Martian wind-swept buried depressions

Wind-swept Martian depressions
Click for full image.

Cool image time! The photo to the right, rotated, cropped and reduced to post here, was taken on January 3, 2020 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows three strange teardrop-shaped depressions, clearly wind-swept and partly buried by dust and sand.

The location on Mars of these depressions is in the transition zone between the southern cratered highlands and the northern lowlands. This is also a region dubbed the Medusae Fossae Formation, a region where it appears a great deal of volcanic material was laid down during one or more eruptive events 3 to 3.8 billion years ago.

Whether these depressions were formed during those events is impossible to tell from the available data, especially because the underlying bedrock is buried in dust.

Their shape appears to have been caused as the wind slowly exposed three buried peaks of hard rock. The wind, blowing from the southwest to the northeast, would hit the peaks, producing an downward eddy that would churn out dust from the windward side. The wind and dust would then blow around the peaks, creating the teardrop tail on the leeward side to the northeast.

Large glacier-filled crater/depression on Mars?

Glacier-filled depression?
Click for full image.

Cool image time! The photograph on the right, rotated, cropped, and reduced to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) on December 21, 2019. It shows the eastern half of the floor and interior rim of a large squarish-shaped crater or depression in what seems to be an unnamed region of chaos terrain located in the transition zone between the Martian southern highlands and the northern lowland plains.

The floor of this depression has many of the features that indicate the presence of a buried ice glacier, including flow features on the depression floor, linear parallel grooves, and repeating moraine features at the slope base. In fact, all these features give the strong impression that this crater is ice-filled, to an unknown depth.

Chaos terrain, a jumble of mesas cut by straight canyons, are generally found in this transition zone, and could be an erosion feature produced by the intermittent ocean that some believe once existed in the northern lowlands. Whether or not an ocean lapped against these mesas and created them, this chaos terrain is believed to have been caused by some form of erosion, either wind, water, or ice.

Wide context view

The location is of this chaos terrain in that transition zone is illustrated by the context map to the right. It sits on the edge of the vast Utopia Basin, one of the largest and deepest northern lowland plains. It also sits several hundred miles due north of the planned landing site of the Mars2020 rover in Jezero Crater. There is a lot of chaos terrain in this region, with lots of evidence of buried glaciers flowing off the sides of mesas.

Today’s image, with its numerous features suggesting the presence of a buried glacier filling the depression, reinforces this evidence.

Closer context view, showing the chaos terrain region

What impresses me most about this particular depression — should it be ice-filled — is its size. I estimate from the scale of the image that the depression is about six miles across, somewhat comparable though slightly smaller than the width of the Grand Canyon. And yet, unlike the Canyon it appears to have a wide flat floor across its entire width. The second context map to the right zooms in on this chaos region to show how relatively large the depression is. It would not be hard to spot it from orbit. We don’t know the depth, but even if relatively shallow this depression still holds a heck of a lot of water ice.

While the depression appears like a crater in lower resolution wider photographs, higher resolution images suggest it is not round but squarish. Why is not clear, and unfortunately MRO’s high resolution camera has taken no other images of it. This image was also one of their terrain sample photographs, taken not because of any specific research request, but because they need to use the camera regularly to maintain its temperature. This location, having few previous images, fit this schedule and made sense photographing.

Thus, no one appears to be specifically studying this location, making it a ripe subject for some postdoc student who wants to put their name on some Martian geology.

The range for exposed ice scarps on Mars keeps growing

Overview of ice scarp locations on Mars

In January 2018 scientists announced the discovery of eight cliffs with visible exposed ice layers in the high mid-latitudes of Mars. At the time, those eight ice scarps were limited to a single crater in the northern hemisphere (Milankovic Crater) and a strip of land in the southern highlands at around latitude 55 degrees south.

In the past two years scientists have been using the high resolution camera on Mars Reconnaissance Orbiter (MRO) to monitor these scarps for changes. So far they have seen none, likely because the changes are below the resolution of the camera.

They have also been able to find more scarps in the southern hemisphere strip beyond that strip at 55 degrees south.

Now they have found more scarps in the northern hemisphere as well, and these are outside Milankovic Crater. As in the south, the new scarps are still all along a latitude strip at about 55 degrees.

The map above shows with the black dots the newer scarps located in the past two years. The scarp to the east of Milankovic Crater is typical of all the other scarps, a steep, pole-facing cliff that seems to be retreating away from the pole..

The scarp to the west of Milankovic Crater is striking in that it is actually a cluster of scarps, all inside a crater in the northern lowland plains. Moreover, these scarps are more indistinct, making them more difficult to identify. According to Colin Dundas of the U.S. Geological Survey’s Astrogeology Science Center in Arizona,
» Read more

Remnant moraine on Mars

Remnant moraine on Mars
Click for full image.

Cool image time! Using both Martian orbiters and rovers scientists are increasingly convinced that Mars has lots of buried glaciers in its mid-latitudes. These glaciers are presently either inactive or shrinking, their water ice sublimating away as gas, either escaping into space or transporting to the colder poles.

