Strange ridge ripples on the windswept plateau above Mars’ biggest canyon

Strange ridges on Mars
Click for full image.

Today’s cool image is once again another of what I dub a “what the heck?” photo. The picture to the right, cropped to post here, was taken on December 17, 2020 by the high resolution camera on Mars Reconnaissance Orbiter (MRO) and captures some very strange ridges on the plateau above Mars’ biggest canyon, Valles Marineris.

The image, labeled merely as a “terrain sample,” was taken not as part of any specific research project but scheduled by MRO’s science team in order to maintain the camera’s temperature. When they do this they try to take pictures covering something interesting, but often it is a potshot that sometimes shows little of interest.

In this case the photo shows something very strange. The ridges in the sample are packed into one area only, but if you look at the full image you will see that they are also scattered about randomly and sometimes isolated on the flat plains surrounding this spot.

Interestingly, these ridges resemble the first “What the heck?” image I ever posted in 2019. That photo was located at about the same elevation as these ridges, but due west in the volcanic plains near Mars’s giant volcanoes and just off the western edge of the overview map below.
» Read more

First results from UAE’s Al-Amal/Hope Mars orbiter

First data from Al-Amal
Click for full image.

The first science results from the United Arab Emirates Al-Amal Mars orbiter (“Hope” in English) have been released by the American universities operating one instrument.

The image to the right shows that data. The right globes show the areas of actual temperature data for both the Martian surface and atmosphere, with the left globes extrapolating that data across the entire planet.

The purple-green-blue hues show that the measurements were taken of the Martian nightside, although dawn on the planet can be seen on the right-hand side of the surface temperature image, as depicted by the red hues. Features such as Arabia Terra, which has cold nighttime temperatures, can be observed in the upper left portion of the surface temperature data, depicted by the blue and purple hues.

“EMIRS [the infrared spectrometer] is going to acquire about 60 more images like this per week once we transition into the primary science phase of the Emirates Mars Mission,” said EMIRS Instrument Scientist Christopher Edwards, who is an assistant professor and planetary scientist at [Northern Arizona University]. “We’ll use these images and sophisticated computer programs to build up a complete global, daily understanding of the Martian atmospheric components, like dust, water ice, water vapor and atmospheric temperature.” [emphasis mine]

The highlighted words above illustrate the true nature of this U.S./UAE joint mission. Right now the spacecraft is being operated by Emirate engineers in the UAE, but the spacecraft and its instruments were really built by U.S. universities, paid for by the UAE. As such, those American universities remain in charge of running those instruments, though UAE students are also being used to do that work as part of their education.

None of this is to denigrate the effort by the UAE. It used its financial resources to buy the expertise of American universities and companies to build this Mars orbiter, but did so with the express requirement that those American universities and companies also educate and train its people in such work.

That deal however once again illustrates the value of private enterprise and freedom. The UAE wanted to teach its people how to fly a planetary space mission. American universities had the knowledge to do it. The former then bought the skills from the latter, while the latter then got a science mission for free.

A match made in heaven with both benefiting marvelously.

A iceberg of water ice floating on a Martian dry ice sea

Ice mesa near Mars' south pole
Click for full image.

British biologist John Haldane once once wrote, “The universe is not only queerer than we suppose, but queerer than we can suppose.”

Today’s cool image to the right, cropped to post here, is a fine example of Haldane’s words. It was taken on January 15, 2021 by the high resolution camera on Mars Reconnaissance Orbiter of a single lone mesalike feature sticking up in a flat expanse of Mars’ south polar dry ice/water ice cap.

I emailed Shane Byrne of the Lunar and Planetary Lab University of Arizona, who had requested the photo, to ask him what he thinks we are looking at. His response:

This region has a thick layer of CO2 ice sandwiched between water ice that’s above and below. CO2 ice is denser than water ice so I think a fragment of water ice of the underlying layer has risen up through the denser CO2 ice that covers this area (what geologists call a diapir).

Byrne also admits this remains merely “just a wild theory,” not yet confirmed.

Assuming this theory to be right, in a sense then this mesa is not really a mesa at all but an iceberg of water, floating not in a saltwater liquid ocean as on Earth but on a frozen sea of dry ice. Talk about queer! The wider shot below, taken by MRO’s context camera, illustrates how isolated this water iceberg is on that dry ice sea.
» Read more

Mars: Planet of many glaciers

Moraines on Mars
Click for full image.

