analysis of Hubble images showed that Comet Borisov is much smaller than had been thought. The comet’s nucleus is not directly visible, but in the January 10th Astrophysical Journal Letters, Jewitt put its diameter between 0.4 and 1 kilometer. That’s small enough that solar vaporization of surface ices on the side facing the Sun could spin up its rotation beyond gravity’s ability to hold it together.

However, the comet’s size is tricky to estimate, as its surface appears to be emitting so much gas and dust that it obscures the nucleus. The fragment that Jewitt observed is about as bright as the comet itself, but because its surface is so icy and active, he thinks the fragment’s mass is less than 1% of the whole comet. That would make the split more like a side mirror dropping off a car than a car falling apart. Why the fragment split from the comet is unclear, but possibilities include thermal vaporization after new material was exposed, as well as the force from the comet’s spin if it’s spinning as fast as Jewitt suggests.

Whether the comet is about to break up remains unknown. Wouldn’t it be nice if someone was racing to put a mission together to visit it?

Changing Mars

The maculae splotch dubbed Maui
For the full images click here (2019) and here (2020).

While Mars appears to be a dead planet, with no clear evidence of life so far discovered, the planet is hardly inactive. Things are changing there continuously, even if it happens at a slower pace than here on Earth.

To the right are two images, rotated, cropped, and reduced to post here, taken by the high resolution camera of Mars Reconnaissance Orbiter. The first was on January 19, 2019, shortly after the end of the global dust storm that engulfed Mars during that Martian year. The second was taken on February 14, 2020, half a Martian year later. Both show one of a string of dark splotches located on the western flanks of the giant volcano Olympus Mons. Scientists call these splotches maculae, and because of their superficial resemblance to the islands of Hawaii, have given them names matching those islands. This particular patch is dubbed Maui. Below is a map showing all the splotches and their position relative to Olympus Mons, taken from a 2019 presentation [pdf].
» Read more

NOAA’s prediction for the next solar maximum

Last week NOAA introduced a newly revamped graph for tracking the monthly activity of sunspots on the Sun’s visible hemisphere. (You can see an example of the old graph, used by them for more than fifteen years, here.)

In order to properly understand the context of future sunspot activity, it is important to understand how the new graph aligns with the old. My first attempt to do so in my April 3, 2020 sunspot update, unfortunately was a failure. While most of my conclusions in that update remain correct, my attempt to place NOAA’s prediction for the next solar cycle on my graph was in error.

I had not realized that NOAA had changed its sunspot number scale on the graph’s vertical axis. In their old graph they had used the monthly sunspot number count from the Royal Observatory of Belgium. The new graph instead used the sunspot number from NOAA’s own Space Weather Prediction Center (SWPC). Both numbers are creditable, but the solar scientist community has switched entirely to the latter in the past few years because they consider its criteria for determining the count across all past cycles to be more accurate.

The Belgium numbers have traditionally been about one third lower than SWPC’s. Not realizing that NOAA’s new prediction was based on the SWPC numbers, I therefore placed it on the graph using the Belgium numbers and thus made the peak of the solar maximum 33% too high.

Below is NOAA’s new graph, annotated properly with both the past and new solar cycle predictions added now correctly.
» Read more

Sunspot update: tiny uptick in March activity

UPDATE: In doing some analysis and prep work for future updates, I have discovered that the graph below is in error in its placement of the prediction for the next solar maximum in 2025. I have revised the graph below to note the error. On April 6, 2020 I posted an updated graph.

My original post:
—————————
This week NOAA unveiled a major revamping of the graph it has used for the past decade-plus to show the monthly progression of the sunspot cycle, and that I have been using since the start of this website to do my monthly sunspot updates.

Overall they did a very nice job. The new graph not only shows the present state of the cycle, but it allows you to zoom in or out on this cycle as well as all sunspot cycles going back to 1750, about the time the sunspot cycle was first recognized and the sunspot count became reliable.

The new graph also includes a new more precise prediction for the upcoming solar cycle, forecasting the peak in 2025, higher than the weak solar maximum that has just passed. I have taken the old graph (see my last update on March 12, 2020) and revised it to place this new prediction in context with the previous cycle. I have also added the March sunspot numbers to it.
» Read more

Skiing dry ice boulders on Mars

Dune slope, with grooves, in Russell Crater
Click for full image.