The image to the right, cropped and reduced to post here, shows some apparent proof of this process. Taken by the high resolution camera of Mars Reconnaissance Orbiter (MRO) on December 23, 2019, it shows a weird meandering ridge crossing the floor of a crater. The north and south parts of the crater rim are just beyond the cropped image, so that the gullied slope in the image’s lower left is actually a slope coming down from that rim.

My first reaction upon seeing this image was how much that ridge reminded me of the strange rimstone dams you often find on cave floors, formed when calcite in the water condenses out at the edge of the pond and begins to build up a dam over time.

This Martian ridge was certainly not formed by this process. To get a more accurate explanation, I contacted Dan Berman, senior scientist at the Planetary Science Institute in Arizona, who had requested this image. He explained:
» Read more

A bullseye on Mars

Bullseye crater on Mars
Click for full image.

Cool image time! The photo on the right, cropped and reduced to post here, was taken by the high resolution camera of Mars Reconnaissance Orbiter (MRO) on November 30, 2019. It shows a lone crater on the flat northern lowlands of Mars in a region dubbed Arcadia Planitia.

The crater is intriguing because of its concentric ridges and central pit. As this region is known to have a great deal of subsurface water ice, close to the surface, these features were probably caused at impact. My guess is that the ice quickly melted, formed the kind circular ripples you see when you toss a pebble in a pond, but then quickly refroze again, in place.

This location is also of interest in that is it just north of the region that SpaceX considers the prime candidate landing site for its Starship manned spaceship.

The cliff at the end of Chasma Boreale on Mars

The cliff at the end of Chasma Boreale
Click for full image.

Cool image time! The image to the right, cropped to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) on November 15, 2019 during the height of the Martian summer in the northern hemisphere. It shows the scarp of the polar ice cap, looking directly down that scarp at what the MRO image post dubs an “exposure of basal unit”, or the bottom of the cap itself. This suggests that the base of that cliff is no longer ice, but the bedrock below it. If this cliff is similar to other scarps off the polar ice cap it should be at least 1,600 feet tall. It might be more, however, as the elevation difference between the cap and the floor of this basin is estimated by scientists to be more than a mile total.

This scarp however is different than the outer icecap scarps where avalanches occur with great frequency during the spring and summer. Instead, it is located in the heart of the ice cap, at the very end of the gigantic canyon Chasma Boreale that slashes a deep cut into that ice cap, practically cutting it in half.

Overview

The overview map on the right, with the red dot showing where this image is located, illustrates the cutting nature of Chasma Boreale. The canyon itself is 350 miles long with a width of about 75 miles at its beginning and with walls that at some points rising a mile in height.

Scientists theorize this canyon was formed by melting ice from cap that built up at the cap’s base, causing erosion and collapse, with the flow following the grade down hill from this end point out to the lowland plains beyond. It is also possible winds played a part in this process, encouraging the canyon formation.

Frozen lava that flowed from Elysium Mons

Lava flows off of Elysium Mons
Click for full image.

Cool image time! The photo on the right, rotated, cropped, and reduced to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) on October 27, 2019. It shows a dramatic lava flow coming off the flanks of the giant volcano Elysium Mons, a flow that has probably been frozen in place for somewhere between 600 million to 3.4 billion years.

If you look close you can see several craters on top of the lava flow. To my eye these impacts look like they occurred when the lava was still soft, which suggests they were debris thrown up by the volcano. This however would be surprising, as the eruption of Elysium Mons is not thought to have been explosive, but slow and steady. Either way, these crater impacts are one of the ways scientists have been able to estimate the age of this volcano and its long frozen flows.

MRO has taken a scattering of high resolution images in this area, all of which are aimed at similar frozen flows coming off the volcano. All are about 250 miles from the caldera, which gives you a sense of the size and extent of Elysium Mons. While it is the fourth largest volcano on Mars at 7.5 miles high, its grade is so gentle that if you were standing on the surface the peak would be hard to see from any point.

New simulations of Pluto’s atmosphere

New simulations of Pluto’s atmosphere, created using data obtained during the 2015 fly-by by New Horizons of Pluto, suggest that the planet’s thin atmosphere, mostly made up of nitrogen, generally blows in a retrograde direction when compared with the planet’s rotation.

Bertrand and his colleagues set out to determine how circulating air – which is 100,000 times thinner than that of Earth’s – might shape features on the surface. The team pulled data from New Horizons’ 2015 flyby to depict Pluto’s topography and its blankets of nitrogen ice. They then simulated the nitrogen cycle with a weather forecast model and assessed how winds blew across the surface.

The group discovered Pluto’s winds above 4 kilometers (2.5 miles) blow to the west — the opposite direction from the dwarf planet’s eastern spin — in a retro-rotation during most of its year. As nitrogen within Tombaugh Regio vaporizes in the north and becomes ice in the south, its movement triggers westward winds, according to the new study.

The press release is very badly written. It tries to make it sound as this work discovered the atmosphere of Pluto, and that this process is more unique in the solar system than it is. It also neglects to mention that we only have good information about one hemisphere of Pluto. The fly-by did not see the planet’s other half, and so any computer model based on New Horizons’ data is by definition guaranteed to be half incomplete, with gigantic uncertainties.