Today’s cool image more than simply cool, it reveals a wider picture of Mars that should be quite exciting to future colonists. The photo to the right, rotated, cropped, and reduced to post here, was taken on January 30, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). What drew my attention to it was the title given to this uncaptioned photo: “Moraine-Like Ridges in Nereidum Montes.”

Moraines are the debris pile pushed ahead of any glacier. The picture shows what appear to be a series of moraines, likely caused by different periods of glacier activity when the glacier was growing. It also suggests that past active periods were more active than later ones, as with each active period the moraine did not get pushed out quite as far.

The location, Nereidum Montes, intrigued me, as I am not that familiar with it. I emailed the scientist who requested the image, Dan Berman, senior scientist at the Planetary Science Institute in Arizona, and asked him for more information. He suggested I read a very recent paper he co-wrote entitled “Ice-rich landforms of the southern mid-latitudes of Mars: A case study in Nereidum Montes.” From that paper I was able to produce the map of Mars below that shows the regions on the planet where scientists now think hold the greatest concentrations of glaciers.
» Read more

Yutu-2 and Chang’e-4 reactivated for 28th lunar day on Moon

The new colonial movement: Engineers have reactivated both Yutu-2 and Chang’e-4 to begin their 28th lunar day on the far side of the Moon.

The article, from China’s state-run press, provides only one real tidbit of information, that Yutu-2 has now traveled 429 meters (1,378 feet) from the landing site. They still have about a mile to go to reach their next big geological target, which should take years at the pace the rover is setting.

Both spacecraft though have been unmitigated successes. Their nominal mission had been to survive three lunar day-night cycles, about 90 Earth days. They have survived 28, or more than two years since landing in January 2019.

This success suggests that China’s Mars rover has a good chance of doing as well. Its planned mission length is also 90 days, similar to the Spirit and Opportunity rovers, both of which lasted many years.

Perseverance begins journey with 1st test drive

Perseverance's future planned route
Click for full image.

On March 4th the engineers on the Perseverance science team successfully completed the rover’s first test drive.

Ground teams commanded the rover to drive forward, turn in place, and then back up. The first 33-minute test drive covered just 21 feet, or 6.5 meters,but Perseverance will soon travel much farther. “Our first drive went incredibly well,” said Anais Zarifian, a Perseverance mobility test engineer at JPL.

Perseverance has six aluminum wheels, each with titanium spokes for support, and a suspension capable of traveling over rocks as big as the wheels themselves. The one-ton rover is based on the design of NASA’s Curiosity rover, which landed on Mars in 2012, but with some improvements.

The wheels on Perseverance are sightly narrower, have a larger diameter, and are made of thicker materials, Zarifian said. Engineers also changed the tread pattern on the wheels to reduce the risk of damage from sharp rocks, which created dings and cuts in Curiosity’s wheels.

The map above shows the route the science team has presently chosen for Perseverance, a revision from earlier routes created prior to landing. The white dot on the right is the rover’s present position, the blue and purple lines are two alternative routes they are considering for their route to the delta coming out of Neretva Vallis. The yellow route up the delta is especially exciting in that it gets them onto it much sooner than previous plans.

Which route they choose for the initial journey I think will partly depend on which provides the best location to test fly Ingenuity, the experimental helicopter on the rover. Scientists and engineers I am sure are presently poring over high resolution images from Mars Reconnaissance Orbiter (MRO) in order to make that choice. At this link, centered on Perseverance’s present location, you can take a look at all those images by MRO by selecting the arrow icon at the top and then clicking on any red box. Because so many photos have been taken there is a lot of overlap, so each click will give you many pictures to look at.

Ice-filled Martian sinkhole

Ice-filled pit on Mars
Click for full image.

Cool image time! The pit shown in the high resolution photo to the right (image rotated, cropped, and reduced to post here) was taken on January 25, 2021 and labeled by the Mars Reconnaissance Orbiter (MRO) “Collapse Pit in Graben with Ice Fill.”

There is a lot of information in that title. First, a graben is a geological feature where a section of terrain drops relative to the surrounding terrain, producing a depression. Second, it appears the graben in this region is mostly filled with debris, probably wind-blown dust or sand or volcanic ash.

Third, at this particular spot the filling material sank, like a sinkhole on Earth, creating the pit.