Cool image and video time! The image to the right, cropped and reduced to post here, shows something that when I spotted it in reviewing the newest image download from the high resolution camera on Mars Reconnaissance Orbiter (MRO), I found it very baffling. The photo was taken on March 3, 2020, and shows an incredible number of linear groves on the slope of a large dune inside Russell Crater, located in the Martian southern highlands at about 54 degrees south latitude.

If these were created by boulders we should see them at the bottom of each groove. Instead, the grooves generally seem to peter out as if the boulder rolling down the slope had vanished. Making this even more unlikely is that the top of the slope simply does not have sufficient boulders to make all these groves.

The image was requested by Dr. Candice Hansen of the Planetary Science Institute in Tucson, Arizona, who when I emailed her in bafflement she responded like so:
» Read more

ESA resumes science operations on orbiting spacecraft

The European Space Agency (ESA) has reactivated four science spacecraft, two in Mars orbit and two headed for the Sun, after putting them in safe mode because the agency had shut down many operations due to one person becoming infected with COVID-19.

Fortunately, the initial case remained the only one as the people in quarantine did not develop any symptoms. “When we shut down science, we established very clear criteria to decide when it would restart, and as of this weekend we have begun to gradually bring the missions back into their normal state,” adds Paolo.

…Because of preventative measures taken early to limit the chance of infection spreading, the situation at ESOC is now stable. The few individuals that periodically go on site are predominantly working in isolation, and generally do not even meet each other. If they have to be in the same room, they follow very strict social distancing rules and protections.

It remains unclear whether this reactivation means there will be sufficient staffing for the fly-by of Earth by ESA’s BepiColumbo Mercury mission on April 10th. The information at the link is very encouraging, but it is also an official statement from ESA. Getting the real truth from such statements is not guaranteed.

Enigmas on Mars

Enigmas on Mars
Click for full image.

Cool image time! The photo on the right, cropped and reduced to post here, is a perfect example of the difficulty of explaining the alien landscapes on Mars, based on orbital imagery. It was taken by the high resolution camera of Mars Reconnaissance Orbiter (MRO) on January 23, 2020.

In this one image alone we have the following strange features, all within an area about 8 by 11 miles in size:

  • Several small very obvious pedestal craters (near the top right), some located inside depressions. Pedestal craters are created because the surrounding terrain eroded away around them. Since these are pedestals, however, why are they also inside depressions?
  • Two large circular mesas that appear to vaguely have terraced erosion. These might also be pedestal craters, but maybe not. They also sit much higher than the pedestal craters above. Either way, the mesas remained while the terrain around them eroded away.
  • Several normal craters with a series of circular features within each. At this latitude, 34 degrees south, it is possible these craters are filled with buried ice, what scientists call concentric crater filled glaciers.
  • A light-colored string of ridges aligned to almost look like a kite with tail. The light color says this ridge is not made up of the same material as the circular mesas and pedestal craters, but it too was not eroded away.
  • A number of small bean-shaped depressions (just south of the biggest circular mesa and near the top left). Don’t ask me what caused them. I have no idea.

Overview map

The spot is located in the Martian southern cratered highlands, as shown by the blue cross in the overview map to the right. Complicating its geological history is that it sits inside a very gigantic very old and degraded crater, with numerous newer smaller impacts overlaid on top. Any explanation needs to include these impacts, and the ejecta from them.

If you click on the image and study the full resolution photograph, you can find even more enigmatic features. For most there is a reasonable geological theory. Putting them all in one place and somehow getting all those different explanations to fit together however is far more difficult.

Triple impact on Moon

Impact craters Messier and Messier A on the Moon

Cool image time! A new image release from Lunar Reconnaissance Orbiter (LRO) takes a look at the impact process that created the crater Messier and its neighbor crater Messier A. The photo to the right, cropped to post here, shows both craters.

Take a close look at Messier A. It is actually a double crater itself. From the release:

Messier A crater, located in Mare Fecunditatis, presents an interesting puzzle. The main crater is beautifully preserved, with a solidified pond of impact melt resting in its floor. But there is another impact crater beneath and just to the west of Messier A. This more subdued and degraded impact crater clearly formed first.