Still, it gives us another example of the unexpected complexity of the geological processes on Pluto, something no one expected for a place so far from the Sun where there is so little energy to drive such processes.

How to spot a glacier on Mars

A glacier on Mars
Click for full image.

Overview map

The science team for the high resolution camera on Mars Reconnaissance Orbiter (MRO) today posted a nice lesson on what features to look for when you are trying to find glaciers on Mars.

To do this they used one of the earliest images of a Martian glacier, taken by MRO on June 12, 2008. The image to the right, cropped and reduced to post here, shows that entire glacier, coming off a mesa in the chaos terrain region of Protonilus Mensae, a region of mesas and glaciers that I highlighted in an earlier post in December, showing images of a mesa that had numerous glaciers flowing down from all sides.

The overview map to the right shows the location of both that earlier glacier-surrounded mesa (the red dot in Protonilus Mensae) and today’s image (the blue dot).

What the MRO science team has done with the image today however is to use it to illustrate the most important geological features that one will see when looking at a Martian glacier.
» Read more

A Martian avalanche: before and after

A Martian avalanche: before and after
Click for full resolution animation.

Cool image time! The science team for the high resolution camera of Mars Reconnaissance Orbiter (MRO) today released a beautiful blink animation showing the before and after terrain at an avalanche site along the scarp of Mars’s north pole ice cap.

The animation is very cool, but it is also helpful to align the two images next to each other to carefully study what actually changed. The image to the right, cropped and reduced here, shows both photos. (Thank you to planetary scientist Shane Byrne for splitting the animation for me.). I have added the white bars to indicate the cliff section that broke off during the avalanche. That section was made of water ice, with probably some dust and rocks mixed in, and broke into the blocks that are now scattered on the ground below.

This avalanche itself is actually not unusual and as I noted in an earlier post, is part of an annual season of numerous avalanches that occur on this northern scarp of the polar ice cap each spring. As written by Dr. Candice Hansen of the Planetary Science Institute in Tucson, Arizona,

Every spring the sun shines on the side of the stack of layers at the North Pole of Mars known as the north polar layered deposits. The warmth destabilizes the ice and blocks break loose. When they reach the bottom of the more than 500 meter tall cliff face [about 1,600 feet], the blocks kick up a cloud of dust.

And as Byrne noted to me in an interview when I asked him how it was possible for MRO to image so many avalanches, as they occur,

“It is incredible. I think this is the most incredible thing about the whole process.” said Byrne. “If you fly over a mountain range on the Earth and take a picture, the chances catching an avalanche in progress are almost zero. But on Mars half of the images we take in the right season contain an avalanche. There’s one image that has four avalanches going off simultaneously at different parts of the scarp. There must be hundreds to thousands of these events each day.”

In an email exchange with him today, he also added that this is not the first before and after comparison images obtained. “We’ve been seeing these blockfalls for several years now. That’s partly why these scarps are being so intensively monitored by HiRISE.”

Do these avalanches mean that the Martian northern polar ice cap is shrinking? Maybe, maybe not. Right now scientists think the cap is in a steady state, neither growing or shrinking. These events are thus more likely comparable to the routine calving of ice sections from the foots of glaciers here on Earth, a common tourist destination in the waters of western Alaskan coast.

Inexplicable ridges on Mars

Inexplicable ridges on Mars
Click for full image.

Don’t ask me to explain the geology on today’s cool image, rotated, cropped and reduced above. Taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) on August 16, 2019, the image’s uncaptioned website merely calls these “Convergent and Overlapping Narrow Curved Ridges.”

I don’t know why the sand in the hollows appears light blue, or even if it is sand. I don’t know what created the ridges, or why they seem to overlap each other randomly, or why they seem to peter out to the south.

I am sure there are planetary scientists out there who have theories that might explain these features. I also know that they would forgive me if I remained skeptical of those theories. This geology is a puzzle.

Hellas Basin, the basement of Mars

The location of these ridges is in the southeast corner of Hellas Basin, which I like to call the basement of Mars as it is the equivalent of the United States’ Death Valley, having the lowest relative elevation on the planet. As I have noted previously, the geology in this basin can be very strange. To my eye it often invokes a feeling that we are looking at Mars’s “uttermost foundation of stone” (to quote Tolkien), frozen lava that flowed in many ways and then froze in strange patterns.

Or not. Your guess is as good as mine.

The beginning of chaos on Mars

The beginning of a chaos canyon
Click for full image.

Cool image time! The photo on the right, rotated, cropped, and reduced to post here, was taken by the high resolution camera of Mars Reconnaissance Orbiter (MRO) on October 7, 2019. In one image it encapsulates the process that forms one of the more intriguing and major Martian geological features, dubbed chaos terrain.

Chaos terrain is typically a collection of mesas separated by straight-lined canyons. It is found in many places on Mars, most often in the transition zone between the southern highlands and the northern lowlands where an intermittent ocean might once have existed. It is believed to form by erosion, possibly caused by either flowing water or ice, moving along fault lines. As the erosion widened the faults, they turned into canyons separating closely packed mesas. With time, the canyons widened and the mesas turned into a collection of hills.