And fourth, and maybe most intriguing, the scientists think that this pit is now filled with ice. At 47 degrees north latitude, the location is prime for such ice, and the interior material resembles similar glacial features seen in many other mid-latitude craters.
» Read more

Rover update: Panorama from Curiosity; Perseverance unwinds

Summary: Curiosity has crept to the foot of Mt Sharp at last, while Perseverance checks out its equipment.

Curiosity

Curiosity panorama Sol 3049
Click for full resolution.

Overview map

This rover update will be short but very sweet. While the press and public has been oo’ing and ah’ing over the first panorama from Perseverance, Curiosity yesterday produced its own panorama above showing the looming cliffs of Mt. Sharp, now only a short distance away. The original images can be found here, here, here, and here.

The overview map to the right, from the “Where is Curiosity?” webpage, shows the rover’s location, with the yellow lines roughly indicating the view afforded by the panorama above. If you compare this panorama with the one I posted in my previous rover update on February 12, 2021, you can get a sense of how far the rover has traveled in just the past two weeks. It now sits near the end of the red dotted line pointing at the mountain, right next to what had been a distant cliff and now is only a short distance to the rover’s right.

Somewhere on the mountain slopes ahead scientists have spotted in orbiter images recurring slope lineae, seasonal streaks on slopes that appear in the spring and fade as they year passes. As Curiosity arrives at the next geological layer a short distance ahead at the base of these cliffs (dubbed the sulfate unit), it will spend probably several months studying both that sulfate unit as well as those lineae. Expect the rover to drill a few holes for samples as it watches to see any changes that might occur on that lineae.

Now, on to Perseverance!
» Read more

Dao Vallis: A giant river of ice on Mars

The glacier in Dao Vallis
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on December 26, 2020 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows an apparent glacial flow in a canyon heading downhill to the southwest, with evidence of a gully on its western wall whose collapse apparently squeezed into that glacial flow, pushing it to the east.

What makes this particular image interesting is not its uniqueness but just the opposite. Almost every high resolution picture along the length of this 750 mile long canyon, dubbed Dao Vallis, shows the same thing, an ice-filled ravine with that ice flowing like a river downhill.

The overview map below provides some spectacular context.
» Read more

China releases first Tianwen-1 images of rover landing site

The rover landing site for Tianwen-1's rover

The new colonial movement: China yesterday released the first two images taken by its Mars orbiter Tianwen-1 of its planned rover landing site in the northern lowland plains of Mars.

The image to the right is a mosaic of two wide angle photos from the context camera on Mars Reconnaissance Orbiter (MRO). The white cross is the spot of the latitude and longitude that had previously been leaked to the Chinese press as the landing site. The white box shows the area covered by the only high resolution MRO photo, as of October 2020. Since then MRO has taken a number of additional high resolution images of this area.

The red boxes mark the areas covered by Tianwen-1’s two new images. Below is a reduced version of the larger of these two photos.
» Read more

Mining country on Mars?

The southern end of Nili Fossae

Today’s cool image might very well be giving us a glimpse of one of the most promising regions on Mars for future mining. The photo to the right, rotated, cropped, and reduced, is made up of two context camera images from Mars Reconnaissance Orbiter (MRO), found here and here. I chose to begin with this wider context camera mosaic because this is one of the rare times the context camera is more exciting an image than the close-up high resolution photo.

This photo covers the southern end of the one of the two curved fissures dubbed Nili Fossae and are thought to be left over evidence of the giant impact that created Isidis Basin to the southeast. These two fissures are about 300 miles long, and can be as much as 1,600 feet deep in places. At this southern end, we can see what look like at least two different drainage channels feeding into the fissure.

The overview map below provides the context of this location on Mars, including its relationship to Jezero Crater where Perseverance now sits.
» Read more

Perseverance’s first high resolution panorama

Looking west in Perseverance's 1st hi-res panorama
Click for full resolution image.

The photo above is only one small slice from the first high resolution panorama taken by Perseverance on the floor of Jezero Crater. It is also reduced in size to post here.

From the press release:

The camera was commanded to take these images by scanning the mast, or “head,” a full 360-degrees around the horizon visible from the landing site. [In the section above] the top of some of the distant crater rim is cut off … to ensure the images would cover the front ridge of the Jezero Crater’s ancient delta, which is only about 1.25 miles (2 kilometers) away from the rover in the center of this panorama. At that distance and focal length, Mastcam-Z can resolve features as small as about 50 centimeters (1.6 feet) across along the front of the delta.