Did these three craters happen as separate events. According to the data, it appears no. Instead, they might have all been part of a single rain of asteroids, all occurring in seconds.
» Read more

It ain’t simple keeping a camera functioning properly in orbit around Mars

ADC settings test on MRO
Click for full image.

In doing my normal exploration through the monthly download of new images from the high resolution camera on Mars Reconnaissance Orbiter (MRO), the last to occur near the end of February, I came across a slew of 49 images, each labeled as an “ADC Settings Test,” each covering a completely different location with no obvious single object of study, almost as if they were taken in a wildly random manner.

The image to the right, cropped and reduced to post here, is a typical example. It shows the mega dunes located near the end of the canyon Chasma Boreale that cuts a giant slash into the Martian north polar ice cap, almost cutting off one third of the icecap.

The black areas are shadows, long because being at the high latitude of 84 degrees the Sun never gets very high in the sky, even though this image was taken just before mid-summer, when the Sun was at its highest.

I was puzzled why these images were being taken, and contacted Ari Espinoza, the media rep for the high resolution camera, to ask if he could put me in touch with a scientist who could provide an explanation. He in turn suggested I contact Shane Byrne of the Lunar and Planetary Lab University of Arizona, who coincidentally I had already spoken with several times before in connection with the annual summer avalanche season at the Martian north pole.

Dr. Byrne first suggested I read this abstract [pdf], written for the 2018 Lunar and Planetary Science conference by the camera’s science team. In it they outline two issues with the camera, one blurred images and the second an increasing number of bad pixels occurring in images over time.

The first problem has since been solved. To preserve battery life — another long term problem that they have to deal with — they had adjusted the orbiter’s orbit slightly to get more sunlight and stopped warming the camera during the night periods. “That had the unfortunate effect of changing the camera’s focus,” explained Byrne. “Since we understand that now, we do warm-ups before taking the images and that fixed the blurring problem.”

The other problem however remains, and these ADC test images are an effort to fix it.
» Read more

In the midst of Mars’ volcano country

lava channel
Click for full image.

Cool image time! While the rest of the world is entirely focused on panic and disease, I am going to go on with my life. The photo to the right, rotated, cropped, and reduced to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) on December 26, 2019. I suspected this channel was lava, and when I asked Colin Dundas of the U.S. Geological Survey’s Astrogeology Science Center in Arizona, he confirmed my suspicion.

Yes, that surface appears to be lava–it is part of the Elysium plains, which have many geologically-young lava flows. It’s likely that the channel is a lava channel, and the surrounding plains may be from an earlier stage of the same eruption.

The entire surface of the channel and the surrounding plains appear very fresh, mostly because of their smoothness and lack of many craters. You can also see what looks like a recent impact (the small dark splotch near the left edge about two-thirds from the top).

The fresh and smooth look of Elysium Planitia generally has led scientists to conclude that much of this region is formed from lava flows, some relatively recently. Thus, this particular lava channel is smack dab in the middle of Mars’ volcano country, quite vast and extensive. The context map below illustrates this.
» Read more

Europe’s BepiColumbo mission to Mercury threatened by COVID-19

Because of the strict rules and work suspensions imposed due to the Wuhan virus panic, there will be a reduced workforce during the April 10, 2020 fly-by of Earth by the European Space Agency’s (ESA) BepiColumbo Mercury mission.

The press release tries to make it sound like they are heroically working through the fly-by, but the truth is revealed far down in the text:

The operation, however, will be performed with limited personnel at ESA’s European Space Operations Centre (ESOC) in Darmstadt, Germany, where engineers will have to comply with social distancing rules presently in place all over Europe as a response to the coronavirus pandemic. “The Earth swing-by is a phase where we need daily contact with the spacecraft,” says Elsa Montagnon, BepiColombo Spacecraft Operations Manager at ESA. “This is something that we cannot postpone. The spacecraft will swing by Earth independently in any case.”

The coronavirus threat forces the team to work with minimal face to face interaction while ensuring all steps in the process are properly covered. “During the critical two weeks prior to the closest approach, we need to upload safety commands to prepare the spacecraft for unexpected problems,” says Christoph Steiger, BepiColombo Deputy Spacecraft Operations Manager. “For example, we need to prepare the transfer module for the 34 minute-long eclipse when its solar panels will not be exposed to sunlight to prevent battery discharge.”