This image shows the beginning of this process. It is centered on a fault line running from south to north. In the south all we can see is the fault expressing itself as a very shallow small depression in the plains. As we move north the depression widens and deepens. The material inside the depression near the top of the photo could very well be a buried inactive ice glacier. Several million years ago, when the inclination of Mars was much higher and the mid-latitudes were much colder than the poles, the water ice at the poles was sublimating from the poles to those mid-latitudes where it fell as snow. At that time this glacier was likely active, helping to grind out this canyon.

The image was taken at the south border of a chaos region dubbed Nilosytis Mensae, as shown by the overview maps below.
» Read more

Martian pimples

Pimples on Mars!
Click for full image.

Cool image time! The image to the right, cropped and reduced to post here, is one of those terrain sample images the science team of the high resolution camera of Mars Reconnaissance Orbiter (MRO) takes periodically when they have a gap in their observation schedule with no specific requests for images of the terrain below. Still, they need to use the camera regularly to keep its temperature maintained, so they then take a somewhat random picture over that terrain, based partly on information from lower resolution images but without a strong sense of what they will find.

In this case, they found what I dub pimples, raised mounds with small holes at their peaks. The image, taken on November 30, 2019, is located is in the northern lowlands, at a latitude (45 degrees) where subsurface ice is possible. Thus, we could be looking at water ice volcanoes.

Very few high resolution images have been taken of this area, with no others close by. Thus, the overall context of these mounds is hard to gauge. They could be widespread, or very localized.

The unknowns here and general lack of research suggests this location and these mounds are ripe research for some postdoc student interested in planetary geology.

The oldest known meteorite strike?

The uncertainty of science: Scientists think they have identified the oldest meteorite strike known on Earth, dated at 2.33 billion years ago, located in a known impact site in Yarrabubba, Western Australia.

Lead author Dr Timmons Erickson, from Curtin’s School of Earth and Planetary Sciences and NASA’s Johnson Space Center, together with a team including Professor Chris Kirkland, Associate Professor Nicholas Timms and Senior Research Fellow Dr Aaron Cavosie, all from Curtin’s School of Earth and Planetary Sciences, analysed the minerals zircon and monazite that were ‘shock recrystallized’ by the asteroid strike, at the base of the eroded crater to determine the exact age of Yarrabubba.

The team inferred that the impact may have occurred into an ice-covered landscape, vaporised a large volume of ice into the atmosphere, and produced a 70km diameter crater in the rocks beneath.

Professor Kirkland said the timing raised the possibility that the Earth’s oldest asteroid impact may have helped lift the planet out of a deep freeze. “Yarrabubba, which sits between Sandstone and Meekatharra in central WA, had been recognised as an impact structure for many years, but its age wasn’t well determined,” Professor Kirkland said. “Now we know the Yarrabubba crater was made right at the end of what’s commonly referred to as the early Snowball Earth – a time when the atmosphere and oceans were evolving and becoming more oxygenated and when rocks deposited on many continents recorded glacial conditions”.

Associate Professor Nicholas Timms noted the precise coincidence between the Yarrabubba impact and the disappearance of glacial deposits. “The age of the Yarrabubba impact matches the demise of a series of ancient glaciations. After the impact, glacial deposits are absent in the rock record for 400 million years. This twist of fate suggests that the large meteorite impact may have influenced global climate,” Associate Professor Timms said. [emphasis mine]

I truly believe they have determined the approximate age of this impact, making it one of the oldest known impacts. Implying however a “precise” linkage to other only vaguely known climate events, and inferring that the former was the cause of the latter seems to me to be a very large overstatement. Their data might suggest this conclusion, but the uncertainties here demand a bit less certitude..

Undulations on Mars

Undulations in Dokka Crater
Click for full image.

Time for a cool image that makes no sense. The photo on the right, cropped to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) on November 15, 2019 of the floor of a crater, dubbed Dokka Crater, located in the high latitudes of the Martian northern lowlands. Uncaptioned but labeled “Undulations on Dokka Crater Ice Dome,” it shows a region of weird complex wave features, reminiscent of another weird Martian geological feature called brain terrain.

The problem is that brain terrain is generally found in the mid-latitudes, not the high latitudes. Both this feature and brain terrain however appear to associated with ice. In this case, these undulations are occurring on the ice dome that apparently sits inside Dokka crater, which is also likely to be related to the islands of ice found in many high latitude craters on Mars in the southern hemisphere..

In the case of the southern hemisphere ice-filled craters, scientists have found evidence suggesting that global wind patterns might affect their shape and placement within the craters. One wonders if this same factor is a part cause for these undulations in this northern hemisphere crater.

Six Martian summers at a polar impact crater

Crater on Martian north polar ice cap
Click for full image.