The mosaic is not white balanced but is instead displayed in a preliminary calibrated version of a natural color composite, approximately simulating the colors of the scene that we would see if we were there viewing it ourselves.

So, this is approximately what you would really see if you were standing next to Perseverance and looked west towards the delta (the low hills in the foreground) and the high crater rim beyond.

Cave boxwork on the Martian surface

Boxwork in Wind Cave on Earth
Boxwork inside Wind Cave, South Dakota, mere inches across.

Anyone who has ever visited either Wind or Jewel caves in South Dakota has likely seen some wonderful examples of the cave formation boxwork, formed when the material in cracks is more resistant to erosion that the surrounding bedrock, which once eroded away leaves behind the criss-crossing ridges seen in the picture to the right.

Today’s cool image provides us what appears to be an example of boxwork on Mars. However, unlike on Earth it is not in a cave but on the surface. It is also much larger. Instead of the ridges being almost paper thin and stretching for inches or feet, this Martian boxwork is feet wide with ridges extending hundreds of feet in size, as shown by today’s cool image below.
» Read more

A deep south Martian dune with bright patches

Dune with bright patches
Click for full image.

Cool image time! Last week the MRO science team posted a new captioned image entitled “Bright and Dark Dunes” featuring a particularly large single dune in the floor of a 25-mile-wide unnamed crater located at about 68 degrees south latitude. The photo to the right, rotated, cropped, reduced, and color enhanced to post here, shows that dune. According to the caption, written by Colin Dundas of the U.S. Geological Survey’s Astrogeology Science Center in Arizona,

This image shows a large sand dune with bright patches. Martian dunes near the poles often have bright patches in the spring, when seasonal frost is lingering. However, this image is from late summer, when frost is long gone. What is going on here?

A close-up look with [MRO’s high resolution camera] provides some clues. The bright patches are made up of large ridges that look like wind-blown bedforms. Additionally, the bright patches are yellowish in the infrared-red-blue image. In enhanced color, most sand on Mars is blue but dust is yellow. This suggests that the bright bedforms are either built from, or covered by, dust or material with a different composition.

Thus, the bright patches reveal either aspect of the dune’s underlying structure, either inherent in the bedrock itself, or the texture of its surface that allows it to hold more dust. As Dundas adds, “I think more study would be needed to determine the answer in this particular case.”

There are other aspects of this dune that can be seen by a look at the wider view afforded by MRO’s context camera below.
» Read more

Skiing dry ice boulders on Mars, captured in action!

Grooves in dune created by sliding dry ice blocks
Click for full image.

Today’s cool image is an update on a previous cool image published in April 2020 about how scientists believe the grooves seen on the slope of a giant dune in Russell Crater on Mars are believed to be formed by frozen blocks of carbon dioxide sliding down the slope when spring arrives. The photo to the right, taken on March 3, 2020 by the high resolution camera on Mars Reconnaissance Orbiter (MRO) and rotated and cropped to post here, shows these grooves. As I wrote then,

Because the block is sublimating away, the gas acts as a lubricant so that it can slide down the hill. If large enough, the dry ice block will stop at the base of the hill to disappear in a small pit. If small enough, it actually might completely vaporize as it slides, explaining the grooves that appear to gradually fade away.

The scientists actually did a test on Earth, buying a dry ice block at a grocery store and releasing it at the top of a desert dune. Go to my April 2020 link above to see the very cool video.

Several planetary scientists did further combing through many MRO photos of this dune and now think they have spotted examples where the camera actually captured a block as it was sliding downhill.
» Read more

Searching for ice in the Martian low latitudes

Low latitude crater with intriguing debris on its floor
Click for full image.

Today’s cool image well illustrates the effort of planetary scientists to map out the range of buried ice on the Martian surface. Taken on December 13, 2020 by the high resolution camera on Mars Reconnaissance Orbiter (MRO) and rotated, cropped, and reduced to post here, it shows a 3.5-mile-wide crater located in the southern cratered highlands, but for those cratered highlands at the very high northern latitude of 24 degrees.

The black streaks on the crater’s interior slopes are probably slope streaks, but these are not the subject of this article. Instead, it is the material that covers the crater’s floor. These features resemble the glacial fill material that scientists have found widespread in the latitude bands between 30 to 60 degrees latitude. However, this crater is farther south, where such ice would not be stable and should have sublimated away.