Operations can still be conducted as planned, he adds, but will require more effort and attention than in a normal situation. [emphasis mine]

I suspect that much of the software work is now being done remotely, but there is no doubt the inability to be present in the control room will prevent any quick fix, should the spacecraft need help during the fly-by.

Quick fading of a Martian impact crater

Fresh impact crater on Mars, in 2010
Click for full image.

The same impact, four Martian years later.
Click for full image.

Cool image time! Though it seems that no one is really interested in anything but the Wuhan virus and the attempt by our corrupt politicians to use it to gain power, I think that life requires more from us than politics and panic. Thus, I am going to keep posting pure science and cool images.

The two photos to the right were taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) almost ten years apart. They were both posted as captioned images, the first in 2010, the second on March 19, 2020 to illustrate the remarkable fading of a fresh impact’s dark ejecta, in only about four Martian years.

The March 19, 2020 captioned image included an animation to illustrate the change. I prefer putting the two images side-by-side. Either way, the change is striking. As planetary scientist Alfred McEwen noted in his caption, “the dark material has faded into the background, while the new 6.3-meter diameter crater persists.”

Wind and dust storms probably acted to wipe out the dark material, but the process did not take that long, and last year’s global dust storm was not a major factor, since much of the dark material was already gone in this July 2012 image.

The crater itself is located in Arcadia Planitia, just west of the Erebus Mountains, the very region in the northern lowlands that SpaceX has made its primary candidate landing site for its Starship rocket, partly because the terrain is flat which makes landing easy, and partly because there is amply evidence that these lowlands have lots of ice just below the surface. And the full image for the 2019 photo reinforces this conclusion. Much of the rougher ground south of the impact appears to be the partially sublimated surface of an ice block.

So, while this region will provide an easy smooth landing site and plenty of water for the first human arrivals, those humans will also have to contend with a planet without a thick atmosphere to protect them from most meteorites. Rare as these events are, they happen more often because of Mars’ location closer to the asteroid belt, and they hit the surface far more frequently.

Mars: Volcanic, Glacial, or Fluvial?

Sinuous ridge on Mars
Click for full image.

Cool image time! The photograph on the right, rotated, cropped, and reduced to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) on September 30, 2019. It shows what the image title dubs a “sinuous ridge” in a region called Tempe Terra.

What caused it? At first glance the meandering nature of the ridge suggests it was originally a riverbed, formed by flowing water. Eventually the water dried up, and because that riverbed was made of harder material than the surrounding terrain, long term erosion caused that surrounding terrain to wear away, leaving a raised ridge where the river used to be. Scientists have found many such inverted channels on Mars.

Not so fast!
» Read more

New radio telescope discovers many new Fast Radio Bursts

A new radio telescope in Canada, designed to detect the mysterious and as-yet unexplained Fast Radio Bursts (FRB), has in the past year raised the total of known FRBs from 30 to 700, including nine repeating bursts.

This confirms an earlier very preliminary analysis that there were two different types of bursts, those that repeat and those that don’t.

Warning: It is very dangerous to take these results too seriously. A lot of uncertainty exists, including some basic facts about the bursts.

European planetary missions go dark because of Wuhan virus

The European Space Agency has suspended operations and shut down several planetary missions, including two Mars orbiters and two solar missions, because of lockdowns imposed because of COVID-19.

The problem is that they don’t have enough people in their mission controls to operate everything. They are shutting these down so that they can continue operations on their Mecury mission BepiColumbo, for example.

The article also tries to lay the blame for the recently announced launch delay of Europe’s Mars 2020 rover to 2022 on the virus, but that’s false. The mission was delayed because it simply wasn’t ready.

Martian plateaus and buttes

Martian plateaus and buttes
Click for full image.

Cool image time! Rather than sit in cowering fear, as it appears too many worldwide are doing, I am going to stay calm and carry on. The photo to the right, rotated, cropped, and reduced in resolution to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) on January 20, 2020. It shows a small section of a region dubbed Iani Chaos, a terrain dubbed such by scientists because of its cracked and chaotic nature, flat-topped mesas cut by canyons and fissures.

Chaos terrain is generally found in the transition zones on Mars between its southern highlands and northern lowlands. It was formed over time by erosion processes, either liquid water or ice, that slowly washed out the material along fault-lines, leaving mesas behind. This particular spot in Iani Chaos appears to be late in this process, with the gaps between the buttes wide and many of the mesas worn down into pointy knobs.