Cool image time! The science team for the high resolution camera on Mars Reconnaissance Orbiter (MRO) last week released a very neat short movie compiled from images taken of an impact crater located on top of the northern polar ice cap of Mars. As noted by planetary scientist Alfred McEwen of the Lunar & Planetary Laboratory in Arizona in the image caption,

Shown here is an impact crater on the north polar ice cap, which contains an icy deposit on the crater floor. These inter-crater ice deposits shrink and expand or change shape or surface texture from year to year,

The image on the right, cropped and reduced to post here, is the most recent of these six images. The crater, which is about 200 feet in diameter, is the black speck in the center. The white streaks to the south of the crater, similar on all six photos, indicate that the prevailing winds come from the pole.

The animation zooms in on the crater so that you can see the details on its crater floor. And though the animation is fun, below the fold is a collage of all six photos, which I think makes it easier to see how the inter-crater ice deposits changed from summer to summer.
» Read more

Tadpole on Mars

Tadpole on Mars
Click for full image.

Cool image time! The image on the right, cropped and reduced to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) on October 7, 2019, and shows a crater on the northern fringe of Arabia Terra, one of the largest transitional regions between the Martian northern lowlands and the southern highlands. It shows a crater with an inlet canyon that makes the entire crater resemble a wiggling tadpole.

This is certainly not first tadpole-resembling crater found on Mars. See for example this press release from February 2018, showing a tadpole crater with the tail being an outlet channel. In today’s image however the channel feeds the crater.

In fact, take a look at the full image. This crater apparently occurred right at the edge of a large mesa cliff, with this impact cutting into the cliff near its bottom. The canyon might have actually existed before the impact, with the crater merely obliterating the canyon’s outlet.

If you look along that escarpment to the east you can see similar southwest-to-northeast flows. One is a canyon flowing downhill through the escarpment, probably resembling what the first canyon might have once looked like before the impact. To the east of this is another tadpole crater. This second tadpole impact however took place on top of the mesa, so the channel flows out from the crater and then down off the mesa, the reverse of the tadpole crater above.

These flow features are consistent with the nature of this transitional zone, a region with many features suggesting it was once the shoreline of an intermittent ocean. That ocean, if it had existed, is long gone, though scattered across the Martian surface are geological ghost features like these that speak of its past existence.

Martian dry ice frost on glacial remains?

Frost on ridgelines and inside crater
Click for full image.

Close-up of frost

Cool image time! The photo on the right, rotated, cropped, and reduced to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter on November 30, 2019. Located just east of Hellas Basin in southern mid-latitudes, the color strip shows dry ice frost both in the crater as well as on the ridgelines to the north. As noted in the caption, written by Candy Hansen of the Planetary Science Institute in Tucson, Arizona,

When we acquired this image, it was [winter in the southern hemisphere] on Mars, but signs of spring are already starting to appear at latitudes not far from the equator. This image of Penticton Crater, taken at latitude 38 degrees south, shows streamers of seasonal carbon dioxide ice (dry ice) only remaining in places in the terrain that are still partially in the shade.

The turquoise-colored frost (enhanced color) is protected from the sun in shadowed dips in the ground while the sunlit surface nearby is already frost-free.

Note for example how the frost disappears in the southern half of the crater floor, the part exposed to sunlight.

What immediately struck me however were the underlying features. The entire northeast quadrant of the crater’s rim appears to have been breached by some sort of catastrophic flow, as if there had been a glacial lake inside the crater that at some point smashed through suddenly, wiping that part of the rim out as it ripped its way through.

To the right is a full resolution inset, indicated by the white box above, of the dry ice frost on the outside of the crater. I find myself however drawn more to the underlying features, which once again have a chaotic aspect suggesting a sudden violent event, coming from the south and moving north.

I have no idea if my visceral conclusions here have any validity. At this latitude, 38 degrees, scientists have found a lot of buried inactive glaciers of ice, so I could be right. Or not. Your guess is as good as mine.

Gully on Mars

Gully in crater on Mars
Click for full image.

Cool image time! If we were told that the photo on the right was taken by an airplane over some southwest desert gully, no one should be surprised if we were to accept that description entirely. The gully sure looks like a lot of drainages one can routinely see when flying over the American southwest, dry, treeless, but showing the typical dendritic pattern seen for most desert water drainages.

Of course my readers all know that this is not in the American southwest, but on Mars, in a crater located in the transition zone between the southern highlands and the northern lowland plains. The image, cropped to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter on October 12, 2019.

It appears that this particular gully has been subject to repeated monitoring, since November 2015. A rough and very quick comparison of the earlier image with today’s image does not show any obvious change. This does not mean there hasn’t been any evolution, as my look was cursory, and I could easily be missing changes. Seasonal variations might also be occurring that I could be missing.

The reasons for the monitoring are of course obvious. This gully strongly suggests the flow of liquid downhill. Is that occurring today, or are we seeing the evidence of a past flow from long ago? Only some long term monitoring can tell.

There is also the possibility that we are looking at a buried glacier. The crater is located at 42 degrees north latitude, well within that mid-latitude band where scientists have located many buried Martian glaciers. If so, then the monitoring is to see if that glacier is active in any way.