Could there still be ice here? I emailed the scientist who requested the photo, Colin Dundas of the U.S. Geological Survey’s Astrogeology Science Center in Arizona, and asked him what I was looking at. His answer:
» Read more

Land of rovers

Overview map

Today’s cool image is in honor the two newest Martian rovers, Perseverance (which now sits quite comfortably in Jezero Crater, ready to begin what will probably be more than a decade of exploration on the Martian surface) and China’s yet-to-be-named rover (set to hopefully soft land on Mars some time in late April).

The overview map to the right shows us the region where both rovers shall wander. The black box in Jezero Crater is where Perseverance now sits. The red cross about 1,400 miles away is the believed landing zone for China’s rover, located in Utopia Planitia at about 25 degrees north latitude. The Viking 2 landing site is just off the edge of the northeast corner of the map.

The latitude of 30 degrees, as indicated by the white line, is presently an important dividing line based on our present knowledge of Mars. South of that line the terrain is generally dry, though there is evidence that water in some form (liquid or ice) was once present. North of that line scientists have found evidence of considerable ice below the surface, with its presence becoming increasingly obvious the farther north you go.

Today’s cool image, shown below, is north of that line at 33 degrees latitude in Utopia Planitia, and is marked by the white cross, about 500 miles to the northwest of the Chinese rover’s landing site.
» Read more

Tianwen-1 enters parking orbit around Mars

The new colonial movement: According to the Chinese state-run press, the Tianwen-1 orbiter has entered the parking orbit around Mars that it will use for the next three months to conduct reconnaissance of its lander/rover’s landing site.

At 6:29 a.m. (Beijing Time), Tianwen-1 entered the parking orbit, with its closest point to the planet at 280 km and the farthest point at 59,000 km. It will take Tianwen-1 about two Martian days to complete a circle (a Martian day is approximately 40 minutes longer than a day on Earth), the CNSA said.

Tianwen-1, including an orbiter, a lander and a rover, will run in the orbit for about three months.

The CNSA added that payloads on the orbiter will all be switched on for scientific exploration. The medium-resolution camera, high-resolution camera and spectrometer will carry out a detailed investigation on the topography and dusty weather of the pre-selected landing area in preparation for a landing.

China has also begun prepping the rocket that will launch Tianhe, the first module in its space station, sometime this spring. A total of eleven launches are planned over the next two years to assemble the station.

Martian pits or dark splotches?

Martian pits or dark splotches?
Click for full image.

Cool image time! The photo to the right, cropped to post here, was taken on January 2, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a windswept sandy region of ridges and dunes with two dark features nestled between ridges.

What are these dark patches? At the available resolution they appear to be deep pits, with the one on the right having a significant overhang. And if these are pits, they would appear significantly different than most of the previously identified Martian pits, which are usually somewhat circular in shape. These features have very complex shapes, as if the pit is conforming itself to the terrain that surrounds it.

The resolution, however, is not good enough to confirm this interpretation. These dark patches could also be exposed volcanic material, darker than the surrounding terrain. The location, as shown in the overview map below, adds weight to this interpretation.
» Read more

First panorama from Perseverance

The Perseverance science team has released the first panorama taken by the Perseverance rover after landing on Mars February 18th.

Below the fold however I have embedded something far better than the science team’s mosaic. Andrew Bodrev has taken these same navigation camera images and created a 360 degree virtual reality panorama, one that you can pan and tilt at your own pleasure. The view also includes the sounds of the Martian winds from the rover’s microphone. If you pause it you won’t hear the sounds, but you can scan and rotate for as long as you want.

» Read more

Movie of Perseverance’s descent and landing

Cool movie time! The science team for Perseverance today released movie footage obtained by the rover as it descended and landed on Mars in Jezero Crater. That video is embedded below.

If you compare what this movie sees with the orbital images from Mars Reconnaissance Orbiter (MRO) that I posted earlier today, you can recognize the features in the crater and anticipate exactly where the rover is going to land.

All systems on Perseverance so far check out good

The Perseverance science team reported this past weekend that all systems on the rover have so far reported back and are operating as expected, including the test helicopter Ingenuity.

Some more images were sent back, all visible at the Perseverance raw image website. The most spectacular new image of Perseverance released however was one taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) and posted below.
» Read more

Ham picks up signal from China’s Tianwen-1 Mars orbiter

An amateur ham radio operator announced on February 10th that he has been able to pick up a radio transmission from China’s Tianwen-1 Mars orbiter.