The location of Iani Chaos, as shown in the map below, tells us much about its history.
» Read more

Layers upon layers upon layers on Mars

Layered mesa on Mars
Click for full image.

Cool image time! Or rather, a bunch of cool images! On February 17, 2020 the science team for the high resolution camera on Mars Reconnaissance Orbiter (MRO) released a very cool captioned photograph of a terraced mesa in a crater just north of Hellas Basin, shown in the image to the right, rotated, cropped, and reduced to post here.

The color strip down the center of this image illustrates how the colors of the different layers indicate the different make-up of each. These distinctions are not obvious in black & white. That array of colors also leads to some very beautiful scenery, as noted by planetary scientist Alfred McEwen in his caption:

Sedimentary layers record a history of Mars’ erosion and deposition by water and wind, and they make great landscapes for future interplanetary parks.

That this terraced mesa is located on the northern edge of Hellas Basin, the basement of Mars, is possibly not surprising. Other similarly terraced mesas like this have been found on the basin’s eastern edge, highlighted in my September 2019 post. The geology here appears to encourage this kind of erosion, where the different sedimentary bedrock layers erode away at different rates, leaving behind terraced mesas.

Terraced layers on Mars however come in other varieties, some of which build up over time instead of getting eroded away.
» Read more

Webb telescope further delayed by COVID-19

As part of its decision to shut down most of the agency’s operations due to fear of the COVID-19 virus, NASA’s has suspended all work on the James Webb Telescope, further delaying this much delayed space telescope.

The follow-on to the popular Hubble Space Telescope [Ed: a NASA lie that is not true], years late and billions over budget, it was on track for launch in March 2021, though some NASA officials were hinting there might be another delay. Today’s action almost certainly assures it. “The James Webb Space Telescope team … is suspending integration and testing operations. Decisions could be adjusted as the situation continues to unfold over the weekend and into next week. The decision was made to ensure the safety of the workforce. The observatory remains safe in its cleanroom environment.” — NASA

I must repeat this incessantly, as it appears too many modern space reporters are very ignorant about their own field. Webb is not a” follow-on to Hubble.” Astronomers made the decision in the late 1990s to build an infrared space telescope instead, which is what Webb is. For more than a decade they, and NASA, lied to the public about this, claiming Webb was a better version of Hubble, in order to garner support for building Webb.

I have been calling NASA on lie this since 2008, when I wrote The Universe in a Mirror, which I think eventually forced the agency to stop doing it. It is shameful however for a reporter now, in 2020, to still spread it.

As for Webb, this decision by NASA will certainly delay it again. The project is already fourteen years behind schedule, with its budget ballooning from $500 million to about $10 billion. All told, a perfect example of government in action.

Friday at the non-existent Lunar & Planetary Science Conference

Global distribution of Martian ice scarps
Today was supposed to have been the last day at the cancelled 51st annual Lunar & Planetary Science conference. As such, only a half day of presentations had been scheduled in order to give participants the option of returning home sooner.

While many of the abstracts of the planned-but-now-cancelled presentations were on subjects important to the scientists but not so interesting to the general public, two sessions, one on Martian buried glaciers/ice and a second focused on Mercury, would have made the day very worthwhile to this science journalist, had I been there.

The map above, from the first abstract [pdf] of the Mars session, might possibly epitomize our present knowledge of ice/glaciers on Mars. It provides an update of the continuing survey of ice scarps in the high mid-latitudes of Mars (see the most recent post on Behind the Black from February 12, 2020). Clearly, the more they look, the more they find of these ice scarps, cliff faces with visible exposed pure ice layers that will be relatively easy to access.

But then, finding evidence of some form of buried ice on Mars is becoming almost routine. Of the thirteen abstracts in this Mars session, ten described some sort of evidence of buried ice or glaciers on Mars, in all sorts of places, with the remaining three abstracts studying similar Earth features for comparison. The scientists found evidence of water ice on the top of one of Mars’ largest volcanoes (abstract #2299 [pdf]), in faults and fissures near the equator (#1997 [pdf]), in the eastern margin of one of Mars’ largest deep basins (#3070 [pdf]), in Gale Crater (#2609 [pdf]), in the transition zone between the northern lowlands and southern highlands (#1074 [pdf]), and of course in the northern mid-latitude lowland plains (#2648 [pdf] and #2872 [pdf]).