Stardust found in meteorite older than Earth

Scientists studying what they think is grains of stardust in a meteorite the hit the Earth in 1969 have discovered the oldest material ever found on Earth, material that is actually older than the Earth itself.

The meteorite, dubbed the Murchison meteorite after the nearest city in Australia where it landed, has been a treasure trove of information for planetary scientists because so much of it was recovered right after impact.

About 30 years ago it was found that the rocks housed “presolar grains” – tiny grains of silicon carbide older than the Sun. But their exact age hadn’t been determined until now.

To figure that out, the researchers on the new study measured how long these presolar grains had been exposed to cosmic rays. These high-energy particles flit around space and can pass through solid matter, creating new elements inside the existing minerals as they interact with them. That means the scientists can measure the amount of these new elements in the grains to determine how long they were floating around in space – and, ultimately, how old they are.

In doing so, the team found that most of the grains were between 4.6 and 4.9 billion years old. The Sun itself is at the younger end of that range, at 4.6 billion years old, while the Earth didn’t form until 4.5 billion years ago.

But the oldest of the grains were dated to more than 5.5 billion years, making them the oldest known material on Earth. The team says that the history of these grains could be traced back even further, to the stars that birthed them some 7 billion years ago. According to the researchers, this finding suggests that our galaxy went through a period of intense star formation around that time.

Obviously there are uncertainties with this result, though their age estimates are quite reasonable and largely robust.

Curiosity climbs a hill

Overview map of Curiosity's journey through sol 2643

[For the overall context of Curiosity’s travels, see my March 2016 post, Pinpointing Curiosity’s location in Gale Crater.

For the updates in 2018 go here. For a full list of updates before February 8, 2018, go here.]

Since my last Curiosity update on November 6, 2019, the science team has sent the rover climbing up what they call Western Butte, the butte directly to the west of Central Butte and part of the slope/escarpment that separates the clay unit from the Greenheugh Piedmont and the sulfate unit above that.

The overview map to the right gives a sense of the journey. The thick yellow line indicates its route since it climbed up from the Murray Formation onto Vera Rubin Ridge in 2017. The thick red line indicates their planned route, which they have only vaguely been following since their arrival in the clay unit.

Below the fold are two panoramas that I created from a sequence of images taken by Curiosity’s left navigation camera from the high point on Western Butte, the first looking north across the crater floor to the Gale Crater rim approximately 30 miles away and indicated by the thin yellow lines on the overview map. The second looks south, up hill towards Mount Sharp, and is indicate by the thin red lines.
» Read more

Pedestal craters in the Martian northern lowlands?

Pedestal craters on Mars?
Click for full image.

Cool image time! The photo on the right, cropped and reduced to post here, shows a cluster of really strange mesas, craters, and pits, located in Utopia Planitia, the largest and deepest plain of Mars’ northern lowlands where an intermittent ocean might have once existed.

The image was taken on October 26, 2019 by the high resolution camera on Mars Reconnaissance Orbiter (MRO) as part of its regular image-taking program. In this case it was dubbed a “terrain sample” image, meaning that it was not specifically requested by any researcher, but was taken because they need to use the camera regularly to maintain its temperature, and thus sometime produce images over previously untouched areas, not knowing what they will find, as part of that maintenance schedule.

In this case the terrain sampled is especially intriguing. Are the upraised depressions what are called pedestal craters, created when the impact landed on what was once an icy plain, which subsequently sublimated away to leave the crater sitting high above the surrounding flats? Maybe, but this location is at 23 degrees north latitude, and research has generally found these pedestal craters at latitudes higher than 30 degrees.

Moreover, that many of these upraised depressions are not circular suggests that their formation was not impact related.

Other mysteries: Why are all the ridgelines bright? What caused the parallel white streaks to the east and west of some mesas? And if these are impact craters, why are some distorted?

If this region was once the seabed of an intermittent ocean, this fact might explain the features. Then again, it is more likely that this lowland area was once covered in ice in the far past, when the planet’s tilt was greater and the lower latitudes were actually colder than the polar regions, and thus allowed ice to build up in those lower latitudes. We might therefore be seeing the end result of an erosion/sublimation process as that ice disappeared when Mars’ inclination shifted.

Lots of questions, and no answers.

Yutu-2 completes 13th lunar day

China’s Yutu-2 lunar rover and its lander Chang’e-4 have completed their thirteenth lunar day on the far side of the Moon and have been placed in sleep mode.

During the twelve lunar day the rover traveled about 12 meters, or about 40 feet.

The rover has found materials from deep inside the moon that could help unravel the mystery of the lunar mantle’s composition and the formation and evolution of the moon and the earth. Using data obtained by the visible and near-infrared spectrometer installed on Yutu-2, Chinese scientists found that the lunar soil in the landing area of the Chang’e-4 probe contains olivine and pyroxene which came from the lunar mantle deep inside the moon.

Due to the complicated geological environment and the rugged and heavily cratered terrain on the far side of the moon, the rover drives slowly but steadily and is expected to continue traveling on the moon and make more scientific discoveries.

Darkened craters on Mars

Darkened craters on Elysium Planitia
Click for full image.