As reported on Spaceweather.com, Canadian radio amateur Scott Tilley, VE7TIL, has snagged another signal from deep space. His latest conquest has been to copy the signal from China’s Tianwen-1 (pronounced “tee-EN-ven”) probe, which went into orbit around Mars on February 10. Tilley told Spaceweather.com that the probe’s X-band signal was “loud and audible.”

“It was a treasure hunt,” Tilley told Spaceweather.com. He explained that while the spacecraft did post its frequency with the International Telecommunication Union (ITU), it was too vague for precise tuning (X band is between 8 GHz and 12 GHz).

What makes this detection especially interesting is that it indicates the possibility that in the somewhat near future some ham might actually be able to win the Elser-Mathes Cup. According to this article [pdf] from the national ham radio magazine QST, by the late 1920s there was a desire to create a new challenge for hams, as by then they had managed to devise methods for communicating across the entire globe.

Amid this disillusionment, [Colonel Fred Johnson Elser] visited ARRL [the national ham radio organization] and had the pleasure of meeting League co-founder and first president Hiram Percy Maxim, whose many interests included Mars. Elser reported that Maxim even owned a globe of the planet, with all of its known features demarcated.

Elser returned to his home in Manila and befriended Stanley Mathes, a Lieutenant Commander in the Navy who had been stationed in the Philippines. Based on their shared belief that Amateur Radio technology would improve at a prodigious rate, Elser and Mathes devised an award for the most ambitious Amateur Radio contact they could imagine. In honor of Hiram Percy Maxim’s love of the Red Planet, Elser and Mathes established the Elser-Mathes Cup, to be awarded for the “First Amateur Radio Two-Way Communication Earth & Mars.”

That cup has remained unclaimed since it was established in 1929, more than ninety years. The detection by Tilley above using ham equipment suggests that a winner might soon be able to lay claim to the cup. However,

Fred Elser and Stanley Mathes stipulated that the contact must be two-way, and that the transmission on the Mars end of the contact cannot be generated by a “robot.” Until we can put a ham on Mars, the Elser-Mathes Cup will go unclaimed.

As almost all astronauts are also hams, all that must happen is for an astronaut to get to Mars, land, and communicate back to Earth using ham equipment. While this will not happen soon, the possibility it will happen in the not-too-distant future is finally becoming a reality. Stay tuned.

Hat tip to ham Don Huddler N4RRT.

Partly ice-filled Martian crater?

Partly ice-filled Martian crater?
Click for full image.

Time for another cool Martian image. The photo to the right, rotated, cropped, and reduced to post here, was taken on January 3, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The section I have focused on is a single crater about a mile and a half wide.

What makes this crater interesting is the material that appears piled up against the crater’s northern half. Furthermore, both the floor of the crater as well as this piled up material looks like it is eroding away, kind of like a block of ice which is having warm water sprayed on it.

So, is this glacial ice?
» Read more

Perseverance has successfully landed

Cheers in the control room

First image from Perseverance on the ground

The rover Perseverance has successfully landed in Jezero Crater on Mars.

The picture to the right is a screen capture of everyone cheering in the control room on hearing the good news.

The second image is the first image beamed back, from the rover’s hazard camera used mostly for guiding it in future travels. The haze is from the dust kicked up during landing.

The engineering narrator indicated that they also know exactly where the rover landed, and it is a good location, but NASA’s live stream appears uninterested in telling us this critical information. Right now they are spending time blathering on with more NASA propaganda.

I should get this information during the post-landing press conference, which begins at 5:30 (Eastern).

UPDATE: The press conference started 30 minutes late, and then spent the first 25 minutes letting the top NASA managers claim credit for everything. Then we finally got to hear from actual mission managers to tell us where the rover landed and what should happen next.
» Read more

Eroded mound in Mars’ glacier country

Eroded mound in Mars' glacier country
Click for full image.

Cool image time! The image to the right, reduced to post here, was a captioned release today by the science team of the high resolution camera on Mars Reconnaissance Orbiter (MRO). It is located in Deuteronilus Mensae, a region of chaos terrain in the transition zone between the northern lowland plains and the southern cratered highlands that is also part of a 2,000 mile-long band that I call Mars’ glacier country. From the caption, written by Dan Berman, senior scientist at the Planetary Science Institute in Arizona:

Lobate debris aprons are commonly found surrounding dissected plateaus in the Deuteronilus Mensae region of Mars. They have been interpreted as debris-covered glaciers and radar data have shown their interiors to be composed of pure ice.