The results tell us not that there is water ice on Mars, but that it is very plentiful, and that its presence and behavior (as glaciers, as snowfall, and as an underground aquifer) make it a major factor in explaining the geology we see on Mars. I’ve even begun to get a sense that among the planetary scientists researching Mars there is an increasing consideration that maybe ice formed many of the river-like features we see on the surface, not flowing water as has been assumed for decades. This theory has not yet become dominate or even popular, but I have been seeing mention of it increasingly in papers, in one form or another.

If this possibility becomes accepted, it would help solve many Martian geological mysteries, primary of which is the fact that scientists cannot yet explain how water flowed as liquid on the surface some time ago in Mars’ long geological history, given its theorized atmosphere and climate. If ice did the shaping, then liquid water (in large amounts) would not be required.

Now, on to the Mercury session.
» Read more

Inactive hot springs on Mars?

Inactive hot springs on Mars?
Click for full image.

Overview of Vernal Crater

Cool image time! In prepping my report of the interesting abstracts from Friday of the cancelled 51st annual Lunar & Planetary Science conference (to be posted later today), I found myself reading an abstract [pdf] from the astrobiology session about the possibility of now inactive hot springs on Mars! This was such a cool image and possibility I decided to post it separately, first.

The top image to the right, cropped and expanded to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter in 2009. It shows some dark elliptical splotches inside the floor of a crater dubbed Vernal. The second image to the right, taken from the abstract, shows the context, with the top image a wide shot showing the southern half of Vernal Crater where these features are located, and the bottom image zooming into the area of interest. The white box focuses on the elliptical features seen in the first image above. From the abstract:

The elliptical features consist of concentric halos of high but varying albedo, where the highest albedo in each occurs in a small central zone that mimics the shape of the larger anomaly. Each feature is also traversed by circumferential fractures. Several similar tonal features extend for 5-6 km, on stratigraphic trend with the elliptical features. Hypotheses considered for the origin of the elliptical features included springs, mud/lava volcanoes, pingos, and effects of aeolian erosion, ice sublimation, or dust, but the springs alternative was most compatible with all the data.

The abstract theorizes that the small ligher central zone is where hot water might have erupted as “focused fluid injection” (like a geyser), spraying the surround area to form the dark ellipses.

I must emphasize that this hypothesis seems to me very tenuous. We do not really have enough data to really conclude these features come from a formerly active hot spring or geyser, though that certainly could be an explanation. In any case, the geology is quite intriguing, and mysterious enough to justify further research and even a future low cost mission, such as small helicopter drone, when many such missions can be launched frequently and cheaply.

NASA considering shutting down Curiosity in 2021

Even as the space agency is about to launch a new rover to Mars, it is considering cutting operations for the rover Curiosity as well as considering shutting down its operation as soon as 2021.

Other ongoing missions are threatened by the administration’s fiscal year 2021 budget proposal. “The FY21 budget that the president just recently submitted overall is extremely favorable for the Mars program, but available funding for extended mission longevity is limited,” [said Jim Watzin, director of NASA’s Mars exploration program].

That request would effectively end operations of the Mars Odyssey orbiter, launched in 2001, and reduce the budget for Curiosity from $51.1 million in 2019 to $40 million in 2021, with no funding projected for that rover mission beyond 2021.

The penny-wise-pound-foolish nature of such a decision is breath-taking. Rather than continue, for relatively little cost, running a rover already in place on Mars, the agency will shut it down. And why? So they can initiate other Mars missions costing millions several times more money.

Some of the proposed cuts, such as ending the U.S. funding for Europe’s Mars Express orbiter, make sense. That orbiter has accomplished relatively little, and Europe should be paying for it anyway.

These decisions were announced during a live-stream NASA townhall that was originally to have occurred live at the cancelled Lunar & Planetary Science conference. I suspect its real goal is to garner support for more funding so that the agency will not only get funds for the new missions, it will be able to fund the functioning old ones as well.

Sadly, there would be plenty of money for NASA’s well-run planetary program if our Congress and NASA would stop wasting money on failed projects like Artemis.

1 97 98 99 100 101 277