It’s time for the first cool image of 2020! The photo to the right, cropped and reduced to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) on October 10, 2019. It shows a handful of darkened craters on the vast volcanic Elysium Planitia plain between the giant volcanoes Olympus Mons to the east and Elysium Mons to the north.

My first thought was that these dark craters were recent crater impacts, possibly a set of secondary impacts from a larger nearby impact. However, in looking at the archive of MRO’s high resolution camera at this location (Latitude 5.925° norther; Longitude 164.965°) I found that almost no high resolution images have been taken in this region, as shown by the overview map below to the right.
» Read more

Giant scallops on Mars

Scallops on Mars
Click for full image.

It’s a slow news week, with the too much partying only real space news today the expected third launch of China’s Long March 5 rocket (supposedly scheduled for this morning but so far no word). (To my gentle reader: For some reason I have been losing a day during this whole week, always thinking that Christmas was on Thursday and that today was Friday. Thus my error in thinking the Long March 5 flight was today. It is tomorrow morning. Forgive me for my absent-mindedness.) So let’s look at a cool image!

The photo on the right, cropped and reduced to post here, was taken my the high resolution camera on Mars Reconnaissance Orbiter (MRO) on October 8, 2019. Entitled “Scalloped Depressions in Utopia Planitia,” it shows a strangely eroded surface in the northern lowlands of Mars, where an intermittent ocean might have once existed.

The location of these scallops is shown to the right.

Location of scallops in Utopia Planitia

I have taken the same overview map used from two recent cool image posts, showing how these scallops relate in location to the strange crater in Utopia Planitia as well as the glacial-surrounded mesa in Protonilus Mensae.

In caves, scallops like this form from water or wind flow, but when they do, they are all oriented the same way. Here the scallops are at different orientations, terracing down from the center of the image. In this case it appears that scientists believe [pdf] the formation process is related to the sublimation of underground ice at this location.

According to [one hypothesis] scallop formation should be ongoing at the present time. Sublimation of interstitial ice could induce a collapse of material, initially as a small pit, then growing southward because of greater solar heating on the southern side. Nearby scallops would coalesce together as can be seen to have occurred.

What is most cool is that the geologists think the process that forms these scallops is related to the same processes that cause the formation of the swiss cheese landforms in the south polar regions.

Crater in the Martian northern lowlands

Crater in Utopia Planitia
Click for original full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) on October 26, 2019. It shows a crater in the western edge of Utopia Planitia, the largest and deepest region of the Martian northern lowlands where it is theorized that an intermittent ocean might have once existed.

My first uneducated guess at looking at this image is that the impact occurred in some sort of wet slushy mud or ice, which then melted and filled the crater interior, ponding in the crater’s center as it froze.

A more educated guess, based on what I have learned in the past year, is not much different. The crater is located at 40 degrees north latitude and therefore sits in the middle of the mid-latitude band where scientists think there are a lot of buried inactive glaciers.

Overview map

The map to the right, revised from my December 20, 2019 post about glaciers flowing off the slopes of a mid-latitude mesa, illustrates this even more clearly.

This crater, indicated by the white cross, sits at approximately the same latitude as that mesa and its glaciers in Protonilus Mensae. It also sits at in an area where accumulated data from several spacecraft have mapped a lot of water ice, close to the surface.

Thus, it is reasonable to suppose that the impact that made this crater pushed into that ice-table, melting the water which subsequently froze and then subsided downward into the ground to form the crater’s central ponded features.

Or to put it as I did initially, the impact smashed into some wet slushy mud/ice, melting it so that it filled the crater interior to then freeze as we see it.

A deep dive into Valles Marineris

Dunes on the floor of Valles Marineris
Click for full image.

The vastness of Mars is sometimes hard to fathom. While the planet is much smaller than Earth, its entire global surface is approximately the same as the Earth’s land area. This is a lot of territory. It took humanity many tens of thousands of centuries to expand outward to settle all of it. It took even longer before humanity was successfully able to map all of the Earth so that its entire surface was known to all humans, a task that was only completed a handful of centuries ago.

While we now have the technology to quickly map the entire globe of a planet like Mars, the devil is always in the details. At this time the resolution of our global maps give us only a glimpse of the Martian surface.

The image to the right, reduced and cropped to post here, is a good example. Taken by the high resolution camera on Mars Reconnaissance Orbiter (MRO) on October 30, 2019, it shows a set of large dunes on the northern floor of a side canyon on Mars that is part of Coprates Chasma, a canyon that forms only a small part of the vast Valles Marineris canyon system east of the giant volcanoes of the Tharsis Bulge.

The sand of these dunes is mostly volcanic material, dark basalt that was deposited as lava from those giant volcanoes, then later ground down in landslides and erosion to be recycled as sand that formed dunes trapped within the canyon bottom. The dunes themselves are slowly moving eastward, driven mostly by the predominate west-to-east winds that blow down this side canyon of Coprates Chasma. The motion is very slow, so slow that even though the image title is “Coprates Chasma Dune Changes”, I was unable to spot any changes when I compared this 2019 image with a photo taken in June 2019.