The mound in this image is slightly removed from most of the other plateaus, and the [debris apron] surrounding it is highly degraded. The sharp scarps on the western and eastern sides of the mound indicate that a great deal of the ice once found in these landforms has since sublimated away, leaving behind these collapsed debris cliffs.

I wonder if further research might find an ice layer in those cliff walls, especially because this photo strongly suggests that much of this mound is made of ice that is sublimating away or has flowed downward to form the debris aprons as well as that central gully.

The overview map below shows its location in Deuteronilus Mensae as well as showing almost all of the entire band of Mars’ glacier country.
» Read more

Perseverance’s possible travel route on Mars

Perseverance's planned driving routes
Click for full image.

In touting the plans of NASA and the European Space Agency (ESA) to someday launch a rover to Jezero Crater designed to pick up the cached samples that Perseverance is going to leave behind, NASA today published the map to the right, showing Perseverance’s planned driving routes in the crater, on the large delta that poured into the crater in the past, and beyond that crater.

The yellow lines indicate Perseverance’s planned route, beginning somewhere in that red landing ellipse. The green lines indicated the many proposed landing sites and pathways the proposed follow-on sample retrieval mission can take to grab Perseverance samples.

The planned route looks like they will spend a lot of time exploring the top of delta, then will move out of the crater and to the southwest towards what had been another candidate landing site for Perseverance, now dubbed the Midway ellipse.

What route the science team will eventually take at the delta depends greatly on exactly where Perseverance lands today. We will know more in only a few hours.

Enigmatic channel on Mars

Enigmatic channel on Mars
Click for full image.

Cool image time. The photo to the right, rotated, cropped, and reduced to post here, was taken on October 26, 2020 by the high resolution camera on Mars Reconnaissance Orbiter (MRO) and labeled by the science team as simply an “Enigmatic Channel in Syrtis Major.”

It shows a channel going downhill to the northeast east in a series of steps, separated cliffs that in the southwest hikers call pour-offs, with the channel becoming initially deeper and then slowly becoming more shallow, until the next pour-off. On Earth the pour-offs would be waterfalls, with a deep pond at the base. On Mars?

Without doubt this channel poses mysteries, but maybe with a little research we can make it less enigmatic. Asl always, the overview map below gives context, and helps give a possible explanation for what created this channel.
» Read more

Strange corroding features on Mars

Strange corroding features on Mars
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and enhanced to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) on October 4, 2020. It shows what appears to be features that are either corroding or eroding away, with the lower areas filled with rippling sand dunes.

The circular features might be ancient craters. The material that partly fills them might be a layer of dust or sand that the wind is slowly blowing away to dig out the depressions along the southern cliff wall.

According to the MRO science team’s interpretation of the colors produced by the high resolution camera [pdf], the dark blue colors here are likely “coarser-grained materials (sand and rocks)”, while the orange-red material on the higher terrain is likely dust.

Could this material be evidence of buried ice eroding away? At first I thought so, and then I took a look at the photo’s location, as shown in the overview image below.
» Read more

Watching Perseverance’s landing on Mars

Because it will take eleven minutes for radio communications from Mars to reach Earth, no one on Earth will have any direct contact with the American rover Perseverance as comes in to land in Jezero Crater on Mars on February 18th. When NASA broadcasts the landing here on Earth it will already have happened.

Nonetheless, if you want see as soon as possible if the landing was successful, you can go to NASA public channel here at NASA or here at Youtube. I have also embedded the live stream telecast below the fold in this post.

The landing itself is set for about 3:55 pm (Eastern) on Thursday, February 18th. NASA’s coverage is scheduled to begin at 2:15 pm (Eastern). Expect almost everything you watch to be seeped in NASA propaganda, though of course their overview of the rover, its landing, and its landing site will be informative.

One important note: NASA has been selling the false notion that the primary goal of Perseverance is to search for life on Mars, and sadly much of the mainstream press has been repeating this notion blindly. It is simply not true. The rover’s primary goal, first, last, and always, is to gain more knowledge of the geology of Mars and its past history. If along the way the rover detects evidence of life, all for the better, but that is not what it will be focused on doing during its journey in Jezero Crater.
» Read more

1 34 35 36 37 38 78