To find out what had changed, I contacted Matt Chojnacki of the Lunar and Planetary Laboratory at the University of Arizona, who has been studying the nature of the sand dunes in Valles Marineris. After making a quick preliminary blink test using more sophisticate tools than I have available, he found “minor advancements. The rocks move a bit too in places.” Without a full analysis he also added, “I can tell some dune crests have moved to the east.”

The research by Chojnacki and others has found that the dunes within Valles Marineris are in many ways different than dunes found elsewhere in the mid-latitudes on Mars, suggesting that being trapped within this giant canyon has produced some specific regional features. They tend to be darker, the canyon contains several sand dune seas, called ergs (only seen elsewhere on Mars in the polar regions), and the dunes tend to be more hardened, so that they change relatively little when compared to similar dunes elsewhere on Mars.

These particular dunes in Coprates Chasma however are not hardened, since if so they would have been covered by the landslides and material that comes down from the canyon’s nearby northern slopes. Instead, they move, but appear to move far slower than similar dunes elsewhere on Mars.

To me, this image provides a good vehicle for getting a sense of the size of Valles Marineris. Coprates Chasma itself only one of about a dozen named sections of the entire Valles Marineris canyon system, and this particular image shows only the floor of a side canyon of Coprates. The map below gives an overview of the entire system.
» Read more

Megadunes in the giant canyon of Mars’ north polar icecap

Martian megadunes at the beginning of summer
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was taken by the high resolution camera of Mars Reconnaissance Orbiter (MRO) on September 15, 2019, right at the beginning of summer at the north polar icecap of Mars.

Without a larger context it is very difficult to figure out what this image shows. The image title, “Seasonal Changes of Chasma Boreale Megadunes,” gives us some basic clues. The streaks of black and dark grey are giant dunes, with this image showing their trailing edge. The darkest streaks are likely places where the thin winter mantle of dry ice has begun to sublimate away with the coming of spring, exposing the darker sand dunes below. The surrounding flat white areas are either the permanent water ice of the icecap or the surface of the lowland northern plains that surround that icecap.

The montage below shows a series of monitoring photos, beginning in 2018 during the last Martian summer and continuing through the start and middle of the spring and ending with the photo above. It shows the seasonal evolution of that upper carbon dioxide dry ice mantle, which reveals the darker dunes below as that dry ice mantle sublimates away.
» Read more

A crack in the Martian crust

Crack in the Martian crust
Click for full image.

Cerberus Fossae

The photograph to the right, reduced and cropped to post here, was imaged on October 20, 2019 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a spectacular thousand-foot-deep canyon in the region of Cerberus Fossae, an area of Mars crossed by numerous deep east-west fissures and depressions.

Hidden in the small white box on the eastern end of that canyon are Martian geological features, small and at first glance not that interesting, that are of great significance and the focus of intense research.

The map to the right shows an overview of the region. The yellow cross shows the location of this particular crack.

In my previous post about Cerberus Fossae, I had incorrectly assumed that these cracks and similar lines of pits or depressions were caused by the sinking of surface material into underground lava tubes. While this is possible in some cases, it is not the main cause of these cracks. Instead, they were formed due to the pressure from below caused by the rise of the surrounding giant volcanoes, Elysium Mons to the north and Olympus Mons to the east. That pressure stretched the crust until it cracked in numerous places. In Cerberus Fossae this produced a series of parallel east-west fissures, some more than seven hundred miles long.

The young age of Cerberus Fossae is dramatically illustrated by the wider mosaic below, showing the entire crack.
» Read more

Martian “What the heck?” formations

What the heck caused these?
Click for full image.

Cool image time! In digging through the new images that come down from the high resolution camera on Mars Reconnaissance Orbiter (MRO), my reaction sometimes is “What the heck caused that?”

That was my reaction when I looked at the image to the right, cropped to post here.

The full image, taken on October 6, 2019, shows the floor of one of the many north-south fissures found in the volcanic Tharsis Bulge west of Valles Marineris and east of Olympus Mons. The fissures are caused when the crust is pushed upward by volcanic pressure, causing the surface to crack.

In this case the mystery is that patch of east-west ridges at the bottom of this somewhat wide fissure. While they might be dunes, they do not resemble dunes, as they have a rigid and somewhat sharp appearance. More puzzling is their somewhat abrupt appearance and disappearance. Except for its northern end, the edges of the patch are so sharply defined. If these were dunes you’d think they’d fade away more gradually.

Could the ridges be a more resistant subsurface feature slowly being revealed as surface material erodes away? Sure, but their orientation is completely opposite to the north-south fissures that dominate this region. One would expect deeper features to reflect that same general orientation. These ridges do not.

This image was dubbed a “Terrain Sample,” which means it was taken not because of any specific research goal, but because the scientists who run MRO’s high resolution camera had a gap in their schedule and needed to take a picture to maintain the camera’s proper temperature. In such cases they often take somewhat random images, not knowing what they will find. In this case they struck geological gold, a mystery that some postdoc student could spend a lot of time analyzing.

1 42 43 44 45 46